104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
|
"""A cache for storing small matrices in multiple formats."""
|
||
|
|
||
|
from sympy.core.numbers import (I, Rational, pi)
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
from sympy.matrices.dense import Matrix
|
||
|
|
||
|
from sympy.physics.quantum.matrixutils import (
|
||
|
to_sympy, to_numpy, to_scipy_sparse
|
||
|
)
|
||
|
|
||
|
|
||
|
class MatrixCache:
|
||
|
"""A cache for small matrices in different formats.
|
||
|
|
||
|
This class takes small matrices in the standard ``sympy.Matrix`` format,
|
||
|
and then converts these to both ``numpy.matrix`` and
|
||
|
``scipy.sparse.csr_matrix`` matrices. These matrices are then stored for
|
||
|
future recovery.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, dtype='complex'):
|
||
|
self._cache = {}
|
||
|
self.dtype = dtype
|
||
|
|
||
|
def cache_matrix(self, name, m):
|
||
|
"""Cache a matrix by its name.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
A descriptive name for the matrix, like "identity2".
|
||
|
m : list of lists
|
||
|
The raw matrix data as a SymPy Matrix.
|
||
|
"""
|
||
|
try:
|
||
|
self._sympy_matrix(name, m)
|
||
|
except ImportError:
|
||
|
pass
|
||
|
try:
|
||
|
self._numpy_matrix(name, m)
|
||
|
except ImportError:
|
||
|
pass
|
||
|
try:
|
||
|
self._scipy_sparse_matrix(name, m)
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
def get_matrix(self, name, format):
|
||
|
"""Get a cached matrix by name and format.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
name : str
|
||
|
A descriptive name for the matrix, like "identity2".
|
||
|
format : str
|
||
|
The format desired ('sympy', 'numpy', 'scipy.sparse')
|
||
|
"""
|
||
|
m = self._cache.get((name, format))
|
||
|
if m is not None:
|
||
|
return m
|
||
|
raise NotImplementedError(
|
||
|
'Matrix with name %s and format %s is not available.' %
|
||
|
(name, format)
|
||
|
)
|
||
|
|
||
|
def _store_matrix(self, name, format, m):
|
||
|
self._cache[(name, format)] = m
|
||
|
|
||
|
def _sympy_matrix(self, name, m):
|
||
|
self._store_matrix(name, 'sympy', to_sympy(m))
|
||
|
|
||
|
def _numpy_matrix(self, name, m):
|
||
|
m = to_numpy(m, dtype=self.dtype)
|
||
|
self._store_matrix(name, 'numpy', m)
|
||
|
|
||
|
def _scipy_sparse_matrix(self, name, m):
|
||
|
# TODO: explore different sparse formats. But sparse.kron will use
|
||
|
# coo in most cases, so we use that here.
|
||
|
m = to_scipy_sparse(m, dtype=self.dtype)
|
||
|
self._store_matrix(name, 'scipy.sparse', m)
|
||
|
|
||
|
|
||
|
sqrt2_inv = Pow(2, Rational(-1, 2), evaluate=False)
|
||
|
|
||
|
# Save the common matrices that we will need
|
||
|
matrix_cache = MatrixCache()
|
||
|
matrix_cache.cache_matrix('eye2', Matrix([[1, 0], [0, 1]]))
|
||
|
matrix_cache.cache_matrix('op11', Matrix([[0, 0], [0, 1]])) # |1><1|
|
||
|
matrix_cache.cache_matrix('op00', Matrix([[1, 0], [0, 0]])) # |0><0|
|
||
|
matrix_cache.cache_matrix('op10', Matrix([[0, 0], [1, 0]])) # |1><0|
|
||
|
matrix_cache.cache_matrix('op01', Matrix([[0, 1], [0, 0]])) # |0><1|
|
||
|
matrix_cache.cache_matrix('X', Matrix([[0, 1], [1, 0]]))
|
||
|
matrix_cache.cache_matrix('Y', Matrix([[0, -I], [I, 0]]))
|
||
|
matrix_cache.cache_matrix('Z', Matrix([[1, 0], [0, -1]]))
|
||
|
matrix_cache.cache_matrix('S', Matrix([[1, 0], [0, I]]))
|
||
|
matrix_cache.cache_matrix('T', Matrix([[1, 0], [0, exp(I*pi/4)]]))
|
||
|
matrix_cache.cache_matrix('H', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
|
||
|
matrix_cache.cache_matrix('Hsqrt2', Matrix([[1, 1], [1, -1]]))
|
||
|
matrix_cache.cache_matrix(
|
||
|
'SWAP', Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]))
|
||
|
matrix_cache.cache_matrix('ZX', sqrt2_inv*Matrix([[1, 1], [1, -1]]))
|
||
|
matrix_cache.cache_matrix('ZY', Matrix([[I, 0], [0, -I]]))
|