3644 lines
145 KiB
Python
3644 lines
145 KiB
Python
|
"""
|
||
|
This module can be used to solve 2D beam bending problems with
|
||
|
singularity functions in mechanics.
|
||
|
"""
|
||
|
|
||
|
from sympy.core import S, Symbol, diff, symbols
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.function import (Derivative, Function)
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.relational import Eq
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy.solvers import linsolve
|
||
|
from sympy.solvers.ode.ode import dsolve
|
||
|
from sympy.solvers.solvers import solve
|
||
|
from sympy.printing import sstr
|
||
|
from sympy.functions import SingularityFunction, Piecewise, factorial
|
||
|
from sympy.integrals import integrate
|
||
|
from sympy.series import limit
|
||
|
from sympy.plotting import plot, PlotGrid
|
||
|
from sympy.geometry.entity import GeometryEntity
|
||
|
from sympy.external import import_module
|
||
|
from sympy.sets.sets import Interval
|
||
|
from sympy.utilities.lambdify import lambdify
|
||
|
from sympy.utilities.decorator import doctest_depends_on
|
||
|
from sympy.utilities.iterables import iterable
|
||
|
|
||
|
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})
|
||
|
|
||
|
|
||
|
|
||
|
class Beam:
|
||
|
"""
|
||
|
A Beam is a structural element that is capable of withstanding load
|
||
|
primarily by resisting against bending. Beams are characterized by
|
||
|
their cross sectional profile(Second moment of area), their length
|
||
|
and their material.
|
||
|
|
||
|
.. note::
|
||
|
A consistent sign convention must be used while solving a beam
|
||
|
bending problem; the results will
|
||
|
automatically follow the chosen sign convention. However, the
|
||
|
chosen sign convention must respect the rule that, on the positive
|
||
|
side of beam's axis (in respect to current section), a loading force
|
||
|
giving positive shear yields a negative moment, as below (the
|
||
|
curved arrow shows the positive moment and rotation):
|
||
|
|
||
|
.. image:: allowed-sign-conventions.png
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 4 meters. A constant distributed load of 6 N/m
|
||
|
is applied from half of the beam till the end. There are two simple supports
|
||
|
below the beam, one at the starting point and another at the ending point
|
||
|
of the beam. The deflection of the beam at the end is restricted.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols, Piecewise
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(4, E, I)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(6, 2, 0)
|
||
|
>>> b.apply_load(R2, 4, -1)
|
||
|
>>> b.bc_deflection = [(0, 0), (4, 0)]
|
||
|
>>> b.boundary_conditions
|
||
|
{'deflection': [(0, 0), (4, 0)], 'slope': []}
|
||
|
>>> b.load
|
||
|
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0)
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.load
|
||
|
-3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1)
|
||
|
>>> b.shear_force()
|
||
|
3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0)
|
||
|
>>> b.bending_moment()
|
||
|
3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1)
|
||
|
>>> b.slope()
|
||
|
(-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I)
|
||
|
>>> b.deflection()
|
||
|
(7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I)
|
||
|
>>> b.deflection().rewrite(Piecewise)
|
||
|
(7*x - Piecewise((x**3, x > 0), (0, True))/2
|
||
|
- 3*Piecewise(((x - 4)**3, x > 4), (0, True))/2
|
||
|
+ Piecewise(((x - 2)**4, x > 2), (0, True))/4)/(E*I)
|
||
|
|
||
|
Calculate the support reactions for a fully symbolic beam of length L.
|
||
|
There are two simple supports below the beam, one at the starting point
|
||
|
and another at the ending point of the beam. The deflection of the beam
|
||
|
at the end is restricted. The beam is loaded with:
|
||
|
|
||
|
* a downward point load P1 applied at L/4
|
||
|
* an upward point load P2 applied at L/8
|
||
|
* a counterclockwise moment M1 applied at L/2
|
||
|
* a clockwise moment M2 applied at 3*L/4
|
||
|
* a distributed constant load q1, applied downward, starting from L/2
|
||
|
up to 3*L/4
|
||
|
* a distributed constant load q2, applied upward, starting from 3*L/4
|
||
|
up to L
|
||
|
|
||
|
No assumptions are needed for symbolic loads. However, defining a positive
|
||
|
length will help the algorithm to compute the solution.
|
||
|
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> L = symbols("L", positive=True)
|
||
|
>>> P1, P2, M1, M2, q1, q2 = symbols("P1, P2, M1, M2, q1, q2")
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(L, E, I)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, L, -1)
|
||
|
>>> b.apply_load(P1, L/4, -1)
|
||
|
>>> b.apply_load(-P2, L/8, -1)
|
||
|
>>> b.apply_load(M1, L/2, -2)
|
||
|
>>> b.apply_load(-M2, 3*L/4, -2)
|
||
|
>>> b.apply_load(q1, L/2, 0, 3*L/4)
|
||
|
>>> b.apply_load(-q2, 3*L/4, 0, L)
|
||
|
>>> b.bc_deflection = [(0, 0), (L, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> print(b.reaction_loads[R1])
|
||
|
(-3*L**2*q1 + L**2*q2 - 24*L*P1 + 28*L*P2 - 32*M1 + 32*M2)/(32*L)
|
||
|
>>> print(b.reaction_loads[R2])
|
||
|
(-5*L**2*q1 + 7*L**2*q2 - 8*L*P1 + 4*L*P2 + 32*M1 - 32*M2)/(32*L)
|
||
|
"""
|
||
|
|
||
|
def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'):
|
||
|
"""Initializes the class.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
length : Sympifyable
|
||
|
A Symbol or value representing the Beam's length.
|
||
|
|
||
|
elastic_modulus : Sympifyable
|
||
|
A SymPy expression representing the Beam's Modulus of Elasticity.
|
||
|
It is a measure of the stiffness of the Beam material. It can
|
||
|
also be a continuous function of position along the beam.
|
||
|
|
||
|
second_moment : Sympifyable or Geometry object
|
||
|
Describes the cross-section of the beam via a SymPy expression
|
||
|
representing the Beam's second moment of area. It is a geometrical
|
||
|
property of an area which reflects how its points are distributed
|
||
|
with respect to its neutral axis. It can also be a continuous
|
||
|
function of position along the beam. Alternatively ``second_moment``
|
||
|
can be a shape object such as a ``Polygon`` from the geometry module
|
||
|
representing the shape of the cross-section of the beam. In such cases,
|
||
|
it is assumed that the x-axis of the shape object is aligned with the
|
||
|
bending axis of the beam. The second moment of area will be computed
|
||
|
from the shape object internally.
|
||
|
|
||
|
area : Symbol/float
|
||
|
Represents the cross-section area of beam
|
||
|
|
||
|
variable : Symbol, optional
|
||
|
A Symbol object that will be used as the variable along the beam
|
||
|
while representing the load, shear, moment, slope and deflection
|
||
|
curve. By default, it is set to ``Symbol('x')``.
|
||
|
|
||
|
base_char : String, optional
|
||
|
A String that will be used as base character to generate sequential
|
||
|
symbols for integration constants in cases where boundary conditions
|
||
|
are not sufficient to solve them.
|
||
|
"""
|
||
|
self.length = length
|
||
|
self.elastic_modulus = elastic_modulus
|
||
|
if isinstance(second_moment, GeometryEntity):
|
||
|
self.cross_section = second_moment
|
||
|
else:
|
||
|
self.cross_section = None
|
||
|
self.second_moment = second_moment
|
||
|
self.variable = variable
|
||
|
self._base_char = base_char
|
||
|
self._boundary_conditions = {'deflection': [], 'slope': []}
|
||
|
self._load = 0
|
||
|
self.area = area
|
||
|
self._applied_supports = []
|
||
|
self._support_as_loads = []
|
||
|
self._applied_loads = []
|
||
|
self._reaction_loads = {}
|
||
|
self._ild_reactions = {}
|
||
|
self._ild_shear = 0
|
||
|
self._ild_moment = 0
|
||
|
# _original_load is a copy of _load equations with unsubstituted reaction
|
||
|
# forces. It is used for calculating reaction forces in case of I.L.D.
|
||
|
self._original_load = 0
|
||
|
self._composite_type = None
|
||
|
self._hinge_position = None
|
||
|
|
||
|
def __str__(self):
|
||
|
shape_description = self._cross_section if self._cross_section else self._second_moment
|
||
|
str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description))
|
||
|
return str_sol
|
||
|
|
||
|
@property
|
||
|
def reaction_loads(self):
|
||
|
""" Returns the reaction forces in a dictionary."""
|
||
|
return self._reaction_loads
|
||
|
|
||
|
@property
|
||
|
def ild_shear(self):
|
||
|
""" Returns the I.L.D. shear equation."""
|
||
|
return self._ild_shear
|
||
|
|
||
|
@property
|
||
|
def ild_reactions(self):
|
||
|
""" Returns the I.L.D. reaction forces in a dictionary."""
|
||
|
return self._ild_reactions
|
||
|
|
||
|
@property
|
||
|
def ild_moment(self):
|
||
|
""" Returns the I.L.D. moment equation."""
|
||
|
return self._ild_moment
|
||
|
|
||
|
@property
|
||
|
def length(self):
|
||
|
"""Length of the Beam."""
|
||
|
return self._length
|
||
|
|
||
|
@length.setter
|
||
|
def length(self, l):
|
||
|
self._length = sympify(l)
|
||
|
|
||
|
@property
|
||
|
def area(self):
|
||
|
"""Cross-sectional area of the Beam. """
|
||
|
return self._area
|
||
|
|
||
|
@area.setter
|
||
|
def area(self, a):
|
||
|
self._area = sympify(a)
|
||
|
|
||
|
@property
|
||
|
def variable(self):
|
||
|
"""
|
||
|
A symbol that can be used as a variable along the length of the beam
|
||
|
while representing load distribution, shear force curve, bending
|
||
|
moment, slope curve and the deflection curve. By default, it is set
|
||
|
to ``Symbol('x')``, but this property is mutable.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I, A = symbols('E, I, A')
|
||
|
>>> x, y, z = symbols('x, y, z')
|
||
|
>>> b = Beam(4, E, I)
|
||
|
>>> b.variable
|
||
|
x
|
||
|
>>> b.variable = y
|
||
|
>>> b.variable
|
||
|
y
|
||
|
>>> b = Beam(4, E, I, A, z)
|
||
|
>>> b.variable
|
||
|
z
|
||
|
"""
|
||
|
return self._variable
|
||
|
|
||
|
@variable.setter
|
||
|
def variable(self, v):
|
||
|
if isinstance(v, Symbol):
|
||
|
self._variable = v
|
||
|
else:
|
||
|
raise TypeError("""The variable should be a Symbol object.""")
|
||
|
|
||
|
@property
|
||
|
def elastic_modulus(self):
|
||
|
"""Young's Modulus of the Beam. """
|
||
|
return self._elastic_modulus
|
||
|
|
||
|
@elastic_modulus.setter
|
||
|
def elastic_modulus(self, e):
|
||
|
self._elastic_modulus = sympify(e)
|
||
|
|
||
|
@property
|
||
|
def second_moment(self):
|
||
|
"""Second moment of area of the Beam. """
|
||
|
return self._second_moment
|
||
|
|
||
|
@second_moment.setter
|
||
|
def second_moment(self, i):
|
||
|
self._cross_section = None
|
||
|
if isinstance(i, GeometryEntity):
|
||
|
raise ValueError("To update cross-section geometry use `cross_section` attribute")
|
||
|
else:
|
||
|
self._second_moment = sympify(i)
|
||
|
|
||
|
@property
|
||
|
def cross_section(self):
|
||
|
"""Cross-section of the beam"""
|
||
|
return self._cross_section
|
||
|
|
||
|
@cross_section.setter
|
||
|
def cross_section(self, s):
|
||
|
if s:
|
||
|
self._second_moment = s.second_moment_of_area()[0]
|
||
|
self._cross_section = s
|
||
|
|
||
|
@property
|
||
|
def boundary_conditions(self):
|
||
|
"""
|
||
|
Returns a dictionary of boundary conditions applied on the beam.
|
||
|
The dictionary has three keywords namely moment, slope and deflection.
|
||
|
The value of each keyword is a list of tuple, where each tuple
|
||
|
contains location and value of a boundary condition in the format
|
||
|
(location, value).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 4 meters. The bending moment at 0 should be 4
|
||
|
and at 4 it should be 0. The slope of the beam should be 1 at 0. The
|
||
|
deflection should be 2 at 0.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(4, E, I)
|
||
|
>>> b.bc_deflection = [(0, 2)]
|
||
|
>>> b.bc_slope = [(0, 1)]
|
||
|
>>> b.boundary_conditions
|
||
|
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
|
||
|
|
||
|
Here the deflection of the beam should be ``2`` at ``0``.
|
||
|
Similarly, the slope of the beam should be ``1`` at ``0``.
|
||
|
"""
|
||
|
return self._boundary_conditions
|
||
|
|
||
|
@property
|
||
|
def bc_slope(self):
|
||
|
return self._boundary_conditions['slope']
|
||
|
|
||
|
@bc_slope.setter
|
||
|
def bc_slope(self, s_bcs):
|
||
|
self._boundary_conditions['slope'] = s_bcs
|
||
|
|
||
|
@property
|
||
|
def bc_deflection(self):
|
||
|
return self._boundary_conditions['deflection']
|
||
|
|
||
|
@bc_deflection.setter
|
||
|
def bc_deflection(self, d_bcs):
|
||
|
self._boundary_conditions['deflection'] = d_bcs
|
||
|
|
||
|
def join(self, beam, via="fixed"):
|
||
|
"""
|
||
|
This method joins two beams to make a new composite beam system.
|
||
|
Passed Beam class instance is attached to the right end of calling
|
||
|
object. This method can be used to form beams having Discontinuous
|
||
|
values of Elastic modulus or Second moment.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
beam : Beam class object
|
||
|
The Beam object which would be connected to the right of calling
|
||
|
object.
|
||
|
via : String
|
||
|
States the way two Beam object would get connected
|
||
|
- For axially fixed Beams, via="fixed"
|
||
|
- For Beams connected via hinge, via="hinge"
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a cantilever beam of length 4 meters. For first 2 meters
|
||
|
its moment of inertia is `1.5*I` and `I` for the other end.
|
||
|
A pointload of magnitude 4 N is applied from the top at its free end.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b1 = Beam(2, E, 1.5*I)
|
||
|
>>> b2 = Beam(2, E, I)
|
||
|
>>> b = b1.join(b2, "fixed")
|
||
|
>>> b.apply_load(20, 4, -1)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, 0, -2)
|
||
|
>>> b.bc_slope = [(0, 0)]
|
||
|
>>> b.bc_deflection = [(0, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.load
|
||
|
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1)
|
||
|
>>> b.slope()
|
||
|
(-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0)
|
||
|
- 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I)
|
||
|
+ 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
E = self.elastic_modulus
|
||
|
new_length = self.length + beam.length
|
||
|
if self.second_moment != beam.second_moment:
|
||
|
new_second_moment = Piecewise((self.second_moment, x<=self.length),
|
||
|
(beam.second_moment, x<=new_length))
|
||
|
else:
|
||
|
new_second_moment = self.second_moment
|
||
|
|
||
|
if via == "fixed":
|
||
|
new_beam = Beam(new_length, E, new_second_moment, x)
|
||
|
new_beam._composite_type = "fixed"
|
||
|
return new_beam
|
||
|
|
||
|
if via == "hinge":
|
||
|
new_beam = Beam(new_length, E, new_second_moment, x)
|
||
|
new_beam._composite_type = "hinge"
|
||
|
new_beam._hinge_position = self.length
|
||
|
return new_beam
|
||
|
|
||
|
def apply_support(self, loc, type="fixed"):
|
||
|
"""
|
||
|
This method applies support to a particular beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
loc : Sympifyable
|
||
|
Location of point at which support is applied.
|
||
|
type : String
|
||
|
Determines type of Beam support applied. To apply support structure
|
||
|
with
|
||
|
- zero degree of freedom, type = "fixed"
|
||
|
- one degree of freedom, type = "pin"
|
||
|
- two degrees of freedom, type = "roller"
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
|
||
|
applied in the clockwise direction at the end of the beam. A pointload
|
||
|
of magnitude 8 N is applied from the top of the beam at the starting
|
||
|
point. There are two simple supports below the beam. One at the end
|
||
|
and another one at a distance of 10 meters from the start. The
|
||
|
deflection is restricted at both the supports.
|
||
|
|
||
|
Using the sign convention of upward forces and clockwise moment
|
||
|
being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(30, E, I)
|
||
|
>>> b.apply_support(10, 'roller')
|
||
|
>>> b.apply_support(30, 'roller')
|
||
|
>>> b.apply_load(-8, 0, -1)
|
||
|
>>> b.apply_load(120, 30, -2)
|
||
|
>>> R_10, R_30 = symbols('R_10, R_30')
|
||
|
>>> b.solve_for_reaction_loads(R_10, R_30)
|
||
|
>>> b.load
|
||
|
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
|
||
|
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
|
||
|
>>> b.slope()
|
||
|
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
|
||
|
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
|
||
|
"""
|
||
|
loc = sympify(loc)
|
||
|
self._applied_supports.append((loc, type))
|
||
|
if type in ("pin", "roller"):
|
||
|
reaction_load = Symbol('R_'+str(loc))
|
||
|
self.apply_load(reaction_load, loc, -1)
|
||
|
self.bc_deflection.append((loc, 0))
|
||
|
else:
|
||
|
reaction_load = Symbol('R_'+str(loc))
|
||
|
reaction_moment = Symbol('M_'+str(loc))
|
||
|
self.apply_load(reaction_load, loc, -1)
|
||
|
self.apply_load(reaction_moment, loc, -2)
|
||
|
self.bc_deflection.append((loc, 0))
|
||
|
self.bc_slope.append((loc, 0))
|
||
|
self._support_as_loads.append((reaction_moment, loc, -2, None))
|
||
|
|
||
|
self._support_as_loads.append((reaction_load, loc, -1, None))
|
||
|
|
||
|
def apply_load(self, value, start, order, end=None):
|
||
|
"""
|
||
|
This method adds up the loads given to a particular beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
value : Sympifyable
|
||
|
The value inserted should have the units [Force/(Distance**(n+1)]
|
||
|
where n is the order of applied load.
|
||
|
Units for applied loads:
|
||
|
|
||
|
- For moments, unit = kN*m
|
||
|
- For point loads, unit = kN
|
||
|
- For constant distributed load, unit = kN/m
|
||
|
- For ramp loads, unit = kN/m/m
|
||
|
- For parabolic ramp loads, unit = kN/m/m/m
|
||
|
- ... so on.
|
||
|
|
||
|
start : Sympifyable
|
||
|
The starting point of the applied load. For point moments and
|
||
|
point forces this is the location of application.
|
||
|
order : Integer
|
||
|
The order of the applied load.
|
||
|
|
||
|
- For moments, order = -2
|
||
|
- For point loads, order =-1
|
||
|
- For constant distributed load, order = 0
|
||
|
- For ramp loads, order = 1
|
||
|
- For parabolic ramp loads, order = 2
|
||
|
- ... so on.
|
||
|
|
||
|
end : Sympifyable, optional
|
||
|
An optional argument that can be used if the load has an end point
|
||
|
within the length of the beam.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
|
||
|
applied in the clockwise direction at the starting point of the beam.
|
||
|
A point load of magnitude 4 N is applied from the top of the beam at
|
||
|
2 meters from the starting point and a parabolic ramp load of magnitude
|
||
|
2 N/m is applied below the beam starting from 2 meters to 3 meters
|
||
|
away from the starting point of the beam.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(4, E, I)
|
||
|
>>> b.apply_load(-3, 0, -2)
|
||
|
>>> b.apply_load(4, 2, -1)
|
||
|
>>> b.apply_load(-2, 2, 2, end=3)
|
||
|
>>> b.load
|
||
|
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
|
||
|
|
||
|
"""
|
||
|
x = self.variable
|
||
|
value = sympify(value)
|
||
|
start = sympify(start)
|
||
|
order = sympify(order)
|
||
|
|
||
|
self._applied_loads.append((value, start, order, end))
|
||
|
self._load += value*SingularityFunction(x, start, order)
|
||
|
self._original_load += value*SingularityFunction(x, start, order)
|
||
|
|
||
|
if end:
|
||
|
# load has an end point within the length of the beam.
|
||
|
self._handle_end(x, value, start, order, end, type="apply")
|
||
|
|
||
|
def remove_load(self, value, start, order, end=None):
|
||
|
"""
|
||
|
This method removes a particular load present on the beam object.
|
||
|
Returns a ValueError if the load passed as an argument is not
|
||
|
present on the beam.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
value : Sympifyable
|
||
|
The magnitude of an applied load.
|
||
|
start : Sympifyable
|
||
|
The starting point of the applied load. For point moments and
|
||
|
point forces this is the location of application.
|
||
|
order : Integer
|
||
|
The order of the applied load.
|
||
|
- For moments, order= -2
|
||
|
- For point loads, order=-1
|
||
|
- For constant distributed load, order=0
|
||
|
- For ramp loads, order=1
|
||
|
- For parabolic ramp loads, order=2
|
||
|
- ... so on.
|
||
|
end : Sympifyable, optional
|
||
|
An optional argument that can be used if the load has an end point
|
||
|
within the length of the beam.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
|
||
|
applied in the clockwise direction at the starting point of the beam.
|
||
|
A pointload of magnitude 4 N is applied from the top of the beam at
|
||
|
2 meters from the starting point and a parabolic ramp load of magnitude
|
||
|
2 N/m is applied below the beam starting from 2 meters to 3 meters
|
||
|
away from the starting point of the beam.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(4, E, I)
|
||
|
>>> b.apply_load(-3, 0, -2)
|
||
|
>>> b.apply_load(4, 2, -1)
|
||
|
>>> b.apply_load(-2, 2, 2, end=3)
|
||
|
>>> b.load
|
||
|
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
|
||
|
>>> b.remove_load(-2, 2, 2, end = 3)
|
||
|
>>> b.load
|
||
|
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
value = sympify(value)
|
||
|
start = sympify(start)
|
||
|
order = sympify(order)
|
||
|
|
||
|
if (value, start, order, end) in self._applied_loads:
|
||
|
self._load -= value*SingularityFunction(x, start, order)
|
||
|
self._original_load -= value*SingularityFunction(x, start, order)
|
||
|
self._applied_loads.remove((value, start, order, end))
|
||
|
else:
|
||
|
msg = "No such load distribution exists on the beam object."
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
if end:
|
||
|
# load has an end point within the length of the beam.
|
||
|
self._handle_end(x, value, start, order, end, type="remove")
|
||
|
|
||
|
def _handle_end(self, x, value, start, order, end, type):
|
||
|
"""
|
||
|
This functions handles the optional `end` value in the
|
||
|
`apply_load` and `remove_load` functions. When the value
|
||
|
of end is not NULL, this function will be executed.
|
||
|
"""
|
||
|
if order.is_negative:
|
||
|
msg = ("If 'end' is provided the 'order' of the load cannot "
|
||
|
"be negative, i.e. 'end' is only valid for distributed "
|
||
|
"loads.")
|
||
|
raise ValueError(msg)
|
||
|
# NOTE : A Taylor series can be used to define the summation of
|
||
|
# singularity functions that subtract from the load past the end
|
||
|
# point such that it evaluates to zero past 'end'.
|
||
|
f = value*x**order
|
||
|
|
||
|
if type == "apply":
|
||
|
# iterating for "apply_load" method
|
||
|
for i in range(0, order + 1):
|
||
|
self._load -= (f.diff(x, i).subs(x, end - start) *
|
||
|
SingularityFunction(x, end, i)/factorial(i))
|
||
|
self._original_load -= (f.diff(x, i).subs(x, end - start) *
|
||
|
SingularityFunction(x, end, i)/factorial(i))
|
||
|
elif type == "remove":
|
||
|
# iterating for "remove_load" method
|
||
|
for i in range(0, order + 1):
|
||
|
self._load += (f.diff(x, i).subs(x, end - start) *
|
||
|
SingularityFunction(x, end, i)/factorial(i))
|
||
|
self._original_load += (f.diff(x, i).subs(x, end - start) *
|
||
|
SingularityFunction(x, end, i)/factorial(i))
|
||
|
|
||
|
|
||
|
@property
|
||
|
def load(self):
|
||
|
"""
|
||
|
Returns a Singularity Function expression which represents
|
||
|
the load distribution curve of the Beam object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
|
||
|
applied in the clockwise direction at the starting point of the beam.
|
||
|
A point load of magnitude 4 N is applied from the top of the beam at
|
||
|
2 meters from the starting point and a parabolic ramp load of magnitude
|
||
|
2 N/m is applied below the beam starting from 3 meters away from the
|
||
|
starting point of the beam.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(4, E, I)
|
||
|
>>> b.apply_load(-3, 0, -2)
|
||
|
>>> b.apply_load(4, 2, -1)
|
||
|
>>> b.apply_load(-2, 3, 2)
|
||
|
>>> b.load
|
||
|
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
|
||
|
"""
|
||
|
return self._load
|
||
|
|
||
|
@property
|
||
|
def applied_loads(self):
|
||
|
"""
|
||
|
Returns a list of all loads applied on the beam object.
|
||
|
Each load in the list is a tuple of form (value, start, order, end).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
|
||
|
applied in the clockwise direction at the starting point of the beam.
|
||
|
A pointload of magnitude 4 N is applied from the top of the beam at
|
||
|
2 meters from the starting point. Another pointload of magnitude 5 N
|
||
|
is applied at same position.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(4, E, I)
|
||
|
>>> b.apply_load(-3, 0, -2)
|
||
|
>>> b.apply_load(4, 2, -1)
|
||
|
>>> b.apply_load(5, 2, -1)
|
||
|
>>> b.load
|
||
|
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
|
||
|
>>> b.applied_loads
|
||
|
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
|
||
|
"""
|
||
|
return self._applied_loads
|
||
|
|
||
|
def _solve_hinge_beams(self, *reactions):
|
||
|
"""Method to find integration constants and reactional variables in a
|
||
|
composite beam connected via hinge.
|
||
|
This method resolves the composite Beam into its sub-beams and then
|
||
|
equations of shear force, bending moment, slope and deflection are
|
||
|
evaluated for both of them separately. These equations are then solved
|
||
|
for unknown reactions and integration constants using the boundary
|
||
|
conditions applied on the Beam. Equal deflection of both sub-beams
|
||
|
at the hinge joint gives us another equation to solve the system.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
A combined beam, with constant fkexural rigidity E*I, is formed by joining
|
||
|
a Beam of length 2*l to the right of another Beam of length l. The whole beam
|
||
|
is fixed at both of its both end. A point load of magnitude P is also applied
|
||
|
from the top at a distance of 2*l from starting point.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> l=symbols('l', positive=True)
|
||
|
>>> b1=Beam(l, E, I)
|
||
|
>>> b2=Beam(2*l, E, I)
|
||
|
>>> b=b1.join(b2,"hinge")
|
||
|
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
|
||
|
>>> b.apply_load(A1,0,-1)
|
||
|
>>> b.apply_load(M1,0,-2)
|
||
|
>>> b.apply_load(P,2*l,-1)
|
||
|
>>> b.apply_load(A2,3*l,-1)
|
||
|
>>> b.apply_load(M2,3*l,-2)
|
||
|
>>> b.bc_slope=[(0,0), (3*l, 0)]
|
||
|
>>> b.bc_deflection=[(0,0), (3*l, 0)]
|
||
|
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
|
||
|
>>> b.reaction_loads
|
||
|
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
|
||
|
>>> b.slope()
|
||
|
(5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I)
|
||
|
- (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
|
||
|
+ (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2
|
||
|
- 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
|
||
|
>>> b.deflection()
|
||
|
(5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I)
|
||
|
- (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
|
||
|
+ (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6
|
||
|
- 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
l = self._hinge_position
|
||
|
E = self._elastic_modulus
|
||
|
I = self._second_moment
|
||
|
|
||
|
if isinstance(I, Piecewise):
|
||
|
I1 = I.args[0][0]
|
||
|
I2 = I.args[1][0]
|
||
|
else:
|
||
|
I1 = I2 = I
|
||
|
|
||
|
load_1 = 0 # Load equation on first segment of composite beam
|
||
|
load_2 = 0 # Load equation on second segment of composite beam
|
||
|
|
||
|
# Distributing load on both segments
|
||
|
for load in self.applied_loads:
|
||
|
if load[1] < l:
|
||
|
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
|
||
|
if load[2] == 0:
|
||
|
load_1 -= load[0]*SingularityFunction(x, load[3], load[2])
|
||
|
elif load[2] > 0:
|
||
|
load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0)
|
||
|
elif load[1] == l:
|
||
|
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
|
||
|
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
|
||
|
elif load[1] > l:
|
||
|
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
|
||
|
if load[2] == 0:
|
||
|
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2])
|
||
|
elif load[2] > 0:
|
||
|
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0)
|
||
|
|
||
|
h = Symbol('h') # Force due to hinge
|
||
|
load_1 += h*SingularityFunction(x, l, -1)
|
||
|
load_2 -= h*SingularityFunction(x, 0, -1)
|
||
|
|
||
|
eq = []
|
||
|
shear_1 = integrate(load_1, x)
|
||
|
shear_curve_1 = limit(shear_1, x, l)
|
||
|
eq.append(shear_curve_1)
|
||
|
bending_1 = integrate(shear_1, x)
|
||
|
moment_curve_1 = limit(bending_1, x, l)
|
||
|
eq.append(moment_curve_1)
|
||
|
|
||
|
shear_2 = integrate(load_2, x)
|
||
|
shear_curve_2 = limit(shear_2, x, self.length - l)
|
||
|
eq.append(shear_curve_2)
|
||
|
bending_2 = integrate(shear_2, x)
|
||
|
moment_curve_2 = limit(bending_2, x, self.length - l)
|
||
|
eq.append(moment_curve_2)
|
||
|
|
||
|
C1 = Symbol('C1')
|
||
|
C2 = Symbol('C2')
|
||
|
C3 = Symbol('C3')
|
||
|
C4 = Symbol('C4')
|
||
|
slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1)
|
||
|
def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2)
|
||
|
slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3)
|
||
|
def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4)
|
||
|
|
||
|
for position, value in self.bc_slope:
|
||
|
if position<l:
|
||
|
eq.append(slope_1.subs(x, position) - value)
|
||
|
else:
|
||
|
eq.append(slope_2.subs(x, position - l) - value)
|
||
|
|
||
|
for position, value in self.bc_deflection:
|
||
|
if position<l:
|
||
|
eq.append(def_1.subs(x, position) - value)
|
||
|
else:
|
||
|
eq.append(def_2.subs(x, position - l) - value)
|
||
|
|
||
|
eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal
|
||
|
|
||
|
constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions))
|
||
|
reaction_values = list(constants[0])[5:]
|
||
|
|
||
|
self._reaction_loads = dict(zip(reactions, reaction_values))
|
||
|
self._load = self._load.subs(self._reaction_loads)
|
||
|
|
||
|
# Substituting constants and reactional load and moments with their corresponding values
|
||
|
slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads)
|
||
|
def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads)
|
||
|
slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads)
|
||
|
def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads)
|
||
|
|
||
|
self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0)
|
||
|
self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0)
|
||
|
|
||
|
def solve_for_reaction_loads(self, *reactions):
|
||
|
"""
|
||
|
Solves for the reaction forces.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
|
||
|
applied in the clockwise direction at the end of the beam. A pointload
|
||
|
of magnitude 8 N is applied from the top of the beam at the starting
|
||
|
point. There are two simple supports below the beam. One at the end
|
||
|
and another one at a distance of 10 meters from the start. The
|
||
|
deflection is restricted at both the supports.
|
||
|
|
||
|
Using the sign convention of upward forces and clockwise moment
|
||
|
being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(30, E, I)
|
||
|
>>> b.apply_load(-8, 0, -1)
|
||
|
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
|
||
|
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
|
||
|
>>> b.apply_load(120, 30, -2)
|
||
|
>>> b.bc_deflection = [(10, 0), (30, 0)]
|
||
|
>>> b.load
|
||
|
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1)
|
||
|
- 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.reaction_loads
|
||
|
{R1: 6, R2: 2}
|
||
|
>>> b.load
|
||
|
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
|
||
|
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
|
||
|
"""
|
||
|
if self._composite_type == "hinge":
|
||
|
return self._solve_hinge_beams(*reactions)
|
||
|
|
||
|
x = self.variable
|
||
|
l = self.length
|
||
|
C3 = Symbol('C3')
|
||
|
C4 = Symbol('C4')
|
||
|
|
||
|
shear_curve = limit(self.shear_force(), x, l)
|
||
|
moment_curve = limit(self.bending_moment(), x, l)
|
||
|
|
||
|
slope_eqs = []
|
||
|
deflection_eqs = []
|
||
|
|
||
|
slope_curve = integrate(self.bending_moment(), x) + C3
|
||
|
for position, value in self._boundary_conditions['slope']:
|
||
|
eqs = slope_curve.subs(x, position) - value
|
||
|
slope_eqs.append(eqs)
|
||
|
|
||
|
deflection_curve = integrate(slope_curve, x) + C4
|
||
|
for position, value in self._boundary_conditions['deflection']:
|
||
|
eqs = deflection_curve.subs(x, position) - value
|
||
|
deflection_eqs.append(eqs)
|
||
|
|
||
|
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
|
||
|
+ deflection_eqs, (C3, C4) + reactions).args)[0])
|
||
|
solution = solution[2:]
|
||
|
|
||
|
self._reaction_loads = dict(zip(reactions, solution))
|
||
|
self._load = self._load.subs(self._reaction_loads)
|
||
|
|
||
|
def shear_force(self):
|
||
|
"""
|
||
|
Returns a Singularity Function expression which represents
|
||
|
the shear force curve of the Beam object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
|
||
|
applied in the clockwise direction at the end of the beam. A pointload
|
||
|
of magnitude 8 N is applied from the top of the beam at the starting
|
||
|
point. There are two simple supports below the beam. One at the end
|
||
|
and another one at a distance of 10 meters from the start. The
|
||
|
deflection is restricted at both the supports.
|
||
|
|
||
|
Using the sign convention of upward forces and clockwise moment
|
||
|
being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(30, E, I)
|
||
|
>>> b.apply_load(-8, 0, -1)
|
||
|
>>> b.apply_load(R1, 10, -1)
|
||
|
>>> b.apply_load(R2, 30, -1)
|
||
|
>>> b.apply_load(120, 30, -2)
|
||
|
>>> b.bc_deflection = [(10, 0), (30, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.shear_force()
|
||
|
8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
return -integrate(self.load, x)
|
||
|
|
||
|
def max_shear_force(self):
|
||
|
"""Returns maximum Shear force and its coordinate
|
||
|
in the Beam object."""
|
||
|
shear_curve = self.shear_force()
|
||
|
x = self.variable
|
||
|
|
||
|
terms = shear_curve.args
|
||
|
singularity = [] # Points at which shear function changes
|
||
|
for term in terms:
|
||
|
if isinstance(term, Mul):
|
||
|
term = term.args[-1] # SingularityFunction in the term
|
||
|
singularity.append(term.args[1])
|
||
|
singularity.sort()
|
||
|
singularity = list(set(singularity))
|
||
|
|
||
|
intervals = [] # List of Intervals with discrete value of shear force
|
||
|
shear_values = [] # List of values of shear force in each interval
|
||
|
for i, s in enumerate(singularity):
|
||
|
if s == 0:
|
||
|
continue
|
||
|
try:
|
||
|
shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True))
|
||
|
points = solve(shear_slope, x)
|
||
|
val = []
|
||
|
for point in points:
|
||
|
val.append(abs(shear_curve.subs(x, point)))
|
||
|
points.extend([singularity[i-1], s])
|
||
|
val += [abs(limit(shear_curve, x, singularity[i-1], '+')), abs(limit(shear_curve, x, s, '-'))]
|
||
|
max_shear = max(val)
|
||
|
shear_values.append(max_shear)
|
||
|
intervals.append(points[val.index(max_shear)])
|
||
|
# If shear force in a particular Interval has zero or constant
|
||
|
# slope, then above block gives NotImplementedError as
|
||
|
# solve can't represent Interval solutions.
|
||
|
except NotImplementedError:
|
||
|
initial_shear = limit(shear_curve, x, singularity[i-1], '+')
|
||
|
final_shear = limit(shear_curve, x, s, '-')
|
||
|
# If shear_curve has a constant slope(it is a line).
|
||
|
if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear:
|
||
|
shear_values.extend([initial_shear, final_shear])
|
||
|
intervals.extend([singularity[i-1], s])
|
||
|
else: # shear_curve has same value in whole Interval
|
||
|
shear_values.append(final_shear)
|
||
|
intervals.append(Interval(singularity[i-1], s))
|
||
|
|
||
|
shear_values = list(map(abs, shear_values))
|
||
|
maximum_shear = max(shear_values)
|
||
|
point = intervals[shear_values.index(maximum_shear)]
|
||
|
return (point, maximum_shear)
|
||
|
|
||
|
def bending_moment(self):
|
||
|
"""
|
||
|
Returns a Singularity Function expression which represents
|
||
|
the bending moment curve of the Beam object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
|
||
|
applied in the clockwise direction at the end of the beam. A pointload
|
||
|
of magnitude 8 N is applied from the top of the beam at the starting
|
||
|
point. There are two simple supports below the beam. One at the end
|
||
|
and another one at a distance of 10 meters from the start. The
|
||
|
deflection is restricted at both the supports.
|
||
|
|
||
|
Using the sign convention of upward forces and clockwise moment
|
||
|
being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(30, E, I)
|
||
|
>>> b.apply_load(-8, 0, -1)
|
||
|
>>> b.apply_load(R1, 10, -1)
|
||
|
>>> b.apply_load(R2, 30, -1)
|
||
|
>>> b.apply_load(120, 30, -2)
|
||
|
>>> b.bc_deflection = [(10, 0), (30, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.bending_moment()
|
||
|
8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
return integrate(self.shear_force(), x)
|
||
|
|
||
|
def max_bmoment(self):
|
||
|
"""Returns maximum Shear force and its coordinate
|
||
|
in the Beam object."""
|
||
|
bending_curve = self.bending_moment()
|
||
|
x = self.variable
|
||
|
|
||
|
terms = bending_curve.args
|
||
|
singularity = [] # Points at which bending moment changes
|
||
|
for term in terms:
|
||
|
if isinstance(term, Mul):
|
||
|
term = term.args[-1] # SingularityFunction in the term
|
||
|
singularity.append(term.args[1])
|
||
|
singularity.sort()
|
||
|
singularity = list(set(singularity))
|
||
|
|
||
|
intervals = [] # List of Intervals with discrete value of bending moment
|
||
|
moment_values = [] # List of values of bending moment in each interval
|
||
|
for i, s in enumerate(singularity):
|
||
|
if s == 0:
|
||
|
continue
|
||
|
try:
|
||
|
moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True))
|
||
|
points = solve(moment_slope, x)
|
||
|
val = []
|
||
|
for point in points:
|
||
|
val.append(abs(bending_curve.subs(x, point)))
|
||
|
points.extend([singularity[i-1], s])
|
||
|
val += [abs(limit(bending_curve, x, singularity[i-1], '+')), abs(limit(bending_curve, x, s, '-'))]
|
||
|
max_moment = max(val)
|
||
|
moment_values.append(max_moment)
|
||
|
intervals.append(points[val.index(max_moment)])
|
||
|
# If bending moment in a particular Interval has zero or constant
|
||
|
# slope, then above block gives NotImplementedError as solve
|
||
|
# can't represent Interval solutions.
|
||
|
except NotImplementedError:
|
||
|
initial_moment = limit(bending_curve, x, singularity[i-1], '+')
|
||
|
final_moment = limit(bending_curve, x, s, '-')
|
||
|
# If bending_curve has a constant slope(it is a line).
|
||
|
if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment:
|
||
|
moment_values.extend([initial_moment, final_moment])
|
||
|
intervals.extend([singularity[i-1], s])
|
||
|
else: # bending_curve has same value in whole Interval
|
||
|
moment_values.append(final_moment)
|
||
|
intervals.append(Interval(singularity[i-1], s))
|
||
|
|
||
|
moment_values = list(map(abs, moment_values))
|
||
|
maximum_moment = max(moment_values)
|
||
|
point = intervals[moment_values.index(maximum_moment)]
|
||
|
return (point, maximum_moment)
|
||
|
|
||
|
def point_cflexure(self):
|
||
|
"""
|
||
|
Returns a Set of point(s) with zero bending moment and
|
||
|
where bending moment curve of the beam object changes
|
||
|
its sign from negative to positive or vice versa.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is is 10 meter long overhanging beam. There are
|
||
|
two simple supports below the beam. One at the start
|
||
|
and another one at a distance of 6 meters from the start.
|
||
|
Point loads of magnitude 10KN and 20KN are applied at
|
||
|
2 meters and 4 meters from start respectively. A Uniformly
|
||
|
distribute load of magnitude of magnitude 3KN/m is also
|
||
|
applied on top starting from 6 meters away from starting
|
||
|
point till end.
|
||
|
Using the sign convention of upward forces and clockwise moment
|
||
|
being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(10, E, I)
|
||
|
>>> b.apply_load(-4, 0, -1)
|
||
|
>>> b.apply_load(-46, 6, -1)
|
||
|
>>> b.apply_load(10, 2, -1)
|
||
|
>>> b.apply_load(20, 4, -1)
|
||
|
>>> b.apply_load(3, 6, 0)
|
||
|
>>> b.point_cflexure()
|
||
|
[10/3]
|
||
|
"""
|
||
|
|
||
|
# To restrict the range within length of the Beam
|
||
|
moment_curve = Piecewise((float("nan"), self.variable<=0),
|
||
|
(self.bending_moment(), self.variable<self.length),
|
||
|
(float("nan"), True))
|
||
|
|
||
|
points = solve(moment_curve.rewrite(Piecewise), self.variable,
|
||
|
domain=S.Reals)
|
||
|
return points
|
||
|
|
||
|
def slope(self):
|
||
|
"""
|
||
|
Returns a Singularity Function expression which represents
|
||
|
the slope the elastic curve of the Beam object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
|
||
|
applied in the clockwise direction at the end of the beam. A pointload
|
||
|
of magnitude 8 N is applied from the top of the beam at the starting
|
||
|
point. There are two simple supports below the beam. One at the end
|
||
|
and another one at a distance of 10 meters from the start. The
|
||
|
deflection is restricted at both the supports.
|
||
|
|
||
|
Using the sign convention of upward forces and clockwise moment
|
||
|
being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(30, E, I)
|
||
|
>>> b.apply_load(-8, 0, -1)
|
||
|
>>> b.apply_load(R1, 10, -1)
|
||
|
>>> b.apply_load(R2, 30, -1)
|
||
|
>>> b.apply_load(120, 30, -2)
|
||
|
>>> b.bc_deflection = [(10, 0), (30, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.slope()
|
||
|
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
|
||
|
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
E = self.elastic_modulus
|
||
|
I = self.second_moment
|
||
|
|
||
|
if self._composite_type == "hinge":
|
||
|
return self._hinge_beam_slope
|
||
|
if not self._boundary_conditions['slope']:
|
||
|
return diff(self.deflection(), x)
|
||
|
if isinstance(I, Piecewise) and self._composite_type == "fixed":
|
||
|
args = I.args
|
||
|
slope = 0
|
||
|
prev_slope = 0
|
||
|
prev_end = 0
|
||
|
for i in range(len(args)):
|
||
|
if i != 0:
|
||
|
prev_end = args[i-1][1].args[1]
|
||
|
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
|
||
|
if i != len(args) - 1:
|
||
|
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \
|
||
|
(prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0)
|
||
|
else:
|
||
|
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0)
|
||
|
prev_slope = slope_value.subs(x, args[i][1].args[1])
|
||
|
return slope
|
||
|
|
||
|
C3 = Symbol('C3')
|
||
|
slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3
|
||
|
|
||
|
bc_eqs = []
|
||
|
for position, value in self._boundary_conditions['slope']:
|
||
|
eqs = slope_curve.subs(x, position) - value
|
||
|
bc_eqs.append(eqs)
|
||
|
constants = list(linsolve(bc_eqs, C3))
|
||
|
slope_curve = slope_curve.subs({C3: constants[0][0]})
|
||
|
return slope_curve
|
||
|
|
||
|
def deflection(self):
|
||
|
"""
|
||
|
Returns a Singularity Function expression which represents
|
||
|
the elastic curve or deflection of the Beam object.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
|
||
|
applied in the clockwise direction at the end of the beam. A pointload
|
||
|
of magnitude 8 N is applied from the top of the beam at the starting
|
||
|
point. There are two simple supports below the beam. One at the end
|
||
|
and another one at a distance of 10 meters from the start. The
|
||
|
deflection is restricted at both the supports.
|
||
|
|
||
|
Using the sign convention of upward forces and clockwise moment
|
||
|
being positive.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(30, E, I)
|
||
|
>>> b.apply_load(-8, 0, -1)
|
||
|
>>> b.apply_load(R1, 10, -1)
|
||
|
>>> b.apply_load(R2, 30, -1)
|
||
|
>>> b.apply_load(120, 30, -2)
|
||
|
>>> b.bc_deflection = [(10, 0), (30, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.deflection()
|
||
|
(4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
|
||
|
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
E = self.elastic_modulus
|
||
|
I = self.second_moment
|
||
|
if self._composite_type == "hinge":
|
||
|
return self._hinge_beam_deflection
|
||
|
if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']:
|
||
|
if isinstance(I, Piecewise) and self._composite_type == "fixed":
|
||
|
args = I.args
|
||
|
prev_slope = 0
|
||
|
prev_def = 0
|
||
|
prev_end = 0
|
||
|
deflection = 0
|
||
|
for i in range(len(args)):
|
||
|
if i != 0:
|
||
|
prev_end = args[i-1][1].args[1]
|
||
|
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
|
||
|
recent_segment_slope = prev_slope + slope_value
|
||
|
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
|
||
|
if i != len(args) - 1:
|
||
|
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
|
||
|
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
|
||
|
else:
|
||
|
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
|
||
|
prev_slope = slope_value.subs(x, args[i][1].args[1])
|
||
|
prev_def = deflection_value.subs(x, args[i][1].args[1])
|
||
|
return deflection
|
||
|
base_char = self._base_char
|
||
|
constants = symbols(base_char + '3:5')
|
||
|
return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1]
|
||
|
elif not self._boundary_conditions['deflection']:
|
||
|
base_char = self._base_char
|
||
|
constant = symbols(base_char + '4')
|
||
|
return integrate(self.slope(), x) + constant
|
||
|
elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']:
|
||
|
if isinstance(I, Piecewise) and self._composite_type == "fixed":
|
||
|
args = I.args
|
||
|
prev_slope = 0
|
||
|
prev_def = 0
|
||
|
prev_end = 0
|
||
|
deflection = 0
|
||
|
for i in range(len(args)):
|
||
|
if i != 0:
|
||
|
prev_end = args[i-1][1].args[1]
|
||
|
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
|
||
|
recent_segment_slope = prev_slope + slope_value
|
||
|
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
|
||
|
if i != len(args) - 1:
|
||
|
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
|
||
|
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
|
||
|
else:
|
||
|
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
|
||
|
prev_slope = slope_value.subs(x, args[i][1].args[1])
|
||
|
prev_def = deflection_value.subs(x, args[i][1].args[1])
|
||
|
return deflection
|
||
|
base_char = self._base_char
|
||
|
C3, C4 = symbols(base_char + '3:5') # Integration constants
|
||
|
slope_curve = -integrate(self.bending_moment(), x) + C3
|
||
|
deflection_curve = integrate(slope_curve, x) + C4
|
||
|
bc_eqs = []
|
||
|
for position, value in self._boundary_conditions['deflection']:
|
||
|
eqs = deflection_curve.subs(x, position) - value
|
||
|
bc_eqs.append(eqs)
|
||
|
constants = list(linsolve(bc_eqs, (C3, C4)))
|
||
|
deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]})
|
||
|
return S.One/(E*I)*deflection_curve
|
||
|
|
||
|
if isinstance(I, Piecewise) and self._composite_type == "fixed":
|
||
|
args = I.args
|
||
|
prev_slope = 0
|
||
|
prev_def = 0
|
||
|
prev_end = 0
|
||
|
deflection = 0
|
||
|
for i in range(len(args)):
|
||
|
if i != 0:
|
||
|
prev_end = args[i-1][1].args[1]
|
||
|
slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
|
||
|
recent_segment_slope = prev_slope + slope_value
|
||
|
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
|
||
|
if i != len(args) - 1:
|
||
|
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
|
||
|
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
|
||
|
else:
|
||
|
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
|
||
|
prev_slope = slope_value.subs(x, args[i][1].args[1])
|
||
|
prev_def = deflection_value.subs(x, args[i][1].args[1])
|
||
|
return deflection
|
||
|
|
||
|
C4 = Symbol('C4')
|
||
|
deflection_curve = integrate(self.slope(), x) + C4
|
||
|
|
||
|
bc_eqs = []
|
||
|
for position, value in self._boundary_conditions['deflection']:
|
||
|
eqs = deflection_curve.subs(x, position) - value
|
||
|
bc_eqs.append(eqs)
|
||
|
|
||
|
constants = list(linsolve(bc_eqs, C4))
|
||
|
deflection_curve = deflection_curve.subs({C4: constants[0][0]})
|
||
|
return deflection_curve
|
||
|
|
||
|
def max_deflection(self):
|
||
|
"""
|
||
|
Returns point of max deflection and its corresponding deflection value
|
||
|
in a Beam object.
|
||
|
"""
|
||
|
|
||
|
# To restrict the range within length of the Beam
|
||
|
slope_curve = Piecewise((float("nan"), self.variable<=0),
|
||
|
(self.slope(), self.variable<self.length),
|
||
|
(float("nan"), True))
|
||
|
|
||
|
points = solve(slope_curve.rewrite(Piecewise), self.variable,
|
||
|
domain=S.Reals)
|
||
|
deflection_curve = self.deflection()
|
||
|
deflections = [deflection_curve.subs(self.variable, x) for x in points]
|
||
|
deflections = list(map(abs, deflections))
|
||
|
if len(deflections) != 0:
|
||
|
max_def = max(deflections)
|
||
|
return (points[deflections.index(max_def)], max_def)
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
def shear_stress(self):
|
||
|
"""
|
||
|
Returns an expression representing the Shear Stress
|
||
|
curve of the Beam object.
|
||
|
"""
|
||
|
return self.shear_force()/self._area
|
||
|
|
||
|
def plot_shear_stress(self, subs=None):
|
||
|
"""
|
||
|
|
||
|
Returns a plot of shear stress present in the beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 8 meters and area of cross section 2 square
|
||
|
meters. A constant distributed load of 10 KN/m is applied from half of
|
||
|
the beam till the end. There are two simple supports below the beam,
|
||
|
one at the starting point and another at the ending point of the beam.
|
||
|
A pointload of magnitude 5 KN is also applied from top of the
|
||
|
beam, at a distance of 4 meters from the starting point.
|
||
|
Take E = 200 GPa and I = 400*(10**-6) meter**4.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(8, 200*(10**9), 400*(10**-6), 2)
|
||
|
>>> b.apply_load(5000, 2, -1)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, 8, -1)
|
||
|
>>> b.apply_load(10000, 4, 0, end=8)
|
||
|
>>> b.bc_deflection = [(0, 0), (8, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.plot_shear_stress()
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: 6875*SingularityFunction(x, 0, 0) - 2500*SingularityFunction(x, 2, 0)
|
||
|
- 5000*SingularityFunction(x, 4, 1) + 15625*SingularityFunction(x, 8, 0)
|
||
|
+ 5000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
|
||
|
"""
|
||
|
|
||
|
shear_stress = self.shear_stress()
|
||
|
x = self.variable
|
||
|
length = self.length
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
for sym in shear_stress.atoms(Symbol):
|
||
|
if sym != x and sym not in subs:
|
||
|
raise ValueError('value of %s was not passed.' %sym)
|
||
|
|
||
|
if length in subs:
|
||
|
length = subs[length]
|
||
|
|
||
|
# Returns Plot of Shear Stress
|
||
|
return plot (shear_stress.subs(subs), (x, 0, length),
|
||
|
title='Shear Stress', xlabel=r'$\mathrm{x}$', ylabel=r'$\tau$',
|
||
|
line_color='r')
|
||
|
|
||
|
|
||
|
def plot_shear_force(self, subs=None):
|
||
|
"""
|
||
|
|
||
|
Returns a plot for Shear force present in the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
|
||
|
is applied from half of the beam till the end. There are two simple supports
|
||
|
below the beam, one at the starting point and another at the ending point
|
||
|
of the beam. A pointload of magnitude 5 KN is also applied from top of the
|
||
|
beam, at a distance of 4 meters from the starting point.
|
||
|
Take E = 200 GPa and I = 400*(10**-6) meter**4.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
|
||
|
>>> b.apply_load(5000, 2, -1)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, 8, -1)
|
||
|
>>> b.apply_load(10000, 4, 0, end=8)
|
||
|
>>> b.bc_deflection = [(0, 0), (8, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.plot_shear_force()
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0)
|
||
|
- 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0)
|
||
|
+ 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
|
||
|
"""
|
||
|
shear_force = self.shear_force()
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
for sym in shear_force.atoms(Symbol):
|
||
|
if sym == self.variable:
|
||
|
continue
|
||
|
if sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force',
|
||
|
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g')
|
||
|
|
||
|
def plot_bending_moment(self, subs=None):
|
||
|
"""
|
||
|
|
||
|
Returns a plot for Bending moment present in the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
|
||
|
is applied from half of the beam till the end. There are two simple supports
|
||
|
below the beam, one at the starting point and another at the ending point
|
||
|
of the beam. A pointload of magnitude 5 KN is also applied from top of the
|
||
|
beam, at a distance of 4 meters from the starting point.
|
||
|
Take E = 200 GPa and I = 400*(10**-6) meter**4.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
|
||
|
>>> b.apply_load(5000, 2, -1)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, 8, -1)
|
||
|
>>> b.apply_load(10000, 4, 0, end=8)
|
||
|
>>> b.bc_deflection = [(0, 0), (8, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.plot_bending_moment()
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1)
|
||
|
- 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1)
|
||
|
+ 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
|
||
|
"""
|
||
|
bending_moment = self.bending_moment()
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
for sym in bending_moment.atoms(Symbol):
|
||
|
if sym == self.variable:
|
||
|
continue
|
||
|
if sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment',
|
||
|
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b')
|
||
|
|
||
|
def plot_slope(self, subs=None):
|
||
|
"""
|
||
|
|
||
|
Returns a plot for slope of deflection curve of the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
|
||
|
is applied from half of the beam till the end. There are two simple supports
|
||
|
below the beam, one at the starting point and another at the ending point
|
||
|
of the beam. A pointload of magnitude 5 KN is also applied from top of the
|
||
|
beam, at a distance of 4 meters from the starting point.
|
||
|
Take E = 200 GPa and I = 400*(10**-6) meter**4.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
|
||
|
>>> b.apply_load(5000, 2, -1)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, 8, -1)
|
||
|
>>> b.apply_load(10000, 4, 0, end=8)
|
||
|
>>> b.bc_deflection = [(0, 0), (8, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.plot_slope()
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2)
|
||
|
+ 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2)
|
||
|
- 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0)
|
||
|
"""
|
||
|
slope = self.slope()
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
for sym in slope.atoms(Symbol):
|
||
|
if sym == self.variable:
|
||
|
continue
|
||
|
if sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
return plot(slope.subs(subs), (self.variable, 0, length), title='Slope',
|
||
|
xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m')
|
||
|
|
||
|
def plot_deflection(self, subs=None):
|
||
|
"""
|
||
|
|
||
|
Returns a plot for deflection curve of the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
|
||
|
is applied from half of the beam till the end. There are two simple supports
|
||
|
below the beam, one at the starting point and another at the ending point
|
||
|
of the beam. A pointload of magnitude 5 KN is also applied from top of the
|
||
|
beam, at a distance of 4 meters from the starting point.
|
||
|
Take E = 200 GPa and I = 400*(10**-6) meter**4.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
|
||
|
>>> b.apply_load(5000, 2, -1)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, 8, -1)
|
||
|
>>> b.apply_load(10000, 4, 0, end=8)
|
||
|
>>> b.bc_deflection = [(0, 0), (8, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> b.plot_deflection()
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3)
|
||
|
+ 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4)
|
||
|
- 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4)
|
||
|
for x over (0.0, 8.0)
|
||
|
"""
|
||
|
deflection = self.deflection()
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
for sym in deflection.atoms(Symbol):
|
||
|
if sym == self.variable:
|
||
|
continue
|
||
|
if sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
return plot(deflection.subs(subs), (self.variable, 0, length),
|
||
|
title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
|
||
|
line_color='r')
|
||
|
|
||
|
|
||
|
def plot_loading_results(self, subs=None):
|
||
|
"""
|
||
|
Returns a subplot of Shear Force, Bending Moment,
|
||
|
Slope and Deflection of the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
|
||
|
is applied from half of the beam till the end. There are two simple supports
|
||
|
below the beam, one at the starting point and another at the ending point
|
||
|
of the beam. A pointload of magnitude 5 KN is also applied from top of the
|
||
|
beam, at a distance of 4 meters from the starting point.
|
||
|
Take E = 200 GPa and I = 400*(10**-6) meter**4.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
|
||
|
>>> b.apply_load(5000, 2, -1)
|
||
|
>>> b.apply_load(R1, 0, -1)
|
||
|
>>> b.apply_load(R2, 8, -1)
|
||
|
>>> b.apply_load(10000, 4, 0, end=8)
|
||
|
>>> b.bc_deflection = [(0, 0), (8, 0)]
|
||
|
>>> b.solve_for_reaction_loads(R1, R2)
|
||
|
>>> axes = b.plot_loading_results()
|
||
|
"""
|
||
|
length = self.length
|
||
|
variable = self.variable
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
for sym in self.deflection().atoms(Symbol):
|
||
|
if sym == self.variable:
|
||
|
continue
|
||
|
if sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if length in subs:
|
||
|
length = subs[length]
|
||
|
ax1 = plot(self.shear_force().subs(subs), (variable, 0, length),
|
||
|
title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$',
|
||
|
line_color='g', show=False)
|
||
|
ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length),
|
||
|
title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$',
|
||
|
line_color='b', show=False)
|
||
|
ax3 = plot(self.slope().subs(subs), (variable, 0, length),
|
||
|
title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$',
|
||
|
line_color='m', show=False)
|
||
|
ax4 = plot(self.deflection().subs(subs), (variable, 0, length),
|
||
|
title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
|
||
|
line_color='r', show=False)
|
||
|
|
||
|
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
|
||
|
|
||
|
def _solve_for_ild_equations(self):
|
||
|
"""
|
||
|
|
||
|
Helper function for I.L.D. It takes the unsubstituted
|
||
|
copy of the load equation and uses it to calculate shear force and bending
|
||
|
moment equations.
|
||
|
"""
|
||
|
|
||
|
x = self.variable
|
||
|
shear_force = -integrate(self._original_load, x)
|
||
|
bending_moment = integrate(shear_force, x)
|
||
|
|
||
|
return shear_force, bending_moment
|
||
|
|
||
|
def solve_for_ild_reactions(self, value, *reactions):
|
||
|
"""
|
||
|
|
||
|
Determines the Influence Line Diagram equations for reaction
|
||
|
forces under the effect of a moving load.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
value : Integer
|
||
|
Magnitude of moving load
|
||
|
reactions :
|
||
|
The reaction forces applied on the beam.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a beam of length 10 meters. There are two simple supports
|
||
|
below the beam, one at the starting point and another at the ending
|
||
|
point of the beam. Calculate the I.L.D. equations for reaction forces
|
||
|
under the effect of a moving load of magnitude 1kN.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R_0, R_10 = symbols('R_0, R_10')
|
||
|
>>> b = Beam(10, E, I)
|
||
|
>>> b.apply_support(0, 'roller')
|
||
|
>>> b.apply_support(10, 'roller')
|
||
|
>>> b.solve_for_ild_reactions(1,R_0,R_10)
|
||
|
>>> b.ild_reactions
|
||
|
{R_0: x/10 - 1, R_10: -x/10}
|
||
|
|
||
|
"""
|
||
|
shear_force, bending_moment = self._solve_for_ild_equations()
|
||
|
x = self.variable
|
||
|
l = self.length
|
||
|
C3 = Symbol('C3')
|
||
|
C4 = Symbol('C4')
|
||
|
|
||
|
shear_curve = limit(shear_force, x, l) - value
|
||
|
moment_curve = limit(bending_moment, x, l) - value*(l-x)
|
||
|
|
||
|
slope_eqs = []
|
||
|
deflection_eqs = []
|
||
|
|
||
|
slope_curve = integrate(bending_moment, x) + C3
|
||
|
for position, value in self._boundary_conditions['slope']:
|
||
|
eqs = slope_curve.subs(x, position) - value
|
||
|
slope_eqs.append(eqs)
|
||
|
|
||
|
deflection_curve = integrate(slope_curve, x) + C4
|
||
|
for position, value in self._boundary_conditions['deflection']:
|
||
|
eqs = deflection_curve.subs(x, position) - value
|
||
|
deflection_eqs.append(eqs)
|
||
|
|
||
|
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
|
||
|
+ deflection_eqs, (C3, C4) + reactions).args)[0])
|
||
|
solution = solution[2:]
|
||
|
|
||
|
# Determining the equations and solving them.
|
||
|
self._ild_reactions = dict(zip(reactions, solution))
|
||
|
|
||
|
def plot_ild_reactions(self, subs=None):
|
||
|
"""
|
||
|
|
||
|
Plots the Influence Line Diagram of Reaction Forces
|
||
|
under the effect of a moving load. This function
|
||
|
should be called after calling solve_for_ild_reactions().
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a beam of length 10 meters. A point load of magnitude 5KN
|
||
|
is also applied from top of the beam, at a distance of 4 meters
|
||
|
from the starting point. There are two simple supports below the
|
||
|
beam, located at the starting point and at a distance of 7 meters
|
||
|
from the starting point. Plot the I.L.D. equations for reactions
|
||
|
at both support points under the effect of a moving load
|
||
|
of magnitude 1kN.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R_0, R_7 = symbols('R_0, R_7')
|
||
|
>>> b = Beam(10, E, I)
|
||
|
>>> b.apply_support(0, 'roller')
|
||
|
>>> b.apply_support(7, 'roller')
|
||
|
>>> b.apply_load(5,4,-1)
|
||
|
>>> b.solve_for_ild_reactions(1,R_0,R_7)
|
||
|
>>> b.ild_reactions
|
||
|
{R_0: x/7 - 22/7, R_7: -x/7 - 20/7}
|
||
|
>>> b.plot_ild_reactions()
|
||
|
PlotGrid object containing:
|
||
|
Plot[0]:Plot object containing:
|
||
|
[0]: cartesian line: x/7 - 22/7 for x over (0.0, 10.0)
|
||
|
Plot[1]:Plot object containing:
|
||
|
[0]: cartesian line: -x/7 - 20/7 for x over (0.0, 10.0)
|
||
|
|
||
|
"""
|
||
|
if not self._ild_reactions:
|
||
|
raise ValueError("I.L.D. reaction equations not found. Please use solve_for_ild_reactions() to generate the I.L.D. reaction equations.")
|
||
|
|
||
|
x = self.variable
|
||
|
ildplots = []
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for reaction in self._ild_reactions:
|
||
|
for sym in self._ild_reactions[reaction].atoms(Symbol):
|
||
|
if sym != x and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
|
||
|
for sym in self._length.atoms(Symbol):
|
||
|
if sym != x and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
|
||
|
for reaction in self._ild_reactions:
|
||
|
ildplots.append(plot(self._ild_reactions[reaction].subs(subs),
|
||
|
(x, 0, self._length.subs(subs)), title='I.L.D. for Reactions',
|
||
|
xlabel=x, ylabel=reaction, line_color='blue', show=False))
|
||
|
|
||
|
return PlotGrid(len(ildplots), 1, *ildplots)
|
||
|
|
||
|
def solve_for_ild_shear(self, distance, value, *reactions):
|
||
|
"""
|
||
|
|
||
|
Determines the Influence Line Diagram equations for shear at a
|
||
|
specified point under the effect of a moving load.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
distance : Integer
|
||
|
Distance of the point from the start of the beam
|
||
|
for which equations are to be determined
|
||
|
value : Integer
|
||
|
Magnitude of moving load
|
||
|
reactions :
|
||
|
The reaction forces applied on the beam.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a beam of length 12 meters. There are two simple supports
|
||
|
below the beam, one at the starting point and another at a distance
|
||
|
of 8 meters. Calculate the I.L.D. equations for Shear at a distance
|
||
|
of 4 meters under the effect of a moving load of magnitude 1kN.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R_0, R_8 = symbols('R_0, R_8')
|
||
|
>>> b = Beam(12, E, I)
|
||
|
>>> b.apply_support(0, 'roller')
|
||
|
>>> b.apply_support(8, 'roller')
|
||
|
>>> b.solve_for_ild_reactions(1, R_0, R_8)
|
||
|
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
|
||
|
>>> b.ild_shear
|
||
|
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
|
||
|
|
||
|
"""
|
||
|
|
||
|
x = self.variable
|
||
|
l = self.length
|
||
|
|
||
|
shear_force, _ = self._solve_for_ild_equations()
|
||
|
|
||
|
shear_curve1 = value - limit(shear_force, x, distance)
|
||
|
shear_curve2 = (limit(shear_force, x, l) - limit(shear_force, x, distance)) - value
|
||
|
|
||
|
for reaction in reactions:
|
||
|
shear_curve1 = shear_curve1.subs(reaction,self._ild_reactions[reaction])
|
||
|
shear_curve2 = shear_curve2.subs(reaction,self._ild_reactions[reaction])
|
||
|
|
||
|
shear_eq = Piecewise((shear_curve1, x < distance), (shear_curve2, x > distance))
|
||
|
|
||
|
self._ild_shear = shear_eq
|
||
|
|
||
|
def plot_ild_shear(self,subs=None):
|
||
|
"""
|
||
|
|
||
|
Plots the Influence Line Diagram for Shear under the effect
|
||
|
of a moving load. This function should be called after
|
||
|
calling solve_for_ild_shear().
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a beam of length 12 meters. There are two simple supports
|
||
|
below the beam, one at the starting point and another at a distance
|
||
|
of 8 meters. Plot the I.L.D. for Shear at a distance
|
||
|
of 4 meters under the effect of a moving load of magnitude 1kN.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R_0, R_8 = symbols('R_0, R_8')
|
||
|
>>> b = Beam(12, E, I)
|
||
|
>>> b.apply_support(0, 'roller')
|
||
|
>>> b.apply_support(8, 'roller')
|
||
|
>>> b.solve_for_ild_reactions(1, R_0, R_8)
|
||
|
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
|
||
|
>>> b.ild_shear
|
||
|
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
|
||
|
>>> b.plot_ild_shear()
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not self._ild_shear:
|
||
|
raise ValueError("I.L.D. shear equation not found. Please use solve_for_ild_shear() to generate the I.L.D. shear equations.")
|
||
|
|
||
|
x = self.variable
|
||
|
l = self._length
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for sym in self._ild_shear.atoms(Symbol):
|
||
|
if sym != x and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
|
||
|
for sym in self._length.atoms(Symbol):
|
||
|
if sym != x and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
|
||
|
return plot(self._ild_shear.subs(subs), (x, 0, l), title='I.L.D. for Shear',
|
||
|
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V}$', line_color='blue',show=True)
|
||
|
|
||
|
def solve_for_ild_moment(self, distance, value, *reactions):
|
||
|
"""
|
||
|
|
||
|
Determines the Influence Line Diagram equations for moment at a
|
||
|
specified point under the effect of a moving load.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
distance : Integer
|
||
|
Distance of the point from the start of the beam
|
||
|
for which equations are to be determined
|
||
|
value : Integer
|
||
|
Magnitude of moving load
|
||
|
reactions :
|
||
|
The reaction forces applied on the beam.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a beam of length 12 meters. There are two simple supports
|
||
|
below the beam, one at the starting point and another at a distance
|
||
|
of 8 meters. Calculate the I.L.D. equations for Moment at a distance
|
||
|
of 4 meters under the effect of a moving load of magnitude 1kN.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R_0, R_8 = symbols('R_0, R_8')
|
||
|
>>> b = Beam(12, E, I)
|
||
|
>>> b.apply_support(0, 'roller')
|
||
|
>>> b.apply_support(8, 'roller')
|
||
|
>>> b.solve_for_ild_reactions(1, R_0, R_8)
|
||
|
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
|
||
|
>>> b.ild_moment
|
||
|
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
|
||
|
|
||
|
"""
|
||
|
|
||
|
x = self.variable
|
||
|
l = self.length
|
||
|
|
||
|
_, moment = self._solve_for_ild_equations()
|
||
|
|
||
|
moment_curve1 = value*(distance-x) - limit(moment, x, distance)
|
||
|
moment_curve2= (limit(moment, x, l)-limit(moment, x, distance))-value*(l-x)
|
||
|
|
||
|
for reaction in reactions:
|
||
|
moment_curve1 = moment_curve1.subs(reaction, self._ild_reactions[reaction])
|
||
|
moment_curve2 = moment_curve2.subs(reaction, self._ild_reactions[reaction])
|
||
|
|
||
|
moment_eq = Piecewise((moment_curve1, x < distance), (moment_curve2, x > distance))
|
||
|
self._ild_moment = moment_eq
|
||
|
|
||
|
def plot_ild_moment(self,subs=None):
|
||
|
"""
|
||
|
|
||
|
Plots the Influence Line Diagram for Moment under the effect
|
||
|
of a moving load. This function should be called after
|
||
|
calling solve_for_ild_moment().
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
There is a beam of length 12 meters. There are two simple supports
|
||
|
below the beam, one at the starting point and another at a distance
|
||
|
of 8 meters. Plot the I.L.D. for Moment at a distance
|
||
|
of 4 meters under the effect of a moving load of magnitude 1kN.
|
||
|
|
||
|
Using the sign convention of downwards forces being positive.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> R_0, R_8 = symbols('R_0, R_8')
|
||
|
>>> b = Beam(12, E, I)
|
||
|
>>> b.apply_support(0, 'roller')
|
||
|
>>> b.apply_support(8, 'roller')
|
||
|
>>> b.solve_for_ild_reactions(1, R_0, R_8)
|
||
|
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
|
||
|
>>> b.ild_moment
|
||
|
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
|
||
|
>>> b.plot_ild_moment()
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x over (0.0, 12.0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not self._ild_moment:
|
||
|
raise ValueError("I.L.D. moment equation not found. Please use solve_for_ild_moment() to generate the I.L.D. moment equations.")
|
||
|
|
||
|
x = self.variable
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for sym in self._ild_moment.atoms(Symbol):
|
||
|
if sym != x and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
|
||
|
for sym in self._length.atoms(Symbol):
|
||
|
if sym != x and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
return plot(self._ild_moment.subs(subs), (x, 0, self._length), title='I.L.D. for Moment',
|
||
|
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M}$', line_color='blue', show=True)
|
||
|
|
||
|
@doctest_depends_on(modules=('numpy',))
|
||
|
def draw(self, pictorial=True):
|
||
|
"""
|
||
|
Returns a plot object representing the beam diagram of the beam.
|
||
|
|
||
|
.. note::
|
||
|
The user must be careful while entering load values.
|
||
|
The draw function assumes a sign convention which is used
|
||
|
for plotting loads.
|
||
|
Given a right handed coordinate system with XYZ coordinates,
|
||
|
the beam's length is assumed to be along the positive X axis.
|
||
|
The draw function recognizes positive loads(with n>-2) as loads
|
||
|
acting along negative Y direction and positive moments acting
|
||
|
along positive Z direction.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
pictorial: Boolean (default=True)
|
||
|
Setting ``pictorial=True`` would simply create a pictorial (scaled) view
|
||
|
of the beam diagram not with the exact dimensions.
|
||
|
Although setting ``pictorial=False`` would create a beam diagram with
|
||
|
the exact dimensions on the plot
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam
|
||
|
>>> from sympy import symbols
|
||
|
>>> R1, R2 = symbols('R1, R2')
|
||
|
>>> E, I = symbols('E, I')
|
||
|
>>> b = Beam(50, 20, 30)
|
||
|
>>> b.apply_load(10, 2, -1)
|
||
|
>>> b.apply_load(R1, 10, -1)
|
||
|
>>> b.apply_load(R2, 30, -1)
|
||
|
>>> b.apply_load(90, 5, 0, 23)
|
||
|
>>> b.apply_load(10, 30, 1, 50)
|
||
|
>>> b.apply_support(50, "pin")
|
||
|
>>> b.apply_support(0, "fixed")
|
||
|
>>> b.apply_support(20, "roller")
|
||
|
>>> p = b.draw()
|
||
|
>>> p
|
||
|
Plot object containing:
|
||
|
[0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0)
|
||
|
+ SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0)
|
||
|
- SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0)
|
||
|
[1]: cartesian line: 5 for x over (0.0, 50.0)
|
||
|
>>> p.show()
|
||
|
|
||
|
"""
|
||
|
if not numpy:
|
||
|
raise ImportError("To use this function numpy module is required")
|
||
|
|
||
|
x = self.variable
|
||
|
|
||
|
# checking whether length is an expression in terms of any Symbol.
|
||
|
if isinstance(self.length, Expr):
|
||
|
l = list(self.length.atoms(Symbol))
|
||
|
# assigning every Symbol a default value of 10
|
||
|
l = {i:10 for i in l}
|
||
|
length = self.length.subs(l)
|
||
|
else:
|
||
|
l = {}
|
||
|
length = self.length
|
||
|
height = length/10
|
||
|
|
||
|
rectangles = []
|
||
|
rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"})
|
||
|
annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l)
|
||
|
support_markers, support_rectangles = self._draw_supports(length, l)
|
||
|
|
||
|
rectangles += support_rectangles
|
||
|
markers += support_markers
|
||
|
|
||
|
sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length),
|
||
|
xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations,
|
||
|
markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False)
|
||
|
|
||
|
return sing_plot
|
||
|
|
||
|
|
||
|
def _draw_load(self, pictorial, length, l):
|
||
|
loads = list(set(self.applied_loads) - set(self._support_as_loads))
|
||
|
height = length/10
|
||
|
x = self.variable
|
||
|
|
||
|
annotations = []
|
||
|
markers = []
|
||
|
load_args = []
|
||
|
scaled_load = 0
|
||
|
load_args1 = []
|
||
|
scaled_load1 = 0
|
||
|
load_eq = 0 # For positive valued higher order loads
|
||
|
load_eq1 = 0 # For negative valued higher order loads
|
||
|
fill = None
|
||
|
plus = 0 # For positive valued higher order loads
|
||
|
minus = 0 # For negative valued higher order loads
|
||
|
for load in loads:
|
||
|
|
||
|
# check if the position of load is in terms of the beam length.
|
||
|
if l:
|
||
|
pos = load[1].subs(l)
|
||
|
else:
|
||
|
pos = load[1]
|
||
|
|
||
|
# point loads
|
||
|
if load[2] == -1:
|
||
|
if isinstance(load[0], Symbol) or load[0].is_negative:
|
||
|
annotations.append({'text':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':{"width": 1.5, "headlength": 5, "headwidth": 5, "facecolor": 'black'}})
|
||
|
else:
|
||
|
annotations.append({'text':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':{"width": 1.5, "headlength": 4, "headwidth": 4, "facecolor": 'black'}})
|
||
|
# moment loads
|
||
|
elif load[2] == -2:
|
||
|
if load[0].is_negative:
|
||
|
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15})
|
||
|
else:
|
||
|
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15})
|
||
|
# higher order loads
|
||
|
elif load[2] >= 0:
|
||
|
# `fill` will be assigned only when higher order loads are present
|
||
|
value, start, order, end = load
|
||
|
# Positive loads have their separate equations
|
||
|
if(value>0):
|
||
|
plus = 1
|
||
|
# if pictorial is True we remake the load equation again with
|
||
|
# some constant magnitude values.
|
||
|
if pictorial:
|
||
|
value = 10**(1-order) if order > 0 else length/2
|
||
|
scaled_load += value*SingularityFunction(x, start, order)
|
||
|
if end:
|
||
|
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
|
||
|
for i in range(0, order + 1):
|
||
|
scaled_load -= (f2.diff(x, i).subs(x, end - start)*
|
||
|
SingularityFunction(x, end, i)/factorial(i))
|
||
|
|
||
|
if pictorial:
|
||
|
if isinstance(scaled_load, Add):
|
||
|
load_args = scaled_load.args
|
||
|
else:
|
||
|
# when the load equation consists of only a single term
|
||
|
load_args = (scaled_load,)
|
||
|
load_eq = [i.subs(l) for i in load_args]
|
||
|
else:
|
||
|
if isinstance(self.load, Add):
|
||
|
load_args = self.load.args
|
||
|
else:
|
||
|
load_args = (self.load,)
|
||
|
load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
|
||
|
load_eq = Add(*load_eq)
|
||
|
|
||
|
# filling higher order loads with colour
|
||
|
expr = height + load_eq.rewrite(Piecewise)
|
||
|
y1 = lambdify(x, expr, 'numpy')
|
||
|
|
||
|
# For loads with negative value
|
||
|
else:
|
||
|
minus = 1
|
||
|
# if pictorial is True we remake the load equation again with
|
||
|
# some constant magnitude values.
|
||
|
if pictorial:
|
||
|
value = 10**(1-order) if order > 0 else length/2
|
||
|
scaled_load1 += value*SingularityFunction(x, start, order)
|
||
|
if end:
|
||
|
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
|
||
|
for i in range(0, order + 1):
|
||
|
scaled_load1 -= (f2.diff(x, i).subs(x, end - start)*
|
||
|
SingularityFunction(x, end, i)/factorial(i))
|
||
|
|
||
|
if pictorial:
|
||
|
if isinstance(scaled_load1, Add):
|
||
|
load_args1 = scaled_load1.args
|
||
|
else:
|
||
|
# when the load equation consists of only a single term
|
||
|
load_args1 = (scaled_load1,)
|
||
|
load_eq1 = [i.subs(l) for i in load_args1]
|
||
|
else:
|
||
|
if isinstance(self.load, Add):
|
||
|
load_args1 = self.load.args1
|
||
|
else:
|
||
|
load_args1 = (self.load,)
|
||
|
load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
|
||
|
load_eq1 = -Add(*load_eq1)-height
|
||
|
|
||
|
# filling higher order loads with colour
|
||
|
expr = height + load_eq1.rewrite(Piecewise)
|
||
|
y1_ = lambdify(x, expr, 'numpy')
|
||
|
|
||
|
y = numpy.arange(0, float(length), 0.001)
|
||
|
y2 = float(height)
|
||
|
|
||
|
if(plus == 1 and minus == 1):
|
||
|
fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'}
|
||
|
elif(plus == 1):
|
||
|
fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'}
|
||
|
else:
|
||
|
fill = {'x': y, 'y1': y1_(y), 'y2': y2, 'color':'darkkhaki'}
|
||
|
return annotations, markers, load_eq, load_eq1, fill
|
||
|
|
||
|
|
||
|
def _draw_supports(self, length, l):
|
||
|
height = float(length/10)
|
||
|
|
||
|
support_markers = []
|
||
|
support_rectangles = []
|
||
|
for support in self._applied_supports:
|
||
|
if l:
|
||
|
pos = support[0].subs(l)
|
||
|
else:
|
||
|
pos = support[0]
|
||
|
|
||
|
if support[1] == "pin":
|
||
|
support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"})
|
||
|
|
||
|
elif support[1] == "roller":
|
||
|
support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"})
|
||
|
|
||
|
elif support[1] == "fixed":
|
||
|
if pos == 0:
|
||
|
support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'})
|
||
|
else:
|
||
|
support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'})
|
||
|
|
||
|
return support_markers, support_rectangles
|
||
|
|
||
|
|
||
|
class Beam3D(Beam):
|
||
|
"""
|
||
|
This class handles loads applied in any direction of a 3D space along
|
||
|
with unequal values of Second moment along different axes.
|
||
|
|
||
|
.. note::
|
||
|
A consistent sign convention must be used while solving a beam
|
||
|
bending problem; the results will
|
||
|
automatically follow the chosen sign convention.
|
||
|
This class assumes that any kind of distributed load/moment is
|
||
|
applied through out the span of a beam.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of l meters long. A constant distributed load of magnitude q
|
||
|
is applied along y-axis from start till the end of beam. A constant distributed
|
||
|
moment of magnitude m is also applied along z-axis from start till the end of beam.
|
||
|
Beam is fixed at both of its end. So, deflection of the beam at the both ends
|
||
|
is restricted.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols, simplify, collect, factor
|
||
|
>>> l, E, G, I, A = symbols('l, E, G, I, A')
|
||
|
>>> b = Beam3D(l, E, G, I, A)
|
||
|
>>> x, q, m = symbols('x, q, m')
|
||
|
>>> b.apply_load(q, 0, 0, dir="y")
|
||
|
>>> b.apply_moment_load(m, 0, -1, dir="z")
|
||
|
>>> b.shear_force()
|
||
|
[0, -q*x, 0]
|
||
|
>>> b.bending_moment()
|
||
|
[0, 0, -m*x + q*x**2/2]
|
||
|
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
|
||
|
>>> b.solve_slope_deflection()
|
||
|
>>> factor(b.slope())
|
||
|
[0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q
|
||
|
- 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))]
|
||
|
>>> dx, dy, dz = b.deflection()
|
||
|
>>> dy = collect(simplify(dy), x)
|
||
|
>>> dx == dz == 0
|
||
|
True
|
||
|
>>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q)
|
||
|
... + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q))
|
||
|
... + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2)
|
||
|
... - 12*E*I*q*(A*G*l**2 + 12*E*I)))/(24*A*E*G*I*(A*G*l**2 + 12*E*I)))
|
||
|
True
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, length, elastic_modulus, shear_modulus, second_moment,
|
||
|
area, variable=Symbol('x')):
|
||
|
"""Initializes the class.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
length : Sympifyable
|
||
|
A Symbol or value representing the Beam's length.
|
||
|
elastic_modulus : Sympifyable
|
||
|
A SymPy expression representing the Beam's Modulus of Elasticity.
|
||
|
It is a measure of the stiffness of the Beam material.
|
||
|
shear_modulus : Sympifyable
|
||
|
A SymPy expression representing the Beam's Modulus of rigidity.
|
||
|
It is a measure of rigidity of the Beam material.
|
||
|
second_moment : Sympifyable or list
|
||
|
A list of two elements having SymPy expression representing the
|
||
|
Beam's Second moment of area. First value represent Second moment
|
||
|
across y-axis and second across z-axis.
|
||
|
Single SymPy expression can be passed if both values are same
|
||
|
area : Sympifyable
|
||
|
A SymPy expression representing the Beam's cross-sectional area
|
||
|
in a plane perpendicular to length of the Beam.
|
||
|
variable : Symbol, optional
|
||
|
A Symbol object that will be used as the variable along the beam
|
||
|
while representing the load, shear, moment, slope and deflection
|
||
|
curve. By default, it is set to ``Symbol('x')``.
|
||
|
"""
|
||
|
super().__init__(length, elastic_modulus, second_moment, variable)
|
||
|
self.shear_modulus = shear_modulus
|
||
|
self.area = area
|
||
|
self._load_vector = [0, 0, 0]
|
||
|
self._moment_load_vector = [0, 0, 0]
|
||
|
self._torsion_moment = {}
|
||
|
self._load_Singularity = [0, 0, 0]
|
||
|
self._slope = [0, 0, 0]
|
||
|
self._deflection = [0, 0, 0]
|
||
|
self._angular_deflection = 0
|
||
|
|
||
|
@property
|
||
|
def shear_modulus(self):
|
||
|
"""Young's Modulus of the Beam. """
|
||
|
return self._shear_modulus
|
||
|
|
||
|
@shear_modulus.setter
|
||
|
def shear_modulus(self, e):
|
||
|
self._shear_modulus = sympify(e)
|
||
|
|
||
|
@property
|
||
|
def second_moment(self):
|
||
|
"""Second moment of area of the Beam. """
|
||
|
return self._second_moment
|
||
|
|
||
|
@second_moment.setter
|
||
|
def second_moment(self, i):
|
||
|
if isinstance(i, list):
|
||
|
i = [sympify(x) for x in i]
|
||
|
self._second_moment = i
|
||
|
else:
|
||
|
self._second_moment = sympify(i)
|
||
|
|
||
|
@property
|
||
|
def area(self):
|
||
|
"""Cross-sectional area of the Beam. """
|
||
|
return self._area
|
||
|
|
||
|
@area.setter
|
||
|
def area(self, a):
|
||
|
self._area = sympify(a)
|
||
|
|
||
|
@property
|
||
|
def load_vector(self):
|
||
|
"""
|
||
|
Returns a three element list representing the load vector.
|
||
|
"""
|
||
|
return self._load_vector
|
||
|
|
||
|
@property
|
||
|
def moment_load_vector(self):
|
||
|
"""
|
||
|
Returns a three element list representing moment loads on Beam.
|
||
|
"""
|
||
|
return self._moment_load_vector
|
||
|
|
||
|
@property
|
||
|
def boundary_conditions(self):
|
||
|
"""
|
||
|
Returns a dictionary of boundary conditions applied on the beam.
|
||
|
The dictionary has two keywords namely slope and deflection.
|
||
|
The value of each keyword is a list of tuple, where each tuple
|
||
|
contains location and value of a boundary condition in the format
|
||
|
(location, value). Further each value is a list corresponding to
|
||
|
slope or deflection(s) values along three axes at that location.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 4 meters. The slope at 0 should be 4 along
|
||
|
the x-axis and 0 along others. At the other end of beam, deflection
|
||
|
along all the three axes should be zero.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(30, E, G, I, A, x)
|
||
|
>>> b.bc_slope = [(0, (4, 0, 0))]
|
||
|
>>> b.bc_deflection = [(4, [0, 0, 0])]
|
||
|
>>> b.boundary_conditions
|
||
|
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
|
||
|
|
||
|
Here the deflection of the beam should be ``0`` along all the three axes at ``4``.
|
||
|
Similarly, the slope of the beam should be ``4`` along x-axis and ``0``
|
||
|
along y and z axis at ``0``.
|
||
|
"""
|
||
|
return self._boundary_conditions
|
||
|
|
||
|
def polar_moment(self):
|
||
|
"""
|
||
|
Returns the polar moment of area of the beam
|
||
|
about the X axis with respect to the centroid.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A = symbols('l, E, G, I, A')
|
||
|
>>> b = Beam3D(l, E, G, I, A)
|
||
|
>>> b.polar_moment()
|
||
|
2*I
|
||
|
>>> I1 = [9, 15]
|
||
|
>>> b = Beam3D(l, E, G, I1, A)
|
||
|
>>> b.polar_moment()
|
||
|
24
|
||
|
"""
|
||
|
if not iterable(self.second_moment):
|
||
|
return 2*self.second_moment
|
||
|
return sum(self.second_moment)
|
||
|
|
||
|
def apply_load(self, value, start, order, dir="y"):
|
||
|
"""
|
||
|
This method adds up the force load to a particular beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
value : Sympifyable
|
||
|
The magnitude of an applied load.
|
||
|
dir : String
|
||
|
Axis along which load is applied.
|
||
|
order : Integer
|
||
|
The order of the applied load.
|
||
|
- For point loads, order=-1
|
||
|
- For constant distributed load, order=0
|
||
|
- For ramp loads, order=1
|
||
|
- For parabolic ramp loads, order=2
|
||
|
- ... so on.
|
||
|
"""
|
||
|
x = self.variable
|
||
|
value = sympify(value)
|
||
|
start = sympify(start)
|
||
|
order = sympify(order)
|
||
|
|
||
|
if dir == "x":
|
||
|
if not order == -1:
|
||
|
self._load_vector[0] += value
|
||
|
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
|
||
|
|
||
|
elif dir == "y":
|
||
|
if not order == -1:
|
||
|
self._load_vector[1] += value
|
||
|
self._load_Singularity[1] += value*SingularityFunction(x, start, order)
|
||
|
|
||
|
else:
|
||
|
if not order == -1:
|
||
|
self._load_vector[2] += value
|
||
|
self._load_Singularity[2] += value*SingularityFunction(x, start, order)
|
||
|
|
||
|
def apply_moment_load(self, value, start, order, dir="y"):
|
||
|
"""
|
||
|
This method adds up the moment loads to a particular beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
value : Sympifyable
|
||
|
The magnitude of an applied moment.
|
||
|
dir : String
|
||
|
Axis along which moment is applied.
|
||
|
order : Integer
|
||
|
The order of the applied load.
|
||
|
- For point moments, order=-2
|
||
|
- For constant distributed moment, order=-1
|
||
|
- For ramp moments, order=0
|
||
|
- For parabolic ramp moments, order=1
|
||
|
- ... so on.
|
||
|
"""
|
||
|
x = self.variable
|
||
|
value = sympify(value)
|
||
|
start = sympify(start)
|
||
|
order = sympify(order)
|
||
|
|
||
|
if dir == "x":
|
||
|
if not order == -2:
|
||
|
self._moment_load_vector[0] += value
|
||
|
else:
|
||
|
if start in list(self._torsion_moment):
|
||
|
self._torsion_moment[start] += value
|
||
|
else:
|
||
|
self._torsion_moment[start] = value
|
||
|
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
|
||
|
elif dir == "y":
|
||
|
if not order == -2:
|
||
|
self._moment_load_vector[1] += value
|
||
|
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
|
||
|
else:
|
||
|
if not order == -2:
|
||
|
self._moment_load_vector[2] += value
|
||
|
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
|
||
|
|
||
|
def apply_support(self, loc, type="fixed"):
|
||
|
if type in ("pin", "roller"):
|
||
|
reaction_load = Symbol('R_'+str(loc))
|
||
|
self._reaction_loads[reaction_load] = reaction_load
|
||
|
self.bc_deflection.append((loc, [0, 0, 0]))
|
||
|
else:
|
||
|
reaction_load = Symbol('R_'+str(loc))
|
||
|
reaction_moment = Symbol('M_'+str(loc))
|
||
|
self._reaction_loads[reaction_load] = [reaction_load, reaction_moment]
|
||
|
self.bc_deflection.append((loc, [0, 0, 0]))
|
||
|
self.bc_slope.append((loc, [0, 0, 0]))
|
||
|
|
||
|
def solve_for_reaction_loads(self, *reaction):
|
||
|
"""
|
||
|
Solves for the reaction forces.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 30 meters. It it supported by rollers at
|
||
|
of its end. A constant distributed load of magnitude 8 N is applied
|
||
|
from start till its end along y-axis. Another linear load having
|
||
|
slope equal to 9 is applied along z-axis.
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(30, E, G, I, A, x)
|
||
|
>>> b.apply_load(8, start=0, order=0, dir="y")
|
||
|
>>> b.apply_load(9*x, start=0, order=0, dir="z")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R2, start=30, order=-1, dir="y")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R4, start=30, order=-1, dir="z")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.reaction_loads
|
||
|
{R1: -120, R2: -120, R3: -1350, R4: -2700}
|
||
|
"""
|
||
|
x = self.variable
|
||
|
l = self.length
|
||
|
q = self._load_Singularity
|
||
|
shear_curves = [integrate(load, x) for load in q]
|
||
|
moment_curves = [integrate(shear, x) for shear in shear_curves]
|
||
|
for i in range(3):
|
||
|
react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))]
|
||
|
if len(react) == 0:
|
||
|
continue
|
||
|
shear_curve = limit(shear_curves[i], x, l)
|
||
|
moment_curve = limit(moment_curves[i], x, l)
|
||
|
sol = list((linsolve([shear_curve, moment_curve], react).args)[0])
|
||
|
sol_dict = dict(zip(react, sol))
|
||
|
reaction_loads = self._reaction_loads
|
||
|
# Check if any of the evaluated reaction exists in another direction
|
||
|
# and if it exists then it should have same value.
|
||
|
for key in sol_dict:
|
||
|
if key in reaction_loads and sol_dict[key] != reaction_loads[key]:
|
||
|
raise ValueError("Ambiguous solution for %s in different directions." % key)
|
||
|
self._reaction_loads.update(sol_dict)
|
||
|
|
||
|
def shear_force(self):
|
||
|
"""
|
||
|
Returns a list of three expressions which represents the shear force
|
||
|
curve of the Beam object along all three axes.
|
||
|
"""
|
||
|
x = self.variable
|
||
|
q = self._load_vector
|
||
|
return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)]
|
||
|
|
||
|
def axial_force(self):
|
||
|
"""
|
||
|
Returns expression of Axial shear force present inside the Beam object.
|
||
|
"""
|
||
|
return self.shear_force()[0]
|
||
|
|
||
|
def shear_stress(self):
|
||
|
"""
|
||
|
Returns a list of three expressions which represents the shear stress
|
||
|
curve of the Beam object along all three axes.
|
||
|
"""
|
||
|
return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area]
|
||
|
|
||
|
def axial_stress(self):
|
||
|
"""
|
||
|
Returns expression of Axial stress present inside the Beam object.
|
||
|
"""
|
||
|
return self.axial_force()/self._area
|
||
|
|
||
|
def bending_moment(self):
|
||
|
"""
|
||
|
Returns a list of three expressions which represents the bending moment
|
||
|
curve of the Beam object along all three axes.
|
||
|
"""
|
||
|
x = self.variable
|
||
|
m = self._moment_load_vector
|
||
|
shear = self.shear_force()
|
||
|
|
||
|
return [integrate(-m[0], x), integrate(-m[1] + shear[2], x),
|
||
|
integrate(-m[2] - shear[1], x) ]
|
||
|
|
||
|
def torsional_moment(self):
|
||
|
"""
|
||
|
Returns expression of Torsional moment present inside the Beam object.
|
||
|
"""
|
||
|
return self.bending_moment()[0]
|
||
|
|
||
|
def solve_for_torsion(self):
|
||
|
"""
|
||
|
Solves for the angular deflection due to the torsional effects of
|
||
|
moments being applied in the x-direction i.e. out of or into the beam.
|
||
|
|
||
|
Here, a positive torque means the direction of the torque is positive
|
||
|
i.e. out of the beam along the beam-axis. Likewise, a negative torque
|
||
|
signifies a torque into the beam cross-section.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, E, G, I, A, x)
|
||
|
>>> b.apply_moment_load(4, 4, -2, dir='x')
|
||
|
>>> b.apply_moment_load(4, 8, -2, dir='x')
|
||
|
>>> b.apply_moment_load(4, 8, -2, dir='x')
|
||
|
>>> b.solve_for_torsion()
|
||
|
>>> b.angular_deflection().subs(x, 3)
|
||
|
18/(G*I)
|
||
|
"""
|
||
|
x = self.variable
|
||
|
sum_moments = 0
|
||
|
for point in list(self._torsion_moment):
|
||
|
sum_moments += self._torsion_moment[point]
|
||
|
list(self._torsion_moment).sort()
|
||
|
pointsList = list(self._torsion_moment)
|
||
|
torque_diagram = Piecewise((sum_moments, x<=pointsList[0]), (0, x>=pointsList[0]))
|
||
|
for i in range(len(pointsList))[1:]:
|
||
|
sum_moments -= self._torsion_moment[pointsList[i-1]]
|
||
|
torque_diagram += Piecewise((0, x<=pointsList[i-1]), (sum_moments, x<=pointsList[i]), (0, x>=pointsList[i]))
|
||
|
integrated_torque_diagram = integrate(torque_diagram)
|
||
|
self._angular_deflection = integrated_torque_diagram/(self.shear_modulus*self.polar_moment())
|
||
|
|
||
|
def solve_slope_deflection(self):
|
||
|
x = self.variable
|
||
|
l = self.length
|
||
|
E = self.elastic_modulus
|
||
|
G = self.shear_modulus
|
||
|
I = self.second_moment
|
||
|
if isinstance(I, list):
|
||
|
I_y, I_z = I[0], I[1]
|
||
|
else:
|
||
|
I_y = I_z = I
|
||
|
A = self._area
|
||
|
load = self._load_vector
|
||
|
moment = self._moment_load_vector
|
||
|
defl = Function('defl')
|
||
|
theta = Function('theta')
|
||
|
|
||
|
# Finding deflection along x-axis(and corresponding slope value by differentiating it)
|
||
|
# Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0
|
||
|
eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0]
|
||
|
def_x = dsolve(Eq(eq, 0), defl(x)).args[1]
|
||
|
# Solving constants originated from dsolve
|
||
|
C1 = Symbol('C1')
|
||
|
C2 = Symbol('C2')
|
||
|
constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0])
|
||
|
def_x = def_x.subs({C1:constants[0], C2:constants[1]})
|
||
|
slope_x = def_x.diff(x)
|
||
|
self._deflection[0] = def_x
|
||
|
self._slope[0] = slope_x
|
||
|
|
||
|
# Finding deflection along y-axis and slope across z-axis. System of equation involved:
|
||
|
# 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0
|
||
|
# 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0
|
||
|
C_i = Symbol('C_i')
|
||
|
# Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1)
|
||
|
eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2]
|
||
|
slope_z = dsolve(Eq(eq1, 0)).args[1]
|
||
|
|
||
|
# Solve for constants originated from using dsolve on eq1
|
||
|
constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0])
|
||
|
slope_z = slope_z.subs({C1:constants[0], C2:constants[1]})
|
||
|
|
||
|
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis
|
||
|
eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z
|
||
|
def_y = dsolve(Eq(eq2, 0), defl(x)).args[1]
|
||
|
# Solve for constants originated from using dsolve on eq2
|
||
|
constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0])
|
||
|
self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]})
|
||
|
self._slope[2] = slope_z.subs(C_i, constants[1])
|
||
|
|
||
|
# Finding deflection along z-axis and slope across y-axis. System of equation involved:
|
||
|
# 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0
|
||
|
# 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0
|
||
|
|
||
|
# Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1)
|
||
|
eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1]
|
||
|
slope_y = dsolve(Eq(eq1, 0)).args[1]
|
||
|
# Solve for constants originated from using dsolve on eq1
|
||
|
constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0])
|
||
|
slope_y = slope_y.subs({C1:constants[0], C2:constants[1]})
|
||
|
|
||
|
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis
|
||
|
eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y
|
||
|
def_z = dsolve(Eq(eq2,0)).args[1]
|
||
|
# Solve for constants originated from using dsolve on eq2
|
||
|
constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0])
|
||
|
self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]})
|
||
|
self._slope[1] = slope_y.subs(C_i, constants[1])
|
||
|
|
||
|
def slope(self):
|
||
|
"""
|
||
|
Returns a three element list representing slope of deflection curve
|
||
|
along all the three axes.
|
||
|
"""
|
||
|
return self._slope
|
||
|
|
||
|
def deflection(self):
|
||
|
"""
|
||
|
Returns a three element list representing deflection curve along all
|
||
|
the three axes.
|
||
|
"""
|
||
|
return self._deflection
|
||
|
|
||
|
def angular_deflection(self):
|
||
|
"""
|
||
|
Returns a function in x depicting how the angular deflection, due to moments
|
||
|
in the x-axis on the beam, varies with x.
|
||
|
"""
|
||
|
return self._angular_deflection
|
||
|
|
||
|
def _plot_shear_force(self, dir, subs=None):
|
||
|
|
||
|
shear_force = self.shear_force()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
color = 'r'
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
color = 'g'
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
color = 'b'
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for sym in shear_force[dir_num].atoms(Symbol):
|
||
|
if sym != self.variable and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
|
||
|
return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir,
|
||
|
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V(%c)}$'%dir, line_color=color)
|
||
|
|
||
|
def plot_shear_force(self, dir="all", subs=None):
|
||
|
|
||
|
"""
|
||
|
|
||
|
Returns a plot for Shear force along all three directions
|
||
|
present in the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
dir : string (default : "all")
|
||
|
Direction along which shear force plot is required.
|
||
|
If no direction is specified, all plots are displayed.
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, E, G, I, A, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.plot_shear_force()
|
||
|
PlotGrid object containing:
|
||
|
Plot[0]:Plot object containing:
|
||
|
[0]: cartesian line: 0 for x over (0.0, 20.0)
|
||
|
Plot[1]:Plot object containing:
|
||
|
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
|
||
|
Plot[2]:Plot object containing:
|
||
|
[0]: cartesian line: -15*x for x over (0.0, 20.0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
# For shear force along x direction
|
||
|
if dir == "x":
|
||
|
Px = self._plot_shear_force('x', subs)
|
||
|
return Px.show()
|
||
|
# For shear force along y direction
|
||
|
elif dir == "y":
|
||
|
Py = self._plot_shear_force('y', subs)
|
||
|
return Py.show()
|
||
|
# For shear force along z direction
|
||
|
elif dir == "z":
|
||
|
Pz = self._plot_shear_force('z', subs)
|
||
|
return Pz.show()
|
||
|
# For shear force along all direction
|
||
|
else:
|
||
|
Px = self._plot_shear_force('x', subs)
|
||
|
Py = self._plot_shear_force('y', subs)
|
||
|
Pz = self._plot_shear_force('z', subs)
|
||
|
return PlotGrid(3, 1, Px, Py, Pz)
|
||
|
|
||
|
def _plot_bending_moment(self, dir, subs=None):
|
||
|
|
||
|
bending_moment = self.bending_moment()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
color = 'g'
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
color = 'c'
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
color = 'm'
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for sym in bending_moment[dir_num].atoms(Symbol):
|
||
|
if sym != self.variable and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
|
||
|
return plot(bending_moment[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Bending Moment along %c direction'%dir,
|
||
|
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M(%c)}$'%dir, line_color=color)
|
||
|
|
||
|
def plot_bending_moment(self, dir="all", subs=None):
|
||
|
|
||
|
"""
|
||
|
|
||
|
Returns a plot for bending moment along all three directions
|
||
|
present in the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
dir : string (default : "all")
|
||
|
Direction along which bending moment plot is required.
|
||
|
If no direction is specified, all plots are displayed.
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, E, G, I, A, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.plot_bending_moment()
|
||
|
PlotGrid object containing:
|
||
|
Plot[0]:Plot object containing:
|
||
|
[0]: cartesian line: 0 for x over (0.0, 20.0)
|
||
|
Plot[1]:Plot object containing:
|
||
|
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
|
||
|
Plot[2]:Plot object containing:
|
||
|
[0]: cartesian line: 2*x**3 for x over (0.0, 20.0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
# For bending moment along x direction
|
||
|
if dir == "x":
|
||
|
Px = self._plot_bending_moment('x', subs)
|
||
|
return Px.show()
|
||
|
# For bending moment along y direction
|
||
|
elif dir == "y":
|
||
|
Py = self._plot_bending_moment('y', subs)
|
||
|
return Py.show()
|
||
|
# For bending moment along z direction
|
||
|
elif dir == "z":
|
||
|
Pz = self._plot_bending_moment('z', subs)
|
||
|
return Pz.show()
|
||
|
# For bending moment along all direction
|
||
|
else:
|
||
|
Px = self._plot_bending_moment('x', subs)
|
||
|
Py = self._plot_bending_moment('y', subs)
|
||
|
Pz = self._plot_bending_moment('z', subs)
|
||
|
return PlotGrid(3, 1, Px, Py, Pz)
|
||
|
|
||
|
def _plot_slope(self, dir, subs=None):
|
||
|
|
||
|
slope = self.slope()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
color = 'b'
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
color = 'm'
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
color = 'g'
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for sym in slope[dir_num].atoms(Symbol):
|
||
|
if sym != self.variable and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
|
||
|
|
||
|
return plot(slope[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Slope along %c direction'%dir,
|
||
|
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\theta(%c)}$'%dir, line_color=color)
|
||
|
|
||
|
def plot_slope(self, dir="all", subs=None):
|
||
|
|
||
|
"""
|
||
|
|
||
|
Returns a plot for Slope along all three directions
|
||
|
present in the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
dir : string (default : "all")
|
||
|
Direction along which Slope plot is required.
|
||
|
If no direction is specified, all plots are displayed.
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as keys and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, 40, 21, 100, 25, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.solve_slope_deflection()
|
||
|
>>> b.plot_slope()
|
||
|
PlotGrid object containing:
|
||
|
Plot[0]:Plot object containing:
|
||
|
[0]: cartesian line: 0 for x over (0.0, 20.0)
|
||
|
Plot[1]:Plot object containing:
|
||
|
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
|
||
|
Plot[2]:Plot object containing:
|
||
|
[0]: cartesian line: x**4/8000 - 19*x**2/172 + 52*x/43 for x over (0.0, 20.0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
# For Slope along x direction
|
||
|
if dir == "x":
|
||
|
Px = self._plot_slope('x', subs)
|
||
|
return Px.show()
|
||
|
# For Slope along y direction
|
||
|
elif dir == "y":
|
||
|
Py = self._plot_slope('y', subs)
|
||
|
return Py.show()
|
||
|
# For Slope along z direction
|
||
|
elif dir == "z":
|
||
|
Pz = self._plot_slope('z', subs)
|
||
|
return Pz.show()
|
||
|
# For Slope along all direction
|
||
|
else:
|
||
|
Px = self._plot_slope('x', subs)
|
||
|
Py = self._plot_slope('y', subs)
|
||
|
Pz = self._plot_slope('z', subs)
|
||
|
return PlotGrid(3, 1, Px, Py, Pz)
|
||
|
|
||
|
def _plot_deflection(self, dir, subs=None):
|
||
|
|
||
|
deflection = self.deflection()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
color = 'm'
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
color = 'r'
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
color = 'c'
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for sym in deflection[dir_num].atoms(Symbol):
|
||
|
if sym != self.variable and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
|
||
|
return plot(deflection[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Deflection along %c direction'%dir,
|
||
|
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\delta(%c)}$'%dir, line_color=color)
|
||
|
|
||
|
def plot_deflection(self, dir="all", subs=None):
|
||
|
|
||
|
"""
|
||
|
|
||
|
Returns a plot for Deflection along all three directions
|
||
|
present in the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
dir : string (default : "all")
|
||
|
Direction along which deflection plot is required.
|
||
|
If no direction is specified, all plots are displayed.
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as keys and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, 40, 21, 100, 25, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.solve_slope_deflection()
|
||
|
>>> b.plot_deflection()
|
||
|
PlotGrid object containing:
|
||
|
Plot[0]:Plot object containing:
|
||
|
[0]: cartesian line: 0 for x over (0.0, 20.0)
|
||
|
Plot[1]:Plot object containing:
|
||
|
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
|
||
|
Plot[2]:Plot object containing:
|
||
|
[0]: cartesian line: x**4/6400 - x**3/160 + 27*x**2/560 + 2*x/7 for x over (0.0, 20.0)
|
||
|
|
||
|
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
# For deflection along x direction
|
||
|
if dir == "x":
|
||
|
Px = self._plot_deflection('x', subs)
|
||
|
return Px.show()
|
||
|
# For deflection along y direction
|
||
|
elif dir == "y":
|
||
|
Py = self._plot_deflection('y', subs)
|
||
|
return Py.show()
|
||
|
# For deflection along z direction
|
||
|
elif dir == "z":
|
||
|
Pz = self._plot_deflection('z', subs)
|
||
|
return Pz.show()
|
||
|
# For deflection along all direction
|
||
|
else:
|
||
|
Px = self._plot_deflection('x', subs)
|
||
|
Py = self._plot_deflection('y', subs)
|
||
|
Pz = self._plot_deflection('z', subs)
|
||
|
return PlotGrid(3, 1, Px, Py, Pz)
|
||
|
|
||
|
def plot_loading_results(self, dir='x', subs=None):
|
||
|
|
||
|
"""
|
||
|
|
||
|
Returns a subplot of Shear Force, Bending Moment,
|
||
|
Slope and Deflection of the Beam object along the direction specified.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
dir : string (default : "x")
|
||
|
Direction along which plots are required.
|
||
|
If no direction is specified, plots along x-axis are displayed.
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, E, G, I, A, x)
|
||
|
>>> subs = {E:40, G:21, I:100, A:25}
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.solve_slope_deflection()
|
||
|
>>> b.plot_loading_results('y',subs)
|
||
|
PlotGrid object containing:
|
||
|
Plot[0]:Plot object containing:
|
||
|
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
|
||
|
Plot[1]:Plot object containing:
|
||
|
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
|
||
|
Plot[2]:Plot object containing:
|
||
|
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
|
||
|
Plot[3]:Plot object containing:
|
||
|
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
ax1 = self._plot_shear_force(dir, subs)
|
||
|
ax2 = self._plot_bending_moment(dir, subs)
|
||
|
ax3 = self._plot_slope(dir, subs)
|
||
|
ax4 = self._plot_deflection(dir, subs)
|
||
|
|
||
|
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
|
||
|
|
||
|
def _plot_shear_stress(self, dir, subs=None):
|
||
|
|
||
|
shear_stress = self.shear_stress()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
color = 'r'
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
color = 'g'
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
color = 'b'
|
||
|
|
||
|
if subs is None:
|
||
|
subs = {}
|
||
|
|
||
|
for sym in shear_stress[dir_num].atoms(Symbol):
|
||
|
if sym != self.variable and sym not in subs:
|
||
|
raise ValueError('Value of %s was not passed.' %sym)
|
||
|
if self.length in subs:
|
||
|
length = subs[self.length]
|
||
|
else:
|
||
|
length = self.length
|
||
|
|
||
|
return plot(shear_stress[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear stress along %c direction'%dir,
|
||
|
xlabel=r'$\mathrm{X}$', ylabel=r'$\tau(%c)$'%dir, line_color=color)
|
||
|
|
||
|
def plot_shear_stress(self, dir="all", subs=None):
|
||
|
|
||
|
"""
|
||
|
|
||
|
Returns a plot for Shear Stress along all three directions
|
||
|
present in the Beam object.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
dir : string (default : "all")
|
||
|
Direction along which shear stress plot is required.
|
||
|
If no direction is specified, all plots are displayed.
|
||
|
subs : dictionary
|
||
|
Python dictionary containing Symbols as key and their
|
||
|
corresponding values.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters and area of cross section 2 square
|
||
|
meters. It it supported by rollers at of its end. A linear load having
|
||
|
slope equal to 12 is applied along y-axis. A constant distributed load
|
||
|
of magnitude 15 N is applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, E, G, I, 2, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.plot_shear_stress()
|
||
|
PlotGrid object containing:
|
||
|
Plot[0]:Plot object containing:
|
||
|
[0]: cartesian line: 0 for x over (0.0, 20.0)
|
||
|
Plot[1]:Plot object containing:
|
||
|
[0]: cartesian line: -3*x**2 for x over (0.0, 20.0)
|
||
|
Plot[2]:Plot object containing:
|
||
|
[0]: cartesian line: -15*x/2 for x over (0.0, 20.0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
# For shear stress along x direction
|
||
|
if dir == "x":
|
||
|
Px = self._plot_shear_stress('x', subs)
|
||
|
return Px.show()
|
||
|
# For shear stress along y direction
|
||
|
elif dir == "y":
|
||
|
Py = self._plot_shear_stress('y', subs)
|
||
|
return Py.show()
|
||
|
# For shear stress along z direction
|
||
|
elif dir == "z":
|
||
|
Pz = self._plot_shear_stress('z', subs)
|
||
|
return Pz.show()
|
||
|
# For shear stress along all direction
|
||
|
else:
|
||
|
Px = self._plot_shear_stress('x', subs)
|
||
|
Py = self._plot_shear_stress('y', subs)
|
||
|
Pz = self._plot_shear_stress('z', subs)
|
||
|
return PlotGrid(3, 1, Px, Py, Pz)
|
||
|
|
||
|
def _max_shear_force(self, dir):
|
||
|
"""
|
||
|
Helper function for max_shear_force().
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
|
||
|
if not self.shear_force()[dir_num]:
|
||
|
return (0,0)
|
||
|
# To restrict the range within length of the Beam
|
||
|
load_curve = Piecewise((float("nan"), self.variable<=0),
|
||
|
(self._load_vector[dir_num], self.variable<self.length),
|
||
|
(float("nan"), True))
|
||
|
|
||
|
points = solve(load_curve.rewrite(Piecewise), self.variable,
|
||
|
domain=S.Reals)
|
||
|
points.append(0)
|
||
|
points.append(self.length)
|
||
|
shear_curve = self.shear_force()[dir_num]
|
||
|
shear_values = [shear_curve.subs(self.variable, x) for x in points]
|
||
|
shear_values = list(map(abs, shear_values))
|
||
|
|
||
|
max_shear = max(shear_values)
|
||
|
return (points[shear_values.index(max_shear)], max_shear)
|
||
|
|
||
|
def max_shear_force(self):
|
||
|
"""
|
||
|
Returns point of max shear force and its corresponding shear value
|
||
|
along all directions in a Beam object as a list.
|
||
|
solve_for_reaction_loads() must be called before using this function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, 40, 21, 100, 25, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.max_shear_force()
|
||
|
[(0, 0), (20, 2400), (20, 300)]
|
||
|
"""
|
||
|
|
||
|
max_shear = []
|
||
|
max_shear.append(self._max_shear_force('x'))
|
||
|
max_shear.append(self._max_shear_force('y'))
|
||
|
max_shear.append(self._max_shear_force('z'))
|
||
|
return max_shear
|
||
|
|
||
|
def _max_bending_moment(self, dir):
|
||
|
"""
|
||
|
Helper function for max_bending_moment().
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
|
||
|
if not self.bending_moment()[dir_num]:
|
||
|
return (0,0)
|
||
|
# To restrict the range within length of the Beam
|
||
|
shear_curve = Piecewise((float("nan"), self.variable<=0),
|
||
|
(self.shear_force()[dir_num], self.variable<self.length),
|
||
|
(float("nan"), True))
|
||
|
|
||
|
points = solve(shear_curve.rewrite(Piecewise), self.variable,
|
||
|
domain=S.Reals)
|
||
|
points.append(0)
|
||
|
points.append(self.length)
|
||
|
bending_moment_curve = self.bending_moment()[dir_num]
|
||
|
bending_moments = [bending_moment_curve.subs(self.variable, x) for x in points]
|
||
|
bending_moments = list(map(abs, bending_moments))
|
||
|
|
||
|
max_bending_moment = max(bending_moments)
|
||
|
return (points[bending_moments.index(max_bending_moment)], max_bending_moment)
|
||
|
|
||
|
def max_bending_moment(self):
|
||
|
"""
|
||
|
Returns point of max bending moment and its corresponding bending moment value
|
||
|
along all directions in a Beam object as a list.
|
||
|
solve_for_reaction_loads() must be called before using this function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, 40, 21, 100, 25, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.max_bending_moment()
|
||
|
[(0, 0), (20, 3000), (20, 16000)]
|
||
|
"""
|
||
|
|
||
|
max_bmoment = []
|
||
|
max_bmoment.append(self._max_bending_moment('x'))
|
||
|
max_bmoment.append(self._max_bending_moment('y'))
|
||
|
max_bmoment.append(self._max_bending_moment('z'))
|
||
|
return max_bmoment
|
||
|
|
||
|
max_bmoment = max_bending_moment
|
||
|
|
||
|
def _max_deflection(self, dir):
|
||
|
"""
|
||
|
Helper function for max_Deflection()
|
||
|
"""
|
||
|
|
||
|
dir = dir.lower()
|
||
|
|
||
|
if dir == 'x':
|
||
|
dir_num = 0
|
||
|
|
||
|
elif dir == 'y':
|
||
|
dir_num = 1
|
||
|
|
||
|
elif dir == 'z':
|
||
|
dir_num = 2
|
||
|
|
||
|
if not self.deflection()[dir_num]:
|
||
|
return (0,0)
|
||
|
# To restrict the range within length of the Beam
|
||
|
slope_curve = Piecewise((float("nan"), self.variable<=0),
|
||
|
(self.slope()[dir_num], self.variable<self.length),
|
||
|
(float("nan"), True))
|
||
|
|
||
|
points = solve(slope_curve.rewrite(Piecewise), self.variable,
|
||
|
domain=S.Reals)
|
||
|
points.append(0)
|
||
|
points.append(self._length)
|
||
|
deflection_curve = self.deflection()[dir_num]
|
||
|
deflections = [deflection_curve.subs(self.variable, x) for x in points]
|
||
|
deflections = list(map(abs, deflections))
|
||
|
|
||
|
max_def = max(deflections)
|
||
|
return (points[deflections.index(max_def)], max_def)
|
||
|
|
||
|
def max_deflection(self):
|
||
|
"""
|
||
|
Returns point of max deflection and its corresponding deflection value
|
||
|
along all directions in a Beam object as a list.
|
||
|
solve_for_reaction_loads() and solve_slope_deflection() must be called
|
||
|
before using this function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
There is a beam of length 20 meters. It it supported by rollers
|
||
|
at of its end. A linear load having slope equal to 12 is applied
|
||
|
along y-axis. A constant distributed load of magnitude 15 N is
|
||
|
applied from start till its end along z-axis.
|
||
|
|
||
|
.. plot::
|
||
|
:context: close-figs
|
||
|
:format: doctest
|
||
|
:include-source: True
|
||
|
|
||
|
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
|
||
|
>>> b = Beam3D(20, 40, 21, 100, 25, x)
|
||
|
>>> b.apply_load(15, start=0, order=0, dir="z")
|
||
|
>>> b.apply_load(12*x, start=0, order=0, dir="y")
|
||
|
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
|
||
|
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
|
||
|
>>> b.apply_load(R1, start=0, order=-1, dir="z")
|
||
|
>>> b.apply_load(R2, start=20, order=-1, dir="z")
|
||
|
>>> b.apply_load(R3, start=0, order=-1, dir="y")
|
||
|
>>> b.apply_load(R4, start=20, order=-1, dir="y")
|
||
|
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
|
||
|
>>> b.solve_slope_deflection()
|
||
|
>>> b.max_deflection()
|
||
|
[(0, 0), (10, 495/14), (-10 + 10*sqrt(10793)/43, (10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560)]
|
||
|
"""
|
||
|
|
||
|
max_def = []
|
||
|
max_def.append(self._max_deflection('x'))
|
||
|
max_def.append(self._max_deflection('y'))
|
||
|
max_def.append(self._max_deflection('z'))
|
||
|
return max_def
|