Traktor/myenv/Lib/site-packages/sympy/physics/quantum/pauli.py

676 lines
17 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
"""Pauli operators and states"""
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import I
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.physics.quantum import Operator, Ket, Bra
from sympy.physics.quantum import ComplexSpace
from sympy.matrices import Matrix
from sympy.functions.special.tensor_functions import KroneckerDelta
__all__ = [
'SigmaX', 'SigmaY', 'SigmaZ', 'SigmaMinus', 'SigmaPlus', 'SigmaZKet',
'SigmaZBra', 'qsimplify_pauli'
]
class SigmaOpBase(Operator):
"""Pauli sigma operator, base class"""
@property
def name(self):
return self.args[0]
@property
def use_name(self):
return bool(self.args[0]) is not False
@classmethod
def default_args(self):
return (False,)
def __new__(cls, *args, **hints):
return Operator.__new__(cls, *args, **hints)
def _eval_commutator_BosonOp(self, other, **hints):
return S.Zero
class SigmaX(SigmaOpBase):
"""Pauli sigma x operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent
>>> from sympy.physics.quantum.pauli import SigmaX
>>> sx = SigmaX()
>>> sx
SigmaX()
>>> represent(sx)
Matrix([
[0, 1],
[1, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args, **hints)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return 2 * I * SigmaZ(self.name)
def _eval_commutator_SigmaZ(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return - 2 * I * SigmaY(self.name)
def _eval_commutator_BosonOp(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaY(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_adjoint(self):
return self
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_x^{(%s)}}' % str(self.name)
else:
return r'{\sigma_x}'
def _print_contents(self, printer, *args):
return 'SigmaX()'
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return SigmaX(self.name).__pow__(int(e) % 2)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, 1], [1, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaY(SigmaOpBase):
"""Pauli sigma y operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent
>>> from sympy.physics.quantum.pauli import SigmaY
>>> sy = SigmaY()
>>> sy
SigmaY()
>>> represent(sy)
Matrix([
[0, -I],
[I, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaZ(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return 2 * I * SigmaX(self.name)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return - 2 * I * SigmaZ(self.name)
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_adjoint(self):
return self
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_y^{(%s)}}' % str(self.name)
else:
return r'{\sigma_y}'
def _print_contents(self, printer, *args):
return 'SigmaY()'
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return SigmaY(self.name).__pow__(int(e) % 2)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, -I], [I, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaZ(SigmaOpBase):
"""Pauli sigma z operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent
>>> from sympy.physics.quantum.pauli import SigmaZ
>>> sz = SigmaZ()
>>> sz ** 3
SigmaZ()
>>> represent(sz)
Matrix([
[1, 0],
[0, -1]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return 2 * I * SigmaY(self.name)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return - 2 * I * SigmaX(self.name)
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaY(self, other, **hints):
return S.Zero
def _eval_adjoint(self):
return self
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_z^{(%s)}}' % str(self.name)
else:
return r'{\sigma_z}'
def _print_contents(self, printer, *args):
return 'SigmaZ()'
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return SigmaZ(self.name).__pow__(int(e) % 2)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[1, 0], [0, -1]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaMinus(SigmaOpBase):
"""Pauli sigma minus operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent, Dagger
>>> from sympy.physics.quantum.pauli import SigmaMinus
>>> sm = SigmaMinus()
>>> sm
SigmaMinus()
>>> Dagger(sm)
SigmaPlus()
>>> represent(sm)
Matrix([
[0, 0],
[1, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return -SigmaZ(self.name)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return I * SigmaZ(self.name)
def _eval_commutator_SigmaZ(self, other, **hints):
return 2 * self
def _eval_commutator_SigmaMinus(self, other, **hints):
return SigmaZ(self.name)
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.One
def _eval_anticommutator_SigmaY(self, other, **hints):
return I * S.NegativeOne
def _eval_anticommutator_SigmaPlus(self, other, **hints):
return S.One
def _eval_adjoint(self):
return SigmaPlus(self.name)
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return S.Zero
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_-^{(%s)}}' % str(self.name)
else:
return r'{\sigma_-}'
def _print_contents(self, printer, *args):
return 'SigmaMinus()'
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, 0], [1, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaPlus(SigmaOpBase):
"""Pauli sigma plus operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent, Dagger
>>> from sympy.physics.quantum.pauli import SigmaPlus
>>> sp = SigmaPlus()
>>> sp
SigmaPlus()
>>> Dagger(sp)
SigmaMinus()
>>> represent(sp)
Matrix([
[0, 1],
[0, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return SigmaZ(self.name)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return I * SigmaZ(self.name)
def _eval_commutator_SigmaZ(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return -2 * self
def _eval_commutator_SigmaMinus(self, other, **hints):
return SigmaZ(self.name)
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.One
def _eval_anticommutator_SigmaY(self, other, **hints):
return I
def _eval_anticommutator_SigmaMinus(self, other, **hints):
return S.One
def _eval_adjoint(self):
return SigmaMinus(self.name)
def _eval_mul(self, other):
return self * other
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return S.Zero
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_+^{(%s)}}' % str(self.name)
else:
return r'{\sigma_+}'
def _print_contents(self, printer, *args):
return 'SigmaPlus()'
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, 1], [0, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaZKet(Ket):
"""Ket for a two-level system quantum system.
Parameters
==========
n : Number
The state number (0 or 1).
"""
def __new__(cls, n):
if n not in (0, 1):
raise ValueError("n must be 0 or 1")
return Ket.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return SigmaZBra
@classmethod
def _eval_hilbert_space(cls, label):
return ComplexSpace(2)
def _eval_innerproduct_SigmaZBra(self, bra, **hints):
return KroneckerDelta(self.n, bra.n)
def _apply_from_right_to_SigmaZ(self, op, **options):
if self.n == 0:
return self
else:
return S.NegativeOne * self
def _apply_from_right_to_SigmaX(self, op, **options):
return SigmaZKet(1) if self.n == 0 else SigmaZKet(0)
def _apply_from_right_to_SigmaY(self, op, **options):
return I * SigmaZKet(1) if self.n == 0 else (-I) * SigmaZKet(0)
def _apply_from_right_to_SigmaMinus(self, op, **options):
if self.n == 0:
return SigmaZKet(1)
else:
return S.Zero
def _apply_from_right_to_SigmaPlus(self, op, **options):
if self.n == 0:
return S.Zero
else:
return SigmaZKet(0)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[1], [0]]) if self.n == 0 else Matrix([[0], [1]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaZBra(Bra):
"""Bra for a two-level quantum system.
Parameters
==========
n : Number
The state number (0 or 1).
"""
def __new__(cls, n):
if n not in (0, 1):
raise ValueError("n must be 0 or 1")
return Bra.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return SigmaZKet
def _qsimplify_pauli_product(a, b):
"""
Internal helper function for simplifying products of Pauli operators.
"""
if not (isinstance(a, SigmaOpBase) and isinstance(b, SigmaOpBase)):
return Mul(a, b)
if a.name != b.name:
# Pauli matrices with different labels commute; sort by name
if a.name < b.name:
return Mul(a, b)
else:
return Mul(b, a)
elif isinstance(a, SigmaX):
if isinstance(b, SigmaX):
return S.One
if isinstance(b, SigmaY):
return I * SigmaZ(a.name)
if isinstance(b, SigmaZ):
return - I * SigmaY(a.name)
if isinstance(b, SigmaMinus):
return (S.Half + SigmaZ(a.name)/2)
if isinstance(b, SigmaPlus):
return (S.Half - SigmaZ(a.name)/2)
elif isinstance(a, SigmaY):
if isinstance(b, SigmaX):
return - I * SigmaZ(a.name)
if isinstance(b, SigmaY):
return S.One
if isinstance(b, SigmaZ):
return I * SigmaX(a.name)
if isinstance(b, SigmaMinus):
return -I * (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaPlus):
return I * (S.One - SigmaZ(a.name))/2
elif isinstance(a, SigmaZ):
if isinstance(b, SigmaX):
return I * SigmaY(a.name)
if isinstance(b, SigmaY):
return - I * SigmaX(a.name)
if isinstance(b, SigmaZ):
return S.One
if isinstance(b, SigmaMinus):
return - SigmaMinus(a.name)
if isinstance(b, SigmaPlus):
return SigmaPlus(a.name)
elif isinstance(a, SigmaMinus):
if isinstance(b, SigmaX):
return (S.One - SigmaZ(a.name))/2
if isinstance(b, SigmaY):
return - I * (S.One - SigmaZ(a.name))/2
if isinstance(b, SigmaZ):
# (SigmaX(a.name) - I * SigmaY(a.name))/2
return SigmaMinus(b.name)
if isinstance(b, SigmaMinus):
return S.Zero
if isinstance(b, SigmaPlus):
return S.Half - SigmaZ(a.name)/2
elif isinstance(a, SigmaPlus):
if isinstance(b, SigmaX):
return (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaY):
return I * (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaZ):
#-(SigmaX(a.name) + I * SigmaY(a.name))/2
return -SigmaPlus(a.name)
if isinstance(b, SigmaMinus):
return (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaPlus):
return S.Zero
else:
return a * b
def qsimplify_pauli(e):
"""
Simplify an expression that includes products of pauli operators.
Parameters
==========
e : expression
An expression that contains products of Pauli operators that is
to be simplified.
Examples
========
>>> from sympy.physics.quantum.pauli import SigmaX, SigmaY
>>> from sympy.physics.quantum.pauli import qsimplify_pauli
>>> sx, sy = SigmaX(), SigmaY()
>>> sx * sy
SigmaX()*SigmaY()
>>> qsimplify_pauli(sx * sy)
I*SigmaZ()
"""
if isinstance(e, Operator):
return e
if isinstance(e, (Add, Pow, exp)):
t = type(e)
return t(*(qsimplify_pauli(arg) for arg in e.args))
if isinstance(e, Mul):
c, nc = e.args_cnc()
nc_s = []
while nc:
curr = nc.pop(0)
while (len(nc) and
isinstance(curr, SigmaOpBase) and
isinstance(nc[0], SigmaOpBase) and
curr.name == nc[0].name):
x = nc.pop(0)
y = _qsimplify_pauli_product(curr, x)
c1, nc1 = y.args_cnc()
curr = Mul(*nc1)
c = c + c1
nc_s.append(curr)
return Mul(*c) * Mul(*nc_s)
return e