Traktor/myenv/Lib/site-packages/sympy/parsing/mathematica.py

1081 lines
38 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from __future__ import annotations
import re
import typing
from itertools import product
from typing import Any, Callable
import sympy
from sympy import Mul, Add, Pow, log, exp, sqrt, cos, sin, tan, asin, acos, acot, asec, acsc, sinh, cosh, tanh, asinh, \
acosh, atanh, acoth, asech, acsch, expand, im, flatten, polylog, cancel, expand_trig, sign, simplify, \
UnevaluatedExpr, S, atan, atan2, Mod, Max, Min, rf, Ei, Si, Ci, airyai, airyaiprime, airybi, primepi, prime, \
isprime, cot, sec, csc, csch, sech, coth, Function, I, pi, Tuple, GreaterThan, StrictGreaterThan, StrictLessThan, \
LessThan, Equality, Or, And, Lambda, Integer, Dummy, symbols
from sympy.core.sympify import sympify, _sympify
from sympy.functions.special.bessel import airybiprime
from sympy.functions.special.error_functions import li
from sympy.utilities.exceptions import sympy_deprecation_warning
def mathematica(s, additional_translations=None):
sympy_deprecation_warning(
"""The ``mathematica`` function for the Mathematica parser is now
deprecated. Use ``parse_mathematica`` instead.
The parameter ``additional_translation`` can be replaced by SymPy's
.replace( ) or .subs( ) methods on the output expression instead.""",
deprecated_since_version="1.11",
active_deprecations_target="mathematica-parser-new",
)
parser = MathematicaParser(additional_translations)
return sympify(parser._parse_old(s))
def parse_mathematica(s):
"""
Translate a string containing a Wolfram Mathematica expression to a SymPy
expression.
If the translator is unable to find a suitable SymPy expression, the
``FullForm`` of the Mathematica expression will be output, using SymPy
``Function`` objects as nodes of the syntax tree.
Examples
========
>>> from sympy.parsing.mathematica import parse_mathematica
>>> parse_mathematica("Sin[x]^2 Tan[y]")
sin(x)**2*tan(y)
>>> e = parse_mathematica("F[7,5,3]")
>>> e
F(7, 5, 3)
>>> from sympy import Function, Max, Min
>>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x))
21
Both standard input form and Mathematica full form are supported:
>>> parse_mathematica("x*(a + b)")
x*(a + b)
>>> parse_mathematica("Times[x, Plus[a, b]]")
x*(a + b)
To get a matrix from Wolfram's code:
>>> m = parse_mathematica("{{a, b}, {c, d}}")
>>> m
((a, b), (c, d))
>>> from sympy import Matrix
>>> Matrix(m)
Matrix([
[a, b],
[c, d]])
If the translation into equivalent SymPy expressions fails, an SymPy
expression equivalent to Wolfram Mathematica's "FullForm" will be created:
>>> parse_mathematica("x_.")
Optional(Pattern(x, Blank()))
>>> parse_mathematica("Plus @@ {x, y, z}")
Apply(Plus, (x, y, z))
>>> parse_mathematica("f[x_, 3] := x^3 /; x > 0")
SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0))
"""
parser = MathematicaParser()
return parser.parse(s)
def _parse_Function(*args):
if len(args) == 1:
arg = args[0]
Slot = Function("Slot")
slots = arg.atoms(Slot)
numbers = [a.args[0] for a in slots]
number_of_arguments = max(numbers)
if isinstance(number_of_arguments, Integer):
variables = symbols(f"dummy0:{number_of_arguments}", cls=Dummy)
return Lambda(variables, arg.xreplace({Slot(i+1): v for i, v in enumerate(variables)}))
return Lambda((), arg)
elif len(args) == 2:
variables = args[0]
body = args[1]
return Lambda(variables, body)
else:
raise SyntaxError("Function node expects 1 or 2 arguments")
def _deco(cls):
cls._initialize_class()
return cls
@_deco
class MathematicaParser:
"""
An instance of this class converts a string of a Wolfram Mathematica
expression to a SymPy expression.
The main parser acts internally in three stages:
1. tokenizer: tokenizes the Mathematica expression and adds the missing *
operators. Handled by ``_from_mathematica_to_tokens(...)``
2. full form list: sort the list of strings output by the tokenizer into a
syntax tree of nested lists and strings, equivalent to Mathematica's
``FullForm`` expression output. This is handled by the function
``_from_tokens_to_fullformlist(...)``.
3. SymPy expression: the syntax tree expressed as full form list is visited
and the nodes with equivalent classes in SymPy are replaced. Unknown
syntax tree nodes are cast to SymPy ``Function`` objects. This is
handled by ``_from_fullformlist_to_sympy(...)``.
"""
# left: Mathematica, right: SymPy
CORRESPONDENCES = {
'Sqrt[x]': 'sqrt(x)',
'Exp[x]': 'exp(x)',
'Log[x]': 'log(x)',
'Log[x,y]': 'log(y,x)',
'Log2[x]': 'log(x,2)',
'Log10[x]': 'log(x,10)',
'Mod[x,y]': 'Mod(x,y)',
'Max[*x]': 'Max(*x)',
'Min[*x]': 'Min(*x)',
'Pochhammer[x,y]':'rf(x,y)',
'ArcTan[x,y]':'atan2(y,x)',
'ExpIntegralEi[x]': 'Ei(x)',
'SinIntegral[x]': 'Si(x)',
'CosIntegral[x]': 'Ci(x)',
'AiryAi[x]': 'airyai(x)',
'AiryAiPrime[x]': 'airyaiprime(x)',
'AiryBi[x]' :'airybi(x)',
'AiryBiPrime[x]' :'airybiprime(x)',
'LogIntegral[x]':' li(x)',
'PrimePi[x]': 'primepi(x)',
'Prime[x]': 'prime(x)',
'PrimeQ[x]': 'isprime(x)'
}
# trigonometric, e.t.c.
for arc, tri, h in product(('', 'Arc'), (
'Sin', 'Cos', 'Tan', 'Cot', 'Sec', 'Csc'), ('', 'h')):
fm = arc + tri + h + '[x]'
if arc: # arc func
fs = 'a' + tri.lower() + h + '(x)'
else: # non-arc func
fs = tri.lower() + h + '(x)'
CORRESPONDENCES.update({fm: fs})
REPLACEMENTS = {
' ': '',
'^': '**',
'{': '[',
'}': ']',
}
RULES = {
# a single whitespace to '*'
'whitespace': (
re.compile(r'''
(?:(?<=[a-zA-Z\d])|(?<=\d\.)) # a letter or a number
\s+ # any number of whitespaces
(?:(?=[a-zA-Z\d])|(?=\.\d)) # a letter or a number
''', re.VERBOSE),
'*'),
# add omitted '*' character
'add*_1': (
re.compile(r'''
(?:(?<=[])\d])|(?<=\d\.)) # ], ) or a number
# ''
(?=[(a-zA-Z]) # ( or a single letter
''', re.VERBOSE),
'*'),
# add omitted '*' character (variable letter preceding)
'add*_2': (
re.compile(r'''
(?<=[a-zA-Z]) # a letter
\( # ( as a character
(?=.) # any characters
''', re.VERBOSE),
'*('),
# convert 'Pi' to 'pi'
'Pi': (
re.compile(r'''
(?:
\A|(?<=[^a-zA-Z])
)
Pi # 'Pi' is 3.14159... in Mathematica
(?=[^a-zA-Z])
''', re.VERBOSE),
'pi'),
}
# Mathematica function name pattern
FM_PATTERN = re.compile(r'''
(?:
\A|(?<=[^a-zA-Z]) # at the top or a non-letter
)
[A-Z][a-zA-Z\d]* # Function
(?=\[) # [ as a character
''', re.VERBOSE)
# list or matrix pattern (for future usage)
ARG_MTRX_PATTERN = re.compile(r'''
\{.*\}
''', re.VERBOSE)
# regex string for function argument pattern
ARGS_PATTERN_TEMPLATE = r'''
(?:
\A|(?<=[^a-zA-Z])
)
{arguments} # model argument like x, y,...
(?=[^a-zA-Z])
'''
# will contain transformed CORRESPONDENCES dictionary
TRANSLATIONS: dict[tuple[str, int], dict[str, Any]] = {}
# cache for a raw users' translation dictionary
cache_original: dict[tuple[str, int], dict[str, Any]] = {}
# cache for a compiled users' translation dictionary
cache_compiled: dict[tuple[str, int], dict[str, Any]] = {}
@classmethod
def _initialize_class(cls):
# get a transformed CORRESPONDENCES dictionary
d = cls._compile_dictionary(cls.CORRESPONDENCES)
cls.TRANSLATIONS.update(d)
def __init__(self, additional_translations=None):
self.translations = {}
# update with TRANSLATIONS (class constant)
self.translations.update(self.TRANSLATIONS)
if additional_translations is None:
additional_translations = {}
# check the latest added translations
if self.__class__.cache_original != additional_translations:
if not isinstance(additional_translations, dict):
raise ValueError('The argument must be dict type')
# get a transformed additional_translations dictionary
d = self._compile_dictionary(additional_translations)
# update cache
self.__class__.cache_original = additional_translations
self.__class__.cache_compiled = d
# merge user's own translations
self.translations.update(self.__class__.cache_compiled)
@classmethod
def _compile_dictionary(cls, dic):
# for return
d = {}
for fm, fs in dic.items():
# check function form
cls._check_input(fm)
cls._check_input(fs)
# uncover '*' hiding behind a whitespace
fm = cls._apply_rules(fm, 'whitespace')
fs = cls._apply_rules(fs, 'whitespace')
# remove whitespace(s)
fm = cls._replace(fm, ' ')
fs = cls._replace(fs, ' ')
# search Mathematica function name
m = cls.FM_PATTERN.search(fm)
# if no-hit
if m is None:
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# get Mathematica function name like 'Log'
fm_name = m.group()
# get arguments of Mathematica function
args, end = cls._get_args(m)
# function side check. (e.g.) '2*Func[x]' is invalid.
if m.start() != 0 or end != len(fm):
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# check the last argument's 1st character
if args[-1][0] == '*':
key_arg = '*'
else:
key_arg = len(args)
key = (fm_name, key_arg)
# convert '*x' to '\\*x' for regex
re_args = [x if x[0] != '*' else '\\' + x for x in args]
# for regex. Example: (?:(x|y|z))
xyz = '(?:(' + '|'.join(re_args) + '))'
# string for regex compile
patStr = cls.ARGS_PATTERN_TEMPLATE.format(arguments=xyz)
pat = re.compile(patStr, re.VERBOSE)
# update dictionary
d[key] = {}
d[key]['fs'] = fs # SymPy function template
d[key]['args'] = args # args are ['x', 'y'] for example
d[key]['pat'] = pat
return d
def _convert_function(self, s):
'''Parse Mathematica function to SymPy one'''
# compiled regex object
pat = self.FM_PATTERN
scanned = '' # converted string
cur = 0 # position cursor
while True:
m = pat.search(s)
if m is None:
# append the rest of string
scanned += s
break
# get Mathematica function name
fm = m.group()
# get arguments, and the end position of fm function
args, end = self._get_args(m)
# the start position of fm function
bgn = m.start()
# convert Mathematica function to SymPy one
s = self._convert_one_function(s, fm, args, bgn, end)
# update cursor
cur = bgn
# append converted part
scanned += s[:cur]
# shrink s
s = s[cur:]
return scanned
def _convert_one_function(self, s, fm, args, bgn, end):
# no variable-length argument
if (fm, len(args)) in self.translations:
key = (fm, len(args))
# x, y,... model arguments
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {k: v for k, v in zip(x_args, args)}
# with variable-length argument
elif (fm, '*') in self.translations:
key = (fm, '*')
# x, y,..*args (model arguments)
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {}
for i, x in enumerate(x_args):
if x[0] == '*':
d[x] = ','.join(args[i:])
break
d[x] = args[i]
# out of self.translations
else:
err = "'{f}' is out of the whitelist.".format(f=fm)
raise ValueError(err)
# template string of converted function
template = self.translations[key]['fs']
# regex pattern for x_args
pat = self.translations[key]['pat']
scanned = ''
cur = 0
while True:
m = pat.search(template)
if m is None:
scanned += template
break
# get model argument
x = m.group()
# get a start position of the model argument
xbgn = m.start()
# add the corresponding actual argument
scanned += template[:xbgn] + d[x]
# update cursor to the end of the model argument
cur = m.end()
# shrink template
template = template[cur:]
# update to swapped string
s = s[:bgn] + scanned + s[end:]
return s
@classmethod
def _get_args(cls, m):
'''Get arguments of a Mathematica function'''
s = m.string # whole string
anc = m.end() + 1 # pointing the first letter of arguments
square, curly = [], [] # stack for brakets
args = []
# current cursor
cur = anc
for i, c in enumerate(s[anc:], anc):
# extract one argument
if c == ',' and (not square) and (not curly):
args.append(s[cur:i]) # add an argument
cur = i + 1 # move cursor
# handle list or matrix (for future usage)
if c == '{':
curly.append(c)
elif c == '}':
curly.pop()
# seek corresponding ']' with skipping irrevant ones
if c == '[':
square.append(c)
elif c == ']':
if square:
square.pop()
else: # empty stack
args.append(s[cur:i])
break
# the next position to ']' bracket (the function end)
func_end = i + 1
return args, func_end
@classmethod
def _replace(cls, s, bef):
aft = cls.REPLACEMENTS[bef]
s = s.replace(bef, aft)
return s
@classmethod
def _apply_rules(cls, s, bef):
pat, aft = cls.RULES[bef]
return pat.sub(aft, s)
@classmethod
def _check_input(cls, s):
for bracket in (('[', ']'), ('{', '}'), ('(', ')')):
if s.count(bracket[0]) != s.count(bracket[1]):
err = "'{f}' function form is invalid.".format(f=s)
raise ValueError(err)
if '{' in s:
err = "Currently list is not supported."
raise ValueError(err)
def _parse_old(self, s):
# input check
self._check_input(s)
# uncover '*' hiding behind a whitespace
s = self._apply_rules(s, 'whitespace')
# remove whitespace(s)
s = self._replace(s, ' ')
# add omitted '*' character
s = self._apply_rules(s, 'add*_1')
s = self._apply_rules(s, 'add*_2')
# translate function
s = self._convert_function(s)
# '^' to '**'
s = self._replace(s, '^')
# 'Pi' to 'pi'
s = self._apply_rules(s, 'Pi')
# '{', '}' to '[', ']', respectively
# s = cls._replace(s, '{') # currently list is not taken into account
# s = cls._replace(s, '}')
return s
def parse(self, s):
s2 = self._from_mathematica_to_tokens(s)
s3 = self._from_tokens_to_fullformlist(s2)
s4 = self._from_fullformlist_to_sympy(s3)
return s4
INFIX = "Infix"
PREFIX = "Prefix"
POSTFIX = "Postfix"
FLAT = "Flat"
RIGHT = "Right"
LEFT = "Left"
_mathematica_op_precedence: list[tuple[str, str | None, dict[str, str | Callable]]] = [
(POSTFIX, None, {";": lambda x: x + ["Null"] if isinstance(x, list) and x and x[0] == "CompoundExpression" else ["CompoundExpression", x, "Null"]}),
(INFIX, FLAT, {";": "CompoundExpression"}),
(INFIX, RIGHT, {"=": "Set", ":=": "SetDelayed", "+=": "AddTo", "-=": "SubtractFrom", "*=": "TimesBy", "/=": "DivideBy"}),
(INFIX, LEFT, {"//": lambda x, y: [x, y]}),
(POSTFIX, None, {"&": "Function"}),
(INFIX, LEFT, {"/.": "ReplaceAll"}),
(INFIX, RIGHT, {"->": "Rule", ":>": "RuleDelayed"}),
(INFIX, LEFT, {"/;": "Condition"}),
(INFIX, FLAT, {"|": "Alternatives"}),
(POSTFIX, None, {"..": "Repeated", "...": "RepeatedNull"}),
(INFIX, FLAT, {"||": "Or"}),
(INFIX, FLAT, {"&&": "And"}),
(PREFIX, None, {"!": "Not"}),
(INFIX, FLAT, {"===": "SameQ", "=!=": "UnsameQ"}),
(INFIX, FLAT, {"==": "Equal", "!=": "Unequal", "<=": "LessEqual", "<": "Less", ">=": "GreaterEqual", ">": "Greater"}),
(INFIX, None, {";;": "Span"}),
(INFIX, FLAT, {"+": "Plus", "-": "Plus"}),
(INFIX, FLAT, {"*": "Times", "/": "Times"}),
(INFIX, FLAT, {".": "Dot"}),
(PREFIX, None, {"-": lambda x: MathematicaParser._get_neg(x),
"+": lambda x: x}),
(INFIX, RIGHT, {"^": "Power"}),
(INFIX, RIGHT, {"@@": "Apply", "/@": "Map", "//@": "MapAll", "@@@": lambda x, y: ["Apply", x, y, ["List", "1"]]}),
(POSTFIX, None, {"'": "Derivative", "!": "Factorial", "!!": "Factorial2", "--": "Decrement"}),
(INFIX, None, {"[": lambda x, y: [x, *y], "[[": lambda x, y: ["Part", x, *y]}),
(PREFIX, None, {"{": lambda x: ["List", *x], "(": lambda x: x[0]}),
(INFIX, None, {"?": "PatternTest"}),
(POSTFIX, None, {
"_": lambda x: ["Pattern", x, ["Blank"]],
"_.": lambda x: ["Optional", ["Pattern", x, ["Blank"]]],
"__": lambda x: ["Pattern", x, ["BlankSequence"]],
"___": lambda x: ["Pattern", x, ["BlankNullSequence"]],
}),
(INFIX, None, {"_": lambda x, y: ["Pattern", x, ["Blank", y]]}),
(PREFIX, None, {"#": "Slot", "##": "SlotSequence"}),
]
_missing_arguments_default = {
"#": lambda: ["Slot", "1"],
"##": lambda: ["SlotSequence", "1"],
}
_literal = r"[A-Za-z][A-Za-z0-9]*"
_number = r"(?:[0-9]+(?:\.[0-9]*)?|\.[0-9]+)"
_enclosure_open = ["(", "[", "[[", "{"]
_enclosure_close = [")", "]", "]]", "}"]
@classmethod
def _get_neg(cls, x):
return f"-{x}" if isinstance(x, str) and re.match(MathematicaParser._number, x) else ["Times", "-1", x]
@classmethod
def _get_inv(cls, x):
return ["Power", x, "-1"]
_regex_tokenizer = None
def _get_tokenizer(self):
if self._regex_tokenizer is not None:
# Check if the regular expression has already been compiled:
return self._regex_tokenizer
tokens = [self._literal, self._number]
tokens_escape = self._enclosure_open[:] + self._enclosure_close[:]
for typ, strat, symdict in self._mathematica_op_precedence:
for k in symdict:
tokens_escape.append(k)
tokens_escape.sort(key=lambda x: -len(x))
tokens.extend(map(re.escape, tokens_escape))
tokens.append(",")
tokens.append("\n")
tokenizer = re.compile("(" + "|".join(tokens) + ")")
self._regex_tokenizer = tokenizer
return self._regex_tokenizer
def _from_mathematica_to_tokens(self, code: str):
tokenizer = self._get_tokenizer()
# Find strings:
code_splits: list[str | list] = []
while True:
string_start = code.find("\"")
if string_start == -1:
if len(code) > 0:
code_splits.append(code)
break
match_end = re.search(r'(?<!\\)"', code[string_start+1:])
if match_end is None:
raise SyntaxError('mismatch in string " " expression')
string_end = string_start + match_end.start() + 1
if string_start > 0:
code_splits.append(code[:string_start])
code_splits.append(["_Str", code[string_start+1:string_end].replace('\\"', '"')])
code = code[string_end+1:]
# Remove comments:
for i, code_split in enumerate(code_splits):
if isinstance(code_split, list):
continue
while True:
pos_comment_start = code_split.find("(*")
if pos_comment_start == -1:
break
pos_comment_end = code_split.find("*)")
if pos_comment_end == -1 or pos_comment_end < pos_comment_start:
raise SyntaxError("mismatch in comment (* *) code")
code_split = code_split[:pos_comment_start] + code_split[pos_comment_end+2:]
code_splits[i] = code_split
# Tokenize the input strings with a regular expression:
token_lists = [tokenizer.findall(i) if isinstance(i, str) and i.isascii() else [i] for i in code_splits]
tokens = [j for i in token_lists for j in i]
# Remove newlines at the beginning
while tokens and tokens[0] == "\n":
tokens.pop(0)
# Remove newlines at the end
while tokens and tokens[-1] == "\n":
tokens.pop(-1)
return tokens
def _is_op(self, token: str | list) -> bool:
if isinstance(token, list):
return False
if re.match(self._literal, token):
return False
if re.match("-?" + self._number, token):
return False
return True
def _is_valid_star1(self, token: str | list) -> bool:
if token in (")", "}"):
return True
return not self._is_op(token)
def _is_valid_star2(self, token: str | list) -> bool:
if token in ("(", "{"):
return True
return not self._is_op(token)
def _from_tokens_to_fullformlist(self, tokens: list):
stack: list[list] = [[]]
open_seq = []
pointer: int = 0
while pointer < len(tokens):
token = tokens[pointer]
if token in self._enclosure_open:
stack[-1].append(token)
open_seq.append(token)
stack.append([])
elif token == ",":
if len(stack[-1]) == 0 and stack[-2][-1] == open_seq[-1]:
raise SyntaxError("%s cannot be followed by comma ," % open_seq[-1])
stack[-1] = self._parse_after_braces(stack[-1])
stack.append([])
elif token in self._enclosure_close:
ind = self._enclosure_close.index(token)
if self._enclosure_open[ind] != open_seq[-1]:
unmatched_enclosure = SyntaxError("unmatched enclosure")
if token == "]]" and open_seq[-1] == "[":
if open_seq[-2] == "[":
# These two lines would be logically correct, but are
# unnecessary:
# token = "]"
# tokens[pointer] = "]"
tokens.insert(pointer+1, "]")
elif open_seq[-2] == "[[":
if tokens[pointer+1] == "]":
tokens[pointer+1] = "]]"
elif tokens[pointer+1] == "]]":
tokens[pointer+1] = "]]"
tokens.insert(pointer+2, "]")
else:
raise unmatched_enclosure
else:
raise unmatched_enclosure
if len(stack[-1]) == 0 and stack[-2][-1] == "(":
raise SyntaxError("( ) not valid syntax")
last_stack = self._parse_after_braces(stack[-1], True)
stack[-1] = last_stack
new_stack_element = []
while stack[-1][-1] != open_seq[-1]:
new_stack_element.append(stack.pop())
new_stack_element.reverse()
if open_seq[-1] == "(" and len(new_stack_element) != 1:
raise SyntaxError("( must be followed by one expression, %i detected" % len(new_stack_element))
stack[-1].append(new_stack_element)
open_seq.pop(-1)
else:
stack[-1].append(token)
pointer += 1
assert len(stack) == 1
return self._parse_after_braces(stack[0])
def _util_remove_newlines(self, lines: list, tokens: list, inside_enclosure: bool):
pointer = 0
size = len(tokens)
while pointer < size:
token = tokens[pointer]
if token == "\n":
if inside_enclosure:
# Ignore newlines inside enclosures
tokens.pop(pointer)
size -= 1
continue
if pointer == 0:
tokens.pop(0)
size -= 1
continue
if pointer > 1:
try:
prev_expr = self._parse_after_braces(tokens[:pointer], inside_enclosure)
except SyntaxError:
tokens.pop(pointer)
size -= 1
continue
else:
prev_expr = tokens[0]
if len(prev_expr) > 0 and prev_expr[0] == "CompoundExpression":
lines.extend(prev_expr[1:])
else:
lines.append(prev_expr)
for i in range(pointer):
tokens.pop(0)
size -= pointer
pointer = 0
continue
pointer += 1
def _util_add_missing_asterisks(self, tokens: list):
size: int = len(tokens)
pointer: int = 0
while pointer < size:
if (pointer > 0 and
self._is_valid_star1(tokens[pointer - 1]) and
self._is_valid_star2(tokens[pointer])):
# This is a trick to add missing * operators in the expression,
# `"*" in op_dict` makes sure the precedence level is the same as "*",
# while `not self._is_op( ... )` makes sure this and the previous
# expression are not operators.
if tokens[pointer] == "(":
# ( has already been processed by now, replace:
tokens[pointer] = "*"
tokens[pointer + 1] = tokens[pointer + 1][0]
else:
tokens.insert(pointer, "*")
pointer += 1
size += 1
pointer += 1
def _parse_after_braces(self, tokens: list, inside_enclosure: bool = False):
op_dict: dict
changed: bool = False
lines: list = []
self._util_remove_newlines(lines, tokens, inside_enclosure)
for op_type, grouping_strat, op_dict in reversed(self._mathematica_op_precedence):
if "*" in op_dict:
self._util_add_missing_asterisks(tokens)
size: int = len(tokens)
pointer: int = 0
while pointer < size:
token = tokens[pointer]
if isinstance(token, str) and token in op_dict:
op_name: str | Callable = op_dict[token]
node: list
first_index: int
if isinstance(op_name, str):
node = [op_name]
first_index = 1
else:
node = []
first_index = 0
if token in ("+", "-") and op_type == self.PREFIX and pointer > 0 and not self._is_op(tokens[pointer - 1]):
# Make sure that PREFIX + - don't match expressions like a + b or a - b,
# the INFIX + - are supposed to match that expression:
pointer += 1
continue
if op_type == self.INFIX:
if pointer == 0 or pointer == size - 1 or self._is_op(tokens[pointer - 1]) or self._is_op(tokens[pointer + 1]):
pointer += 1
continue
changed = True
tokens[pointer] = node
if op_type == self.INFIX:
arg1 = tokens.pop(pointer-1)
arg2 = tokens.pop(pointer)
if token == "/":
arg2 = self._get_inv(arg2)
elif token == "-":
arg2 = self._get_neg(arg2)
pointer -= 1
size -= 2
node.append(arg1)
node_p = node
if grouping_strat == self.FLAT:
while pointer + 2 < size and self._check_op_compatible(tokens[pointer+1], token):
node_p.append(arg2)
other_op = tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
if other_op == "/":
arg2 = self._get_inv(arg2)
elif other_op == "-":
arg2 = self._get_neg(arg2)
size -= 2
node_p.append(arg2)
elif grouping_strat == self.RIGHT:
while pointer + 2 < size and tokens[pointer+1] == token:
node_p.append([op_name, arg2])
node_p = node_p[-1]
tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
size -= 2
node_p.append(arg2)
elif grouping_strat == self.LEFT:
while pointer + 1 < size and tokens[pointer+1] == token:
if isinstance(op_name, str):
node_p[first_index] = [op_name, node_p[first_index], arg2]
else:
node_p[first_index] = op_name(node_p[first_index], arg2)
tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
size -= 2
node_p.append(arg2)
else:
node.append(arg2)
elif op_type == self.PREFIX:
assert grouping_strat is None
if pointer == size - 1 or self._is_op(tokens[pointer + 1]):
tokens[pointer] = self._missing_arguments_default[token]()
else:
node.append(tokens.pop(pointer+1))
size -= 1
elif op_type == self.POSTFIX:
assert grouping_strat is None
if pointer == 0 or self._is_op(tokens[pointer - 1]):
tokens[pointer] = self._missing_arguments_default[token]()
else:
node.append(tokens.pop(pointer-1))
pointer -= 1
size -= 1
if isinstance(op_name, Callable): # type: ignore
op_call: Callable = typing.cast(Callable, op_name)
new_node = op_call(*node)
node.clear()
if isinstance(new_node, list):
node.extend(new_node)
else:
tokens[pointer] = new_node
pointer += 1
if len(tokens) > 1 or (len(lines) == 0 and len(tokens) == 0):
if changed:
# Trick to deal with cases in which an operator with lower
# precedence should be transformed before an operator of higher
# precedence. Such as in the case of `#&[x]` (that is
# equivalent to `Lambda(d_, d_)(x)` in SymPy). In this case the
# operator `&` has lower precedence than `[`, but needs to be
# evaluated first because otherwise `# (&[x])` is not a valid
# expression:
return self._parse_after_braces(tokens, inside_enclosure)
raise SyntaxError("unable to create a single AST for the expression")
if len(lines) > 0:
if tokens[0] and tokens[0][0] == "CompoundExpression":
tokens = tokens[0][1:]
compound_expression = ["CompoundExpression", *lines, *tokens]
return compound_expression
return tokens[0]
def _check_op_compatible(self, op1: str, op2: str):
if op1 == op2:
return True
muldiv = {"*", "/"}
addsub = {"+", "-"}
if op1 in muldiv and op2 in muldiv:
return True
if op1 in addsub and op2 in addsub:
return True
return False
def _from_fullform_to_fullformlist(self, wmexpr: str):
"""
Parses FullForm[Downvalues[]] generated by Mathematica
"""
out: list = []
stack = [out]
generator = re.finditer(r'[\[\],]', wmexpr)
last_pos = 0
for match in generator:
if match is None:
break
position = match.start()
last_expr = wmexpr[last_pos:position].replace(',', '').replace(']', '').replace('[', '').strip()
if match.group() == ',':
if last_expr != '':
stack[-1].append(last_expr)
elif match.group() == ']':
if last_expr != '':
stack[-1].append(last_expr)
stack.pop()
elif match.group() == '[':
stack[-1].append([last_expr])
stack.append(stack[-1][-1])
last_pos = match.end()
return out[0]
def _from_fullformlist_to_fullformsympy(self, pylist: list):
from sympy import Function, Symbol
def converter(expr):
if isinstance(expr, list):
if len(expr) > 0:
head = expr[0]
args = [converter(arg) for arg in expr[1:]]
return Function(head)(*args)
else:
raise ValueError("Empty list of expressions")
elif isinstance(expr, str):
return Symbol(expr)
else:
return _sympify(expr)
return converter(pylist)
_node_conversions = {
"Times": Mul,
"Plus": Add,
"Power": Pow,
"Log": lambda *a: log(*reversed(a)),
"Log2": lambda x: log(x, 2),
"Log10": lambda x: log(x, 10),
"Exp": exp,
"Sqrt": sqrt,
"Sin": sin,
"Cos": cos,
"Tan": tan,
"Cot": cot,
"Sec": sec,
"Csc": csc,
"ArcSin": asin,
"ArcCos": acos,
"ArcTan": lambda *a: atan2(*reversed(a)) if len(a) == 2 else atan(*a),
"ArcCot": acot,
"ArcSec": asec,
"ArcCsc": acsc,
"Sinh": sinh,
"Cosh": cosh,
"Tanh": tanh,
"Coth": coth,
"Sech": sech,
"Csch": csch,
"ArcSinh": asinh,
"ArcCosh": acosh,
"ArcTanh": atanh,
"ArcCoth": acoth,
"ArcSech": asech,
"ArcCsch": acsch,
"Expand": expand,
"Im": im,
"Re": sympy.re,
"Flatten": flatten,
"Polylog": polylog,
"Cancel": cancel,
# Gamma=gamma,
"TrigExpand": expand_trig,
"Sign": sign,
"Simplify": simplify,
"Defer": UnevaluatedExpr,
"Identity": S,
# Sum=Sum_doit,
# Module=With,
# Block=With,
"Null": lambda *a: S.Zero,
"Mod": Mod,
"Max": Max,
"Min": Min,
"Pochhammer": rf,
"ExpIntegralEi": Ei,
"SinIntegral": Si,
"CosIntegral": Ci,
"AiryAi": airyai,
"AiryAiPrime": airyaiprime,
"AiryBi": airybi,
"AiryBiPrime": airybiprime,
"LogIntegral": li,
"PrimePi": primepi,
"Prime": prime,
"PrimeQ": isprime,
"List": Tuple,
"Greater": StrictGreaterThan,
"GreaterEqual": GreaterThan,
"Less": StrictLessThan,
"LessEqual": LessThan,
"Equal": Equality,
"Or": Or,
"And": And,
"Function": _parse_Function,
}
_atom_conversions = {
"I": I,
"Pi": pi,
}
def _from_fullformlist_to_sympy(self, full_form_list):
def recurse(expr):
if isinstance(expr, list):
if isinstance(expr[0], list):
head = recurse(expr[0])
else:
head = self._node_conversions.get(expr[0], Function(expr[0]))
return head(*[recurse(arg) for arg in expr[1:]])
else:
return self._atom_conversions.get(expr, sympify(expr))
return recurse(full_form_list)
def _from_fullformsympy_to_sympy(self, mform):
expr = mform
for mma_form, sympy_node in self._node_conversions.items():
expr = expr.replace(Function(mma_form), sympy_node)
return expr