2198 lines
63 KiB
Python
2198 lines
63 KiB
Python
|
"""Real and complex root isolation and refinement algorithms. """
|
||
|
|
||
|
|
||
|
from sympy.polys.densearith import (
|
||
|
dup_neg, dup_rshift, dup_rem,
|
||
|
dup_l2_norm_squared)
|
||
|
from sympy.polys.densebasic import (
|
||
|
dup_LC, dup_TC, dup_degree,
|
||
|
dup_strip, dup_reverse,
|
||
|
dup_convert,
|
||
|
dup_terms_gcd)
|
||
|
from sympy.polys.densetools import (
|
||
|
dup_clear_denoms,
|
||
|
dup_mirror, dup_scale, dup_shift,
|
||
|
dup_transform,
|
||
|
dup_diff,
|
||
|
dup_eval, dmp_eval_in,
|
||
|
dup_sign_variations,
|
||
|
dup_real_imag)
|
||
|
from sympy.polys.euclidtools import (
|
||
|
dup_discriminant)
|
||
|
from sympy.polys.factortools import (
|
||
|
dup_factor_list)
|
||
|
from sympy.polys.polyerrors import (
|
||
|
RefinementFailed,
|
||
|
DomainError,
|
||
|
PolynomialError)
|
||
|
from sympy.polys.sqfreetools import (
|
||
|
dup_sqf_part, dup_sqf_list)
|
||
|
|
||
|
|
||
|
def dup_sturm(f, K):
|
||
|
"""
|
||
|
Computes the Sturm sequence of ``f`` in ``F[x]``.
|
||
|
|
||
|
Given a univariate, square-free polynomial ``f(x)`` returns the
|
||
|
associated Sturm sequence ``f_0(x), ..., f_n(x)`` defined by::
|
||
|
|
||
|
f_0(x), f_1(x) = f(x), f'(x)
|
||
|
f_n = -rem(f_{n-2}(x), f_{n-1}(x))
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys import ring, QQ
|
||
|
>>> R, x = ring("x", QQ)
|
||
|
|
||
|
>>> R.dup_sturm(x**3 - 2*x**2 + x - 3)
|
||
|
[x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2/9*x + 25/9, -2079/4]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Davenport88]_
|
||
|
|
||
|
"""
|
||
|
if not K.is_Field:
|
||
|
raise DomainError("Cannot compute Sturm sequence over %s" % K)
|
||
|
|
||
|
f = dup_sqf_part(f, K)
|
||
|
|
||
|
sturm = [f, dup_diff(f, 1, K)]
|
||
|
|
||
|
while sturm[-1]:
|
||
|
s = dup_rem(sturm[-2], sturm[-1], K)
|
||
|
sturm.append(dup_neg(s, K))
|
||
|
|
||
|
return sturm[:-1]
|
||
|
|
||
|
def dup_root_upper_bound(f, K):
|
||
|
"""Compute the LMQ upper bound for the positive roots of `f`;
|
||
|
LMQ (Local Max Quadratic) was developed by Akritas-Strzebonski-Vigklas.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
.. [1] Alkiviadis G. Akritas: "Linear and Quadratic Complexity Bounds on the
|
||
|
Values of the Positive Roots of Polynomials"
|
||
|
Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009.
|
||
|
"""
|
||
|
n, P = len(f), []
|
||
|
t = n * [K.one]
|
||
|
if dup_LC(f, K) < 0:
|
||
|
f = dup_neg(f, K)
|
||
|
f = list(reversed(f))
|
||
|
|
||
|
for i in range(0, n):
|
||
|
if f[i] >= 0:
|
||
|
continue
|
||
|
|
||
|
a, QL = K.log(-f[i], 2), []
|
||
|
|
||
|
for j in range(i + 1, n):
|
||
|
|
||
|
if f[j] <= 0:
|
||
|
continue
|
||
|
|
||
|
q = t[j] + a - K.log(f[j], 2)
|
||
|
QL.append([q // (j - i), j])
|
||
|
|
||
|
if not QL:
|
||
|
continue
|
||
|
|
||
|
q = min(QL)
|
||
|
|
||
|
t[q[1]] = t[q[1]] + 1
|
||
|
|
||
|
P.append(q[0])
|
||
|
|
||
|
if not P:
|
||
|
return None
|
||
|
else:
|
||
|
return K.get_field()(2)**(max(P) + 1)
|
||
|
|
||
|
def dup_root_lower_bound(f, K):
|
||
|
"""Compute the LMQ lower bound for the positive roots of `f`;
|
||
|
LMQ (Local Max Quadratic) was developed by Akritas-Strzebonski-Vigklas.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
.. [1] Alkiviadis G. Akritas: "Linear and Quadratic Complexity Bounds on the
|
||
|
Values of the Positive Roots of Polynomials"
|
||
|
Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009.
|
||
|
"""
|
||
|
bound = dup_root_upper_bound(dup_reverse(f), K)
|
||
|
|
||
|
if bound is not None:
|
||
|
return 1/bound
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
def dup_cauchy_upper_bound(f, K):
|
||
|
"""
|
||
|
Compute the Cauchy upper bound on the absolute value of all roots of f,
|
||
|
real or complex.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
.. [1] https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Lagrange's_and_Cauchy's_bounds
|
||
|
"""
|
||
|
n = dup_degree(f)
|
||
|
if n < 1:
|
||
|
raise PolynomialError('Polynomial has no roots.')
|
||
|
|
||
|
if K.is_ZZ:
|
||
|
L = K.get_field()
|
||
|
f, K = dup_convert(f, K, L), L
|
||
|
elif not K.is_QQ or K.is_RR or K.is_CC:
|
||
|
# We need to compute absolute value, and we are not supporting cases
|
||
|
# where this would take us outside the domain (or its quotient field).
|
||
|
raise DomainError('Cauchy bound not supported over %s' % K)
|
||
|
else:
|
||
|
f = f[:]
|
||
|
|
||
|
while K.is_zero(f[-1]):
|
||
|
f.pop()
|
||
|
if len(f) == 1:
|
||
|
# Monomial. All roots are zero.
|
||
|
return K.zero
|
||
|
|
||
|
lc = f[0]
|
||
|
return K.one + max(abs(n / lc) for n in f[1:])
|
||
|
|
||
|
def dup_cauchy_lower_bound(f, K):
|
||
|
"""Compute the Cauchy lower bound on the absolute value of all non-zero
|
||
|
roots of f, real or complex."""
|
||
|
g = dup_reverse(f)
|
||
|
if len(g) < 2:
|
||
|
raise PolynomialError('Polynomial has no non-zero roots.')
|
||
|
if K.is_ZZ:
|
||
|
K = K.get_field()
|
||
|
b = dup_cauchy_upper_bound(g, K)
|
||
|
return K.one / b
|
||
|
|
||
|
def dup_mignotte_sep_bound_squared(f, K):
|
||
|
"""
|
||
|
Return the square of the Mignotte lower bound on separation between
|
||
|
distinct roots of f. The square is returned so that the bound lies in
|
||
|
K or its quotient field.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Mignotte, Maurice. "Some useful bounds." Computer algebra.
|
||
|
Springer, Vienna, 1982. 259-263.
|
||
|
https://people.dm.unipi.it/gianni/AC-EAG/Mignotte.pdf
|
||
|
"""
|
||
|
n = dup_degree(f)
|
||
|
if n < 2:
|
||
|
raise PolynomialError('Polynomials of degree < 2 have no distinct roots.')
|
||
|
|
||
|
if K.is_ZZ:
|
||
|
L = K.get_field()
|
||
|
f, K = dup_convert(f, K, L), L
|
||
|
elif not K.is_QQ or K.is_RR or K.is_CC:
|
||
|
# We need to compute absolute value, and we are not supporting cases
|
||
|
# where this would take us outside the domain (or its quotient field).
|
||
|
raise DomainError('Mignotte bound not supported over %s' % K)
|
||
|
|
||
|
D = dup_discriminant(f, K)
|
||
|
l2sq = dup_l2_norm_squared(f, K)
|
||
|
return K(3)*K.abs(D) / ( K(n)**(n+1) * l2sq**(n-1) )
|
||
|
|
||
|
def _mobius_from_interval(I, field):
|
||
|
"""Convert an open interval to a Mobius transform. """
|
||
|
s, t = I
|
||
|
|
||
|
a, c = field.numer(s), field.denom(s)
|
||
|
b, d = field.numer(t), field.denom(t)
|
||
|
|
||
|
return a, b, c, d
|
||
|
|
||
|
def _mobius_to_interval(M, field):
|
||
|
"""Convert a Mobius transform to an open interval. """
|
||
|
a, b, c, d = M
|
||
|
|
||
|
s, t = field(a, c), field(b, d)
|
||
|
|
||
|
if s <= t:
|
||
|
return (s, t)
|
||
|
else:
|
||
|
return (t, s)
|
||
|
|
||
|
def dup_step_refine_real_root(f, M, K, fast=False):
|
||
|
"""One step of positive real root refinement algorithm. """
|
||
|
a, b, c, d = M
|
||
|
|
||
|
if a == b and c == d:
|
||
|
return f, (a, b, c, d)
|
||
|
|
||
|
A = dup_root_lower_bound(f, K)
|
||
|
|
||
|
if A is not None:
|
||
|
A = K(int(A))
|
||
|
else:
|
||
|
A = K.zero
|
||
|
|
||
|
if fast and A > 16:
|
||
|
f = dup_scale(f, A, K)
|
||
|
a, c, A = A*a, A*c, K.one
|
||
|
|
||
|
if A >= K.one:
|
||
|
f = dup_shift(f, A, K)
|
||
|
b, d = A*a + b, A*c + d
|
||
|
|
||
|
if not dup_eval(f, K.zero, K):
|
||
|
return f, (b, b, d, d)
|
||
|
|
||
|
f, g = dup_shift(f, K.one, K), f
|
||
|
|
||
|
a1, b1, c1, d1 = a, a + b, c, c + d
|
||
|
|
||
|
if not dup_eval(f, K.zero, K):
|
||
|
return f, (b1, b1, d1, d1)
|
||
|
|
||
|
k = dup_sign_variations(f, K)
|
||
|
|
||
|
if k == 1:
|
||
|
a, b, c, d = a1, b1, c1, d1
|
||
|
else:
|
||
|
f = dup_shift(dup_reverse(g), K.one, K)
|
||
|
|
||
|
if not dup_eval(f, K.zero, K):
|
||
|
f = dup_rshift(f, 1, K)
|
||
|
|
||
|
a, b, c, d = b, a + b, d, c + d
|
||
|
|
||
|
return f, (a, b, c, d)
|
||
|
|
||
|
def dup_inner_refine_real_root(f, M, K, eps=None, steps=None, disjoint=None, fast=False, mobius=False):
|
||
|
"""Refine a positive root of `f` given a Mobius transform or an interval. """
|
||
|
F = K.get_field()
|
||
|
|
||
|
if len(M) == 2:
|
||
|
a, b, c, d = _mobius_from_interval(M, F)
|
||
|
else:
|
||
|
a, b, c, d = M
|
||
|
|
||
|
while not c:
|
||
|
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c,
|
||
|
d), K, fast=fast)
|
||
|
|
||
|
if eps is not None and steps is not None:
|
||
|
for i in range(0, steps):
|
||
|
if abs(F(a, c) - F(b, d)) >= eps:
|
||
|
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast)
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
if eps is not None:
|
||
|
while abs(F(a, c) - F(b, d)) >= eps:
|
||
|
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast)
|
||
|
|
||
|
if steps is not None:
|
||
|
for i in range(0, steps):
|
||
|
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast)
|
||
|
|
||
|
if disjoint is not None:
|
||
|
while True:
|
||
|
u, v = _mobius_to_interval((a, b, c, d), F)
|
||
|
|
||
|
if v <= disjoint or disjoint <= u:
|
||
|
break
|
||
|
else:
|
||
|
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast)
|
||
|
|
||
|
if not mobius:
|
||
|
return _mobius_to_interval((a, b, c, d), F)
|
||
|
else:
|
||
|
return f, (a, b, c, d)
|
||
|
|
||
|
def dup_outer_refine_real_root(f, s, t, K, eps=None, steps=None, disjoint=None, fast=False):
|
||
|
"""Refine a positive root of `f` given an interval `(s, t)`. """
|
||
|
a, b, c, d = _mobius_from_interval((s, t), K.get_field())
|
||
|
|
||
|
f = dup_transform(f, dup_strip([a, b]),
|
||
|
dup_strip([c, d]), K)
|
||
|
|
||
|
if dup_sign_variations(f, K) != 1:
|
||
|
raise RefinementFailed("there should be exactly one root in (%s, %s) interval" % (s, t))
|
||
|
|
||
|
return dup_inner_refine_real_root(f, (a, b, c, d), K, eps=eps, steps=steps, disjoint=disjoint, fast=fast)
|
||
|
|
||
|
def dup_refine_real_root(f, s, t, K, eps=None, steps=None, disjoint=None, fast=False):
|
||
|
"""Refine real root's approximating interval to the given precision. """
|
||
|
if K.is_QQ:
|
||
|
(_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring()
|
||
|
elif not K.is_ZZ:
|
||
|
raise DomainError("real root refinement not supported over %s" % K)
|
||
|
|
||
|
if s == t:
|
||
|
return (s, t)
|
||
|
|
||
|
if s > t:
|
||
|
s, t = t, s
|
||
|
|
||
|
negative = False
|
||
|
|
||
|
if s < 0:
|
||
|
if t <= 0:
|
||
|
f, s, t, negative = dup_mirror(f, K), -t, -s, True
|
||
|
else:
|
||
|
raise ValueError("Cannot refine a real root in (%s, %s)" % (s, t))
|
||
|
|
||
|
if negative and disjoint is not None:
|
||
|
if disjoint < 0:
|
||
|
disjoint = -disjoint
|
||
|
else:
|
||
|
disjoint = None
|
||
|
|
||
|
s, t = dup_outer_refine_real_root(
|
||
|
f, s, t, K, eps=eps, steps=steps, disjoint=disjoint, fast=fast)
|
||
|
|
||
|
if negative:
|
||
|
return (-t, -s)
|
||
|
else:
|
||
|
return ( s, t)
|
||
|
|
||
|
def dup_inner_isolate_real_roots(f, K, eps=None, fast=False):
|
||
|
"""Internal function for isolation positive roots up to given precision.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
1. Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root
|
||
|
Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
|
||
|
2. Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the
|
||
|
Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear
|
||
|
Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.
|
||
|
"""
|
||
|
a, b, c, d = K.one, K.zero, K.zero, K.one
|
||
|
|
||
|
k = dup_sign_variations(f, K)
|
||
|
|
||
|
if k == 0:
|
||
|
return []
|
||
|
if k == 1:
|
||
|
roots = [dup_inner_refine_real_root(
|
||
|
f, (a, b, c, d), K, eps=eps, fast=fast, mobius=True)]
|
||
|
else:
|
||
|
roots, stack = [], [(a, b, c, d, f, k)]
|
||
|
|
||
|
while stack:
|
||
|
a, b, c, d, f, k = stack.pop()
|
||
|
|
||
|
A = dup_root_lower_bound(f, K)
|
||
|
|
||
|
if A is not None:
|
||
|
A = K(int(A))
|
||
|
else:
|
||
|
A = K.zero
|
||
|
|
||
|
if fast and A > 16:
|
||
|
f = dup_scale(f, A, K)
|
||
|
a, c, A = A*a, A*c, K.one
|
||
|
|
||
|
if A >= K.one:
|
||
|
f = dup_shift(f, A, K)
|
||
|
b, d = A*a + b, A*c + d
|
||
|
|
||
|
if not dup_TC(f, K):
|
||
|
roots.append((f, (b, b, d, d)))
|
||
|
f = dup_rshift(f, 1, K)
|
||
|
|
||
|
k = dup_sign_variations(f, K)
|
||
|
|
||
|
if k == 0:
|
||
|
continue
|
||
|
if k == 1:
|
||
|
roots.append(dup_inner_refine_real_root(
|
||
|
f, (a, b, c, d), K, eps=eps, fast=fast, mobius=True))
|
||
|
continue
|
||
|
|
||
|
f1 = dup_shift(f, K.one, K)
|
||
|
|
||
|
a1, b1, c1, d1, r = a, a + b, c, c + d, 0
|
||
|
|
||
|
if not dup_TC(f1, K):
|
||
|
roots.append((f1, (b1, b1, d1, d1)))
|
||
|
f1, r = dup_rshift(f1, 1, K), 1
|
||
|
|
||
|
k1 = dup_sign_variations(f1, K)
|
||
|
k2 = k - k1 - r
|
||
|
|
||
|
a2, b2, c2, d2 = b, a + b, d, c + d
|
||
|
|
||
|
if k2 > 1:
|
||
|
f2 = dup_shift(dup_reverse(f), K.one, K)
|
||
|
|
||
|
if not dup_TC(f2, K):
|
||
|
f2 = dup_rshift(f2, 1, K)
|
||
|
|
||
|
k2 = dup_sign_variations(f2, K)
|
||
|
else:
|
||
|
f2 = None
|
||
|
|
||
|
if k1 < k2:
|
||
|
a1, a2, b1, b2 = a2, a1, b2, b1
|
||
|
c1, c2, d1, d2 = c2, c1, d2, d1
|
||
|
f1, f2, k1, k2 = f2, f1, k2, k1
|
||
|
|
||
|
if not k1:
|
||
|
continue
|
||
|
|
||
|
if f1 is None:
|
||
|
f1 = dup_shift(dup_reverse(f), K.one, K)
|
||
|
|
||
|
if not dup_TC(f1, K):
|
||
|
f1 = dup_rshift(f1, 1, K)
|
||
|
|
||
|
if k1 == 1:
|
||
|
roots.append(dup_inner_refine_real_root(
|
||
|
f1, (a1, b1, c1, d1), K, eps=eps, fast=fast, mobius=True))
|
||
|
else:
|
||
|
stack.append((a1, b1, c1, d1, f1, k1))
|
||
|
|
||
|
if not k2:
|
||
|
continue
|
||
|
|
||
|
if f2 is None:
|
||
|
f2 = dup_shift(dup_reverse(f), K.one, K)
|
||
|
|
||
|
if not dup_TC(f2, K):
|
||
|
f2 = dup_rshift(f2, 1, K)
|
||
|
|
||
|
if k2 == 1:
|
||
|
roots.append(dup_inner_refine_real_root(
|
||
|
f2, (a2, b2, c2, d2), K, eps=eps, fast=fast, mobius=True))
|
||
|
else:
|
||
|
stack.append((a2, b2, c2, d2, f2, k2))
|
||
|
|
||
|
return roots
|
||
|
|
||
|
def _discard_if_outside_interval(f, M, inf, sup, K, negative, fast, mobius):
|
||
|
"""Discard an isolating interval if outside ``(inf, sup)``. """
|
||
|
F = K.get_field()
|
||
|
|
||
|
while True:
|
||
|
u, v = _mobius_to_interval(M, F)
|
||
|
|
||
|
if negative:
|
||
|
u, v = -v, -u
|
||
|
|
||
|
if (inf is None or u >= inf) and (sup is None or v <= sup):
|
||
|
if not mobius:
|
||
|
return u, v
|
||
|
else:
|
||
|
return f, M
|
||
|
elif (sup is not None and u > sup) or (inf is not None and v < inf):
|
||
|
return None
|
||
|
else:
|
||
|
f, M = dup_step_refine_real_root(f, M, K, fast=fast)
|
||
|
|
||
|
def dup_inner_isolate_positive_roots(f, K, eps=None, inf=None, sup=None, fast=False, mobius=False):
|
||
|
"""Iteratively compute disjoint positive root isolation intervals. """
|
||
|
if sup is not None and sup < 0:
|
||
|
return []
|
||
|
|
||
|
roots = dup_inner_isolate_real_roots(f, K, eps=eps, fast=fast)
|
||
|
|
||
|
F, results = K.get_field(), []
|
||
|
|
||
|
if inf is not None or sup is not None:
|
||
|
for f, M in roots:
|
||
|
result = _discard_if_outside_interval(f, M, inf, sup, K, False, fast, mobius)
|
||
|
|
||
|
if result is not None:
|
||
|
results.append(result)
|
||
|
elif not mobius:
|
||
|
for f, M in roots:
|
||
|
u, v = _mobius_to_interval(M, F)
|
||
|
results.append((u, v))
|
||
|
else:
|
||
|
results = roots
|
||
|
|
||
|
return results
|
||
|
|
||
|
def dup_inner_isolate_negative_roots(f, K, inf=None, sup=None, eps=None, fast=False, mobius=False):
|
||
|
"""Iteratively compute disjoint negative root isolation intervals. """
|
||
|
if inf is not None and inf >= 0:
|
||
|
return []
|
||
|
|
||
|
roots = dup_inner_isolate_real_roots(dup_mirror(f, K), K, eps=eps, fast=fast)
|
||
|
|
||
|
F, results = K.get_field(), []
|
||
|
|
||
|
if inf is not None or sup is not None:
|
||
|
for f, M in roots:
|
||
|
result = _discard_if_outside_interval(f, M, inf, sup, K, True, fast, mobius)
|
||
|
|
||
|
if result is not None:
|
||
|
results.append(result)
|
||
|
elif not mobius:
|
||
|
for f, M in roots:
|
||
|
u, v = _mobius_to_interval(M, F)
|
||
|
results.append((-v, -u))
|
||
|
else:
|
||
|
results = roots
|
||
|
|
||
|
return results
|
||
|
|
||
|
def _isolate_zero(f, K, inf, sup, basis=False, sqf=False):
|
||
|
"""Handle special case of CF algorithm when ``f`` is homogeneous. """
|
||
|
j, f = dup_terms_gcd(f, K)
|
||
|
|
||
|
if j > 0:
|
||
|
F = K.get_field()
|
||
|
|
||
|
if (inf is None or inf <= 0) and (sup is None or 0 <= sup):
|
||
|
if not sqf:
|
||
|
if not basis:
|
||
|
return [((F.zero, F.zero), j)], f
|
||
|
else:
|
||
|
return [((F.zero, F.zero), j, [K.one, K.zero])], f
|
||
|
else:
|
||
|
return [(F.zero, F.zero)], f
|
||
|
|
||
|
return [], f
|
||
|
|
||
|
def dup_isolate_real_roots_sqf(f, K, eps=None, inf=None, sup=None, fast=False, blackbox=False):
|
||
|
"""Isolate real roots of a square-free polynomial using the Vincent-Akritas-Strzebonski (VAS) CF approach.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
.. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative
|
||
|
Study of Two Real Root Isolation Methods. Nonlinear Analysis:
|
||
|
Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
|
||
|
.. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S.
|
||
|
Vigklas: Improving the Performance of the Continued Fractions
|
||
|
Method Using New Bounds of Positive Roots. Nonlinear Analysis:
|
||
|
Modelling and Control, Vol. 13, No. 3, 265-279, 2008.
|
||
|
|
||
|
"""
|
||
|
if K.is_QQ:
|
||
|
(_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring()
|
||
|
elif not K.is_ZZ:
|
||
|
raise DomainError("isolation of real roots not supported over %s" % K)
|
||
|
|
||
|
if dup_degree(f) <= 0:
|
||
|
return []
|
||
|
|
||
|
I_zero, f = _isolate_zero(f, K, inf, sup, basis=False, sqf=True)
|
||
|
|
||
|
I_neg = dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
I_pos = dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
|
||
|
roots = sorted(I_neg + I_zero + I_pos)
|
||
|
|
||
|
if not blackbox:
|
||
|
return roots
|
||
|
else:
|
||
|
return [ RealInterval((a, b), f, K) for (a, b) in roots ]
|
||
|
|
||
|
def dup_isolate_real_roots(f, K, eps=None, inf=None, sup=None, basis=False, fast=False):
|
||
|
"""Isolate real roots using Vincent-Akritas-Strzebonski (VAS) continued fractions approach.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative
|
||
|
Study of Two Real Root Isolation Methods. Nonlinear Analysis:
|
||
|
Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
|
||
|
.. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S.
|
||
|
Vigklas: Improving the Performance of the Continued Fractions
|
||
|
Method Using New Bounds of Positive Roots.
|
||
|
Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.
|
||
|
|
||
|
"""
|
||
|
if K.is_QQ:
|
||
|
(_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring()
|
||
|
elif not K.is_ZZ:
|
||
|
raise DomainError("isolation of real roots not supported over %s" % K)
|
||
|
|
||
|
if dup_degree(f) <= 0:
|
||
|
return []
|
||
|
|
||
|
I_zero, f = _isolate_zero(f, K, inf, sup, basis=basis, sqf=False)
|
||
|
|
||
|
_, factors = dup_sqf_list(f, K)
|
||
|
|
||
|
if len(factors) == 1:
|
||
|
((f, k),) = factors
|
||
|
|
||
|
I_neg = dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
I_pos = dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
|
||
|
I_neg = [ ((u, v), k) for u, v in I_neg ]
|
||
|
I_pos = [ ((u, v), k) for u, v in I_pos ]
|
||
|
else:
|
||
|
I_neg, I_pos = _real_isolate_and_disjoin(factors, K,
|
||
|
eps=eps, inf=inf, sup=sup, basis=basis, fast=fast)
|
||
|
|
||
|
return sorted(I_neg + I_zero + I_pos)
|
||
|
|
||
|
def dup_isolate_real_roots_list(polys, K, eps=None, inf=None, sup=None, strict=False, basis=False, fast=False):
|
||
|
"""Isolate real roots of a list of square-free polynomial using Vincent-Akritas-Strzebonski (VAS) CF approach.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative
|
||
|
Study of Two Real Root Isolation Methods. Nonlinear Analysis:
|
||
|
Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
|
||
|
.. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S.
|
||
|
Vigklas: Improving the Performance of the Continued Fractions
|
||
|
Method Using New Bounds of Positive Roots.
|
||
|
Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.
|
||
|
|
||
|
"""
|
||
|
if K.is_QQ:
|
||
|
K, F, polys = K.get_ring(), K, polys[:]
|
||
|
|
||
|
for i, p in enumerate(polys):
|
||
|
polys[i] = dup_clear_denoms(p, F, K, convert=True)[1]
|
||
|
elif not K.is_ZZ:
|
||
|
raise DomainError("isolation of real roots not supported over %s" % K)
|
||
|
|
||
|
zeros, factors_dict = False, {}
|
||
|
|
||
|
if (inf is None or inf <= 0) and (sup is None or 0 <= sup):
|
||
|
zeros, zero_indices = True, {}
|
||
|
|
||
|
for i, p in enumerate(polys):
|
||
|
j, p = dup_terms_gcd(p, K)
|
||
|
|
||
|
if zeros and j > 0:
|
||
|
zero_indices[i] = j
|
||
|
|
||
|
for f, k in dup_factor_list(p, K)[1]:
|
||
|
f = tuple(f)
|
||
|
|
||
|
if f not in factors_dict:
|
||
|
factors_dict[f] = {i: k}
|
||
|
else:
|
||
|
factors_dict[f][i] = k
|
||
|
|
||
|
factors_list = []
|
||
|
|
||
|
for f, indices in factors_dict.items():
|
||
|
factors_list.append((list(f), indices))
|
||
|
|
||
|
I_neg, I_pos = _real_isolate_and_disjoin(factors_list, K, eps=eps,
|
||
|
inf=inf, sup=sup, strict=strict, basis=basis, fast=fast)
|
||
|
|
||
|
F = K.get_field()
|
||
|
|
||
|
if not zeros or not zero_indices:
|
||
|
I_zero = []
|
||
|
else:
|
||
|
if not basis:
|
||
|
I_zero = [((F.zero, F.zero), zero_indices)]
|
||
|
else:
|
||
|
I_zero = [((F.zero, F.zero), zero_indices, [K.one, K.zero])]
|
||
|
|
||
|
return sorted(I_neg + I_zero + I_pos)
|
||
|
|
||
|
def _disjoint_p(M, N, strict=False):
|
||
|
"""Check if Mobius transforms define disjoint intervals. """
|
||
|
a1, b1, c1, d1 = M
|
||
|
a2, b2, c2, d2 = N
|
||
|
|
||
|
a1d1, b1c1 = a1*d1, b1*c1
|
||
|
a2d2, b2c2 = a2*d2, b2*c2
|
||
|
|
||
|
if a1d1 == b1c1 and a2d2 == b2c2:
|
||
|
return True
|
||
|
|
||
|
if a1d1 > b1c1:
|
||
|
a1, c1, b1, d1 = b1, d1, a1, c1
|
||
|
|
||
|
if a2d2 > b2c2:
|
||
|
a2, c2, b2, d2 = b2, d2, a2, c2
|
||
|
|
||
|
if not strict:
|
||
|
return a2*d1 >= c2*b1 or b2*c1 <= d2*a1
|
||
|
else:
|
||
|
return a2*d1 > c2*b1 or b2*c1 < d2*a1
|
||
|
|
||
|
def _real_isolate_and_disjoin(factors, K, eps=None, inf=None, sup=None, strict=False, basis=False, fast=False):
|
||
|
"""Isolate real roots of a list of polynomials and disjoin intervals. """
|
||
|
I_pos, I_neg = [], []
|
||
|
|
||
|
for i, (f, k) in enumerate(factors):
|
||
|
for F, M in dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast, mobius=True):
|
||
|
I_pos.append((F, M, k, f))
|
||
|
|
||
|
for G, N in dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast, mobius=True):
|
||
|
I_neg.append((G, N, k, f))
|
||
|
|
||
|
for i, (f, M, k, F) in enumerate(I_pos):
|
||
|
for j, (g, N, m, G) in enumerate(I_pos[i + 1:]):
|
||
|
while not _disjoint_p(M, N, strict=strict):
|
||
|
f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True)
|
||
|
g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True)
|
||
|
|
||
|
I_pos[i + j + 1] = (g, N, m, G)
|
||
|
|
||
|
I_pos[i] = (f, M, k, F)
|
||
|
|
||
|
for i, (f, M, k, F) in enumerate(I_neg):
|
||
|
for j, (g, N, m, G) in enumerate(I_neg[i + 1:]):
|
||
|
while not _disjoint_p(M, N, strict=strict):
|
||
|
f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True)
|
||
|
g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True)
|
||
|
|
||
|
I_neg[i + j + 1] = (g, N, m, G)
|
||
|
|
||
|
I_neg[i] = (f, M, k, F)
|
||
|
|
||
|
if strict:
|
||
|
for i, (f, M, k, F) in enumerate(I_neg):
|
||
|
if not M[0]:
|
||
|
while not M[0]:
|
||
|
f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True)
|
||
|
|
||
|
I_neg[i] = (f, M, k, F)
|
||
|
break
|
||
|
|
||
|
for j, (g, N, m, G) in enumerate(I_pos):
|
||
|
if not N[0]:
|
||
|
while not N[0]:
|
||
|
g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True)
|
||
|
|
||
|
I_pos[j] = (g, N, m, G)
|
||
|
break
|
||
|
|
||
|
field = K.get_field()
|
||
|
|
||
|
I_neg = [ (_mobius_to_interval(M, field), k, f) for (_, M, k, f) in I_neg ]
|
||
|
I_pos = [ (_mobius_to_interval(M, field), k, f) for (_, M, k, f) in I_pos ]
|
||
|
|
||
|
if not basis:
|
||
|
I_neg = [ ((-v, -u), k) for ((u, v), k, _) in I_neg ]
|
||
|
I_pos = [ (( u, v), k) for ((u, v), k, _) in I_pos ]
|
||
|
else:
|
||
|
I_neg = [ ((-v, -u), k, f) for ((u, v), k, f) in I_neg ]
|
||
|
I_pos = [ (( u, v), k, f) for ((u, v), k, f) in I_pos ]
|
||
|
|
||
|
return I_neg, I_pos
|
||
|
|
||
|
def dup_count_real_roots(f, K, inf=None, sup=None):
|
||
|
"""Returns the number of distinct real roots of ``f`` in ``[inf, sup]``. """
|
||
|
if dup_degree(f) <= 0:
|
||
|
return 0
|
||
|
|
||
|
if not K.is_Field:
|
||
|
R, K = K, K.get_field()
|
||
|
f = dup_convert(f, R, K)
|
||
|
|
||
|
sturm = dup_sturm(f, K)
|
||
|
|
||
|
if inf is None:
|
||
|
signs_inf = dup_sign_variations([ dup_LC(s, K)*(-1)**dup_degree(s) for s in sturm ], K)
|
||
|
else:
|
||
|
signs_inf = dup_sign_variations([ dup_eval(s, inf, K) for s in sturm ], K)
|
||
|
|
||
|
if sup is None:
|
||
|
signs_sup = dup_sign_variations([ dup_LC(s, K) for s in sturm ], K)
|
||
|
else:
|
||
|
signs_sup = dup_sign_variations([ dup_eval(s, sup, K) for s in sturm ], K)
|
||
|
|
||
|
count = abs(signs_inf - signs_sup)
|
||
|
|
||
|
if inf is not None and not dup_eval(f, inf, K):
|
||
|
count += 1
|
||
|
|
||
|
return count
|
||
|
|
||
|
OO = 'OO' # Origin of (re, im) coordinate system
|
||
|
|
||
|
Q1 = 'Q1' # Quadrant #1 (++): re > 0 and im > 0
|
||
|
Q2 = 'Q2' # Quadrant #2 (-+): re < 0 and im > 0
|
||
|
Q3 = 'Q3' # Quadrant #3 (--): re < 0 and im < 0
|
||
|
Q4 = 'Q4' # Quadrant #4 (+-): re > 0 and im < 0
|
||
|
|
||
|
A1 = 'A1' # Axis #1 (+0): re > 0 and im = 0
|
||
|
A2 = 'A2' # Axis #2 (0+): re = 0 and im > 0
|
||
|
A3 = 'A3' # Axis #3 (-0): re < 0 and im = 0
|
||
|
A4 = 'A4' # Axis #4 (0-): re = 0 and im < 0
|
||
|
|
||
|
_rules_simple = {
|
||
|
# Q --> Q (same) => no change
|
||
|
(Q1, Q1): 0,
|
||
|
(Q2, Q2): 0,
|
||
|
(Q3, Q3): 0,
|
||
|
(Q4, Q4): 0,
|
||
|
|
||
|
# A -- CCW --> Q => +1/4 (CCW)
|
||
|
(A1, Q1): 1,
|
||
|
(A2, Q2): 1,
|
||
|
(A3, Q3): 1,
|
||
|
(A4, Q4): 1,
|
||
|
|
||
|
# A -- CW --> Q => -1/4 (CCW)
|
||
|
(A1, Q4): 2,
|
||
|
(A2, Q1): 2,
|
||
|
(A3, Q2): 2,
|
||
|
(A4, Q3): 2,
|
||
|
|
||
|
# Q -- CCW --> A => +1/4 (CCW)
|
||
|
(Q1, A2): 3,
|
||
|
(Q2, A3): 3,
|
||
|
(Q3, A4): 3,
|
||
|
(Q4, A1): 3,
|
||
|
|
||
|
# Q -- CW --> A => -1/4 (CCW)
|
||
|
(Q1, A1): 4,
|
||
|
(Q2, A2): 4,
|
||
|
(Q3, A3): 4,
|
||
|
(Q4, A4): 4,
|
||
|
|
||
|
# Q -- CCW --> Q => +1/2 (CCW)
|
||
|
(Q1, Q2): +5,
|
||
|
(Q2, Q3): +5,
|
||
|
(Q3, Q4): +5,
|
||
|
(Q4, Q1): +5,
|
||
|
|
||
|
# Q -- CW --> Q => -1/2 (CW)
|
||
|
(Q1, Q4): -5,
|
||
|
(Q2, Q1): -5,
|
||
|
(Q3, Q2): -5,
|
||
|
(Q4, Q3): -5,
|
||
|
}
|
||
|
|
||
|
_rules_ambiguous = {
|
||
|
# A -- CCW --> Q => { +1/4 (CCW), -9/4 (CW) }
|
||
|
(A1, OO, Q1): -1,
|
||
|
(A2, OO, Q2): -1,
|
||
|
(A3, OO, Q3): -1,
|
||
|
(A4, OO, Q4): -1,
|
||
|
|
||
|
# A -- CW --> Q => { -1/4 (CCW), +7/4 (CW) }
|
||
|
(A1, OO, Q4): -2,
|
||
|
(A2, OO, Q1): -2,
|
||
|
(A3, OO, Q2): -2,
|
||
|
(A4, OO, Q3): -2,
|
||
|
|
||
|
# Q -- CCW --> A => { +1/4 (CCW), -9/4 (CW) }
|
||
|
(Q1, OO, A2): -3,
|
||
|
(Q2, OO, A3): -3,
|
||
|
(Q3, OO, A4): -3,
|
||
|
(Q4, OO, A1): -3,
|
||
|
|
||
|
# Q -- CW --> A => { -1/4 (CCW), +7/4 (CW) }
|
||
|
(Q1, OO, A1): -4,
|
||
|
(Q2, OO, A2): -4,
|
||
|
(Q3, OO, A3): -4,
|
||
|
(Q4, OO, A4): -4,
|
||
|
|
||
|
# A -- OO --> A => { +1 (CCW), -1 (CW) }
|
||
|
(A1, A3): 7,
|
||
|
(A2, A4): 7,
|
||
|
(A3, A1): 7,
|
||
|
(A4, A2): 7,
|
||
|
|
||
|
(A1, OO, A3): 7,
|
||
|
(A2, OO, A4): 7,
|
||
|
(A3, OO, A1): 7,
|
||
|
(A4, OO, A2): 7,
|
||
|
|
||
|
# Q -- DIA --> Q => { +1 (CCW), -1 (CW) }
|
||
|
(Q1, Q3): 8,
|
||
|
(Q2, Q4): 8,
|
||
|
(Q3, Q1): 8,
|
||
|
(Q4, Q2): 8,
|
||
|
|
||
|
(Q1, OO, Q3): 8,
|
||
|
(Q2, OO, Q4): 8,
|
||
|
(Q3, OO, Q1): 8,
|
||
|
(Q4, OO, Q2): 8,
|
||
|
|
||
|
# A --- R ---> A => { +1/2 (CCW), -3/2 (CW) }
|
||
|
(A1, A2): 9,
|
||
|
(A2, A3): 9,
|
||
|
(A3, A4): 9,
|
||
|
(A4, A1): 9,
|
||
|
|
||
|
(A1, OO, A2): 9,
|
||
|
(A2, OO, A3): 9,
|
||
|
(A3, OO, A4): 9,
|
||
|
(A4, OO, A1): 9,
|
||
|
|
||
|
# A --- L ---> A => { +3/2 (CCW), -1/2 (CW) }
|
||
|
(A1, A4): 10,
|
||
|
(A2, A1): 10,
|
||
|
(A3, A2): 10,
|
||
|
(A4, A3): 10,
|
||
|
|
||
|
(A1, OO, A4): 10,
|
||
|
(A2, OO, A1): 10,
|
||
|
(A3, OO, A2): 10,
|
||
|
(A4, OO, A3): 10,
|
||
|
|
||
|
# Q --- 1 ---> A => { +3/4 (CCW), -5/4 (CW) }
|
||
|
(Q1, A3): 11,
|
||
|
(Q2, A4): 11,
|
||
|
(Q3, A1): 11,
|
||
|
(Q4, A2): 11,
|
||
|
|
||
|
(Q1, OO, A3): 11,
|
||
|
(Q2, OO, A4): 11,
|
||
|
(Q3, OO, A1): 11,
|
||
|
(Q4, OO, A2): 11,
|
||
|
|
||
|
# Q --- 2 ---> A => { +5/4 (CCW), -3/4 (CW) }
|
||
|
(Q1, A4): 12,
|
||
|
(Q2, A1): 12,
|
||
|
(Q3, A2): 12,
|
||
|
(Q4, A3): 12,
|
||
|
|
||
|
(Q1, OO, A4): 12,
|
||
|
(Q2, OO, A1): 12,
|
||
|
(Q3, OO, A2): 12,
|
||
|
(Q4, OO, A3): 12,
|
||
|
|
||
|
# A --- 1 ---> Q => { +5/4 (CCW), -3/4 (CW) }
|
||
|
(A1, Q3): 13,
|
||
|
(A2, Q4): 13,
|
||
|
(A3, Q1): 13,
|
||
|
(A4, Q2): 13,
|
||
|
|
||
|
(A1, OO, Q3): 13,
|
||
|
(A2, OO, Q4): 13,
|
||
|
(A3, OO, Q1): 13,
|
||
|
(A4, OO, Q2): 13,
|
||
|
|
||
|
# A --- 2 ---> Q => { +3/4 (CCW), -5/4 (CW) }
|
||
|
(A1, Q2): 14,
|
||
|
(A2, Q3): 14,
|
||
|
(A3, Q4): 14,
|
||
|
(A4, Q1): 14,
|
||
|
|
||
|
(A1, OO, Q2): 14,
|
||
|
(A2, OO, Q3): 14,
|
||
|
(A3, OO, Q4): 14,
|
||
|
(A4, OO, Q1): 14,
|
||
|
|
||
|
# Q --> OO --> Q => { +1/2 (CCW), -3/2 (CW) }
|
||
|
(Q1, OO, Q2): 15,
|
||
|
(Q2, OO, Q3): 15,
|
||
|
(Q3, OO, Q4): 15,
|
||
|
(Q4, OO, Q1): 15,
|
||
|
|
||
|
# Q --> OO --> Q => { +3/2 (CCW), -1/2 (CW) }
|
||
|
(Q1, OO, Q4): 16,
|
||
|
(Q2, OO, Q1): 16,
|
||
|
(Q3, OO, Q2): 16,
|
||
|
(Q4, OO, Q3): 16,
|
||
|
|
||
|
# A --> OO --> A => { +2 (CCW), 0 (CW) }
|
||
|
(A1, OO, A1): 17,
|
||
|
(A2, OO, A2): 17,
|
||
|
(A3, OO, A3): 17,
|
||
|
(A4, OO, A4): 17,
|
||
|
|
||
|
# Q --> OO --> Q => { +2 (CCW), 0 (CW) }
|
||
|
(Q1, OO, Q1): 18,
|
||
|
(Q2, OO, Q2): 18,
|
||
|
(Q3, OO, Q3): 18,
|
||
|
(Q4, OO, Q4): 18,
|
||
|
}
|
||
|
|
||
|
_values = {
|
||
|
0: [( 0, 1)],
|
||
|
1: [(+1, 4)],
|
||
|
2: [(-1, 4)],
|
||
|
3: [(+1, 4)],
|
||
|
4: [(-1, 4)],
|
||
|
-1: [(+9, 4), (+1, 4)],
|
||
|
-2: [(+7, 4), (-1, 4)],
|
||
|
-3: [(+9, 4), (+1, 4)],
|
||
|
-4: [(+7, 4), (-1, 4)],
|
||
|
+5: [(+1, 2)],
|
||
|
-5: [(-1, 2)],
|
||
|
7: [(+1, 1), (-1, 1)],
|
||
|
8: [(+1, 1), (-1, 1)],
|
||
|
9: [(+1, 2), (-3, 2)],
|
||
|
10: [(+3, 2), (-1, 2)],
|
||
|
11: [(+3, 4), (-5, 4)],
|
||
|
12: [(+5, 4), (-3, 4)],
|
||
|
13: [(+5, 4), (-3, 4)],
|
||
|
14: [(+3, 4), (-5, 4)],
|
||
|
15: [(+1, 2), (-3, 2)],
|
||
|
16: [(+3, 2), (-1, 2)],
|
||
|
17: [(+2, 1), ( 0, 1)],
|
||
|
18: [(+2, 1), ( 0, 1)],
|
||
|
}
|
||
|
|
||
|
def _classify_point(re, im):
|
||
|
"""Return the half-axis (or origin) on which (re, im) point is located. """
|
||
|
if not re and not im:
|
||
|
return OO
|
||
|
|
||
|
if not re:
|
||
|
if im > 0:
|
||
|
return A2
|
||
|
else:
|
||
|
return A4
|
||
|
elif not im:
|
||
|
if re > 0:
|
||
|
return A1
|
||
|
else:
|
||
|
return A3
|
||
|
|
||
|
def _intervals_to_quadrants(intervals, f1, f2, s, t, F):
|
||
|
"""Generate a sequence of extended quadrants from a list of critical points. """
|
||
|
if not intervals:
|
||
|
return []
|
||
|
|
||
|
Q = []
|
||
|
|
||
|
if not f1:
|
||
|
(a, b), _, _ = intervals[0]
|
||
|
|
||
|
if a == b == s:
|
||
|
if len(intervals) == 1:
|
||
|
if dup_eval(f2, t, F) > 0:
|
||
|
return [OO, A2]
|
||
|
else:
|
||
|
return [OO, A4]
|
||
|
else:
|
||
|
(a, _), _, _ = intervals[1]
|
||
|
|
||
|
if dup_eval(f2, (s + a)/2, F) > 0:
|
||
|
Q.extend([OO, A2])
|
||
|
f2_sgn = +1
|
||
|
else:
|
||
|
Q.extend([OO, A4])
|
||
|
f2_sgn = -1
|
||
|
|
||
|
intervals = intervals[1:]
|
||
|
else:
|
||
|
if dup_eval(f2, s, F) > 0:
|
||
|
Q.append(A2)
|
||
|
f2_sgn = +1
|
||
|
else:
|
||
|
Q.append(A4)
|
||
|
f2_sgn = -1
|
||
|
|
||
|
for (a, _), indices, _ in intervals:
|
||
|
Q.append(OO)
|
||
|
|
||
|
if indices[1] % 2 == 1:
|
||
|
f2_sgn = -f2_sgn
|
||
|
|
||
|
if a != t:
|
||
|
if f2_sgn > 0:
|
||
|
Q.append(A2)
|
||
|
else:
|
||
|
Q.append(A4)
|
||
|
|
||
|
return Q
|
||
|
|
||
|
if not f2:
|
||
|
(a, b), _, _ = intervals[0]
|
||
|
|
||
|
if a == b == s:
|
||
|
if len(intervals) == 1:
|
||
|
if dup_eval(f1, t, F) > 0:
|
||
|
return [OO, A1]
|
||
|
else:
|
||
|
return [OO, A3]
|
||
|
else:
|
||
|
(a, _), _, _ = intervals[1]
|
||
|
|
||
|
if dup_eval(f1, (s + a)/2, F) > 0:
|
||
|
Q.extend([OO, A1])
|
||
|
f1_sgn = +1
|
||
|
else:
|
||
|
Q.extend([OO, A3])
|
||
|
f1_sgn = -1
|
||
|
|
||
|
intervals = intervals[1:]
|
||
|
else:
|
||
|
if dup_eval(f1, s, F) > 0:
|
||
|
Q.append(A1)
|
||
|
f1_sgn = +1
|
||
|
else:
|
||
|
Q.append(A3)
|
||
|
f1_sgn = -1
|
||
|
|
||
|
for (a, _), indices, _ in intervals:
|
||
|
Q.append(OO)
|
||
|
|
||
|
if indices[0] % 2 == 1:
|
||
|
f1_sgn = -f1_sgn
|
||
|
|
||
|
if a != t:
|
||
|
if f1_sgn > 0:
|
||
|
Q.append(A1)
|
||
|
else:
|
||
|
Q.append(A3)
|
||
|
|
||
|
return Q
|
||
|
|
||
|
re = dup_eval(f1, s, F)
|
||
|
im = dup_eval(f2, s, F)
|
||
|
|
||
|
if not re or not im:
|
||
|
Q.append(_classify_point(re, im))
|
||
|
|
||
|
if len(intervals) == 1:
|
||
|
re = dup_eval(f1, t, F)
|
||
|
im = dup_eval(f2, t, F)
|
||
|
else:
|
||
|
(a, _), _, _ = intervals[1]
|
||
|
|
||
|
re = dup_eval(f1, (s + a)/2, F)
|
||
|
im = dup_eval(f2, (s + a)/2, F)
|
||
|
|
||
|
intervals = intervals[1:]
|
||
|
|
||
|
if re > 0:
|
||
|
f1_sgn = +1
|
||
|
else:
|
||
|
f1_sgn = -1
|
||
|
|
||
|
if im > 0:
|
||
|
f2_sgn = +1
|
||
|
else:
|
||
|
f2_sgn = -1
|
||
|
|
||
|
sgn = {
|
||
|
(+1, +1): Q1,
|
||
|
(-1, +1): Q2,
|
||
|
(-1, -1): Q3,
|
||
|
(+1, -1): Q4,
|
||
|
}
|
||
|
|
||
|
Q.append(sgn[(f1_sgn, f2_sgn)])
|
||
|
|
||
|
for (a, b), indices, _ in intervals:
|
||
|
if a == b:
|
||
|
re = dup_eval(f1, a, F)
|
||
|
im = dup_eval(f2, a, F)
|
||
|
|
||
|
cls = _classify_point(re, im)
|
||
|
|
||
|
if cls is not None:
|
||
|
Q.append(cls)
|
||
|
|
||
|
if 0 in indices:
|
||
|
if indices[0] % 2 == 1:
|
||
|
f1_sgn = -f1_sgn
|
||
|
|
||
|
if 1 in indices:
|
||
|
if indices[1] % 2 == 1:
|
||
|
f2_sgn = -f2_sgn
|
||
|
|
||
|
if not (a == b and b == t):
|
||
|
Q.append(sgn[(f1_sgn, f2_sgn)])
|
||
|
|
||
|
return Q
|
||
|
|
||
|
def _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4, exclude=None):
|
||
|
"""Transform sequences of quadrants to a sequence of rules. """
|
||
|
if exclude is True:
|
||
|
edges = [1, 1, 0, 0]
|
||
|
|
||
|
corners = {
|
||
|
(0, 1): 1,
|
||
|
(1, 2): 1,
|
||
|
(2, 3): 0,
|
||
|
(3, 0): 1,
|
||
|
}
|
||
|
else:
|
||
|
edges = [0, 0, 0, 0]
|
||
|
|
||
|
corners = {
|
||
|
(0, 1): 0,
|
||
|
(1, 2): 0,
|
||
|
(2, 3): 0,
|
||
|
(3, 0): 0,
|
||
|
}
|
||
|
|
||
|
if exclude is not None and exclude is not True:
|
||
|
exclude = set(exclude)
|
||
|
|
||
|
for i, edge in enumerate(['S', 'E', 'N', 'W']):
|
||
|
if edge in exclude:
|
||
|
edges[i] = 1
|
||
|
|
||
|
for i, corner in enumerate(['SW', 'SE', 'NE', 'NW']):
|
||
|
if corner in exclude:
|
||
|
corners[((i - 1) % 4, i)] = 1
|
||
|
|
||
|
QQ, rules = [Q_L1, Q_L2, Q_L3, Q_L4], []
|
||
|
|
||
|
for i, Q in enumerate(QQ):
|
||
|
if not Q:
|
||
|
continue
|
||
|
|
||
|
if Q[-1] == OO:
|
||
|
Q = Q[:-1]
|
||
|
|
||
|
if Q[0] == OO:
|
||
|
j, Q = (i - 1) % 4, Q[1:]
|
||
|
qq = (QQ[j][-2], OO, Q[0])
|
||
|
|
||
|
if qq in _rules_ambiguous:
|
||
|
rules.append((_rules_ambiguous[qq], corners[(j, i)]))
|
||
|
else:
|
||
|
raise NotImplementedError("3 element rule (corner): " + str(qq))
|
||
|
|
||
|
q1, k = Q[0], 1
|
||
|
|
||
|
while k < len(Q):
|
||
|
q2, k = Q[k], k + 1
|
||
|
|
||
|
if q2 != OO:
|
||
|
qq = (q1, q2)
|
||
|
|
||
|
if qq in _rules_simple:
|
||
|
rules.append((_rules_simple[qq], 0))
|
||
|
elif qq in _rules_ambiguous:
|
||
|
rules.append((_rules_ambiguous[qq], edges[i]))
|
||
|
else:
|
||
|
raise NotImplementedError("2 element rule (inside): " + str(qq))
|
||
|
else:
|
||
|
qq, k = (q1, q2, Q[k]), k + 1
|
||
|
|
||
|
if qq in _rules_ambiguous:
|
||
|
rules.append((_rules_ambiguous[qq], edges[i]))
|
||
|
else:
|
||
|
raise NotImplementedError("3 element rule (edge): " + str(qq))
|
||
|
|
||
|
q1 = qq[-1]
|
||
|
|
||
|
return rules
|
||
|
|
||
|
def _reverse_intervals(intervals):
|
||
|
"""Reverse intervals for traversal from right to left and from top to bottom. """
|
||
|
return [ ((b, a), indices, f) for (a, b), indices, f in reversed(intervals) ]
|
||
|
|
||
|
def _winding_number(T, field):
|
||
|
"""Compute the winding number of the input polynomial, i.e. the number of roots. """
|
||
|
return int(sum([ field(*_values[t][i]) for t, i in T ]) / field(2))
|
||
|
|
||
|
def dup_count_complex_roots(f, K, inf=None, sup=None, exclude=None):
|
||
|
"""Count all roots in [u + v*I, s + t*I] rectangle using Collins-Krandick algorithm. """
|
||
|
if not K.is_ZZ and not K.is_QQ:
|
||
|
raise DomainError("complex root counting is not supported over %s" % K)
|
||
|
|
||
|
if K.is_ZZ:
|
||
|
R, F = K, K.get_field()
|
||
|
else:
|
||
|
R, F = K.get_ring(), K
|
||
|
|
||
|
f = dup_convert(f, K, F)
|
||
|
|
||
|
if inf is None or sup is None:
|
||
|
_, lc = dup_degree(f), abs(dup_LC(f, F))
|
||
|
B = 2*max([ F.quo(abs(c), lc) for c in f ])
|
||
|
|
||
|
if inf is None:
|
||
|
(u, v) = (-B, -B)
|
||
|
else:
|
||
|
(u, v) = inf
|
||
|
|
||
|
if sup is None:
|
||
|
(s, t) = (+B, +B)
|
||
|
else:
|
||
|
(s, t) = sup
|
||
|
|
||
|
f1, f2 = dup_real_imag(f, F)
|
||
|
|
||
|
f1L1F = dmp_eval_in(f1, v, 1, 1, F)
|
||
|
f2L1F = dmp_eval_in(f2, v, 1, 1, F)
|
||
|
|
||
|
_, f1L1R = dup_clear_denoms(f1L1F, F, R, convert=True)
|
||
|
_, f2L1R = dup_clear_denoms(f2L1F, F, R, convert=True)
|
||
|
|
||
|
f1L2F = dmp_eval_in(f1, s, 0, 1, F)
|
||
|
f2L2F = dmp_eval_in(f2, s, 0, 1, F)
|
||
|
|
||
|
_, f1L2R = dup_clear_denoms(f1L2F, F, R, convert=True)
|
||
|
_, f2L2R = dup_clear_denoms(f2L2F, F, R, convert=True)
|
||
|
|
||
|
f1L3F = dmp_eval_in(f1, t, 1, 1, F)
|
||
|
f2L3F = dmp_eval_in(f2, t, 1, 1, F)
|
||
|
|
||
|
_, f1L3R = dup_clear_denoms(f1L3F, F, R, convert=True)
|
||
|
_, f2L3R = dup_clear_denoms(f2L3F, F, R, convert=True)
|
||
|
|
||
|
f1L4F = dmp_eval_in(f1, u, 0, 1, F)
|
||
|
f2L4F = dmp_eval_in(f2, u, 0, 1, F)
|
||
|
|
||
|
_, f1L4R = dup_clear_denoms(f1L4F, F, R, convert=True)
|
||
|
_, f2L4R = dup_clear_denoms(f2L4F, F, R, convert=True)
|
||
|
|
||
|
S_L1 = [f1L1R, f2L1R]
|
||
|
S_L2 = [f1L2R, f2L2R]
|
||
|
S_L3 = [f1L3R, f2L3R]
|
||
|
S_L4 = [f1L4R, f2L4R]
|
||
|
|
||
|
I_L1 = dup_isolate_real_roots_list(S_L1, R, inf=u, sup=s, fast=True, basis=True, strict=True)
|
||
|
I_L2 = dup_isolate_real_roots_list(S_L2, R, inf=v, sup=t, fast=True, basis=True, strict=True)
|
||
|
I_L3 = dup_isolate_real_roots_list(S_L3, R, inf=u, sup=s, fast=True, basis=True, strict=True)
|
||
|
I_L4 = dup_isolate_real_roots_list(S_L4, R, inf=v, sup=t, fast=True, basis=True, strict=True)
|
||
|
|
||
|
I_L3 = _reverse_intervals(I_L3)
|
||
|
I_L4 = _reverse_intervals(I_L4)
|
||
|
|
||
|
Q_L1 = _intervals_to_quadrants(I_L1, f1L1F, f2L1F, u, s, F)
|
||
|
Q_L2 = _intervals_to_quadrants(I_L2, f1L2F, f2L2F, v, t, F)
|
||
|
Q_L3 = _intervals_to_quadrants(I_L3, f1L3F, f2L3F, s, u, F)
|
||
|
Q_L4 = _intervals_to_quadrants(I_L4, f1L4F, f2L4F, t, v, F)
|
||
|
|
||
|
T = _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4, exclude=exclude)
|
||
|
|
||
|
return _winding_number(T, F)
|
||
|
|
||
|
def _vertical_bisection(N, a, b, I, Q, F1, F2, f1, f2, F):
|
||
|
"""Vertical bisection step in Collins-Krandick root isolation algorithm. """
|
||
|
(u, v), (s, t) = a, b
|
||
|
|
||
|
I_L1, I_L2, I_L3, I_L4 = I
|
||
|
Q_L1, Q_L2, Q_L3, Q_L4 = Q
|
||
|
|
||
|
f1L1F, f1L2F, f1L3F, f1L4F = F1
|
||
|
f2L1F, f2L2F, f2L3F, f2L4F = F2
|
||
|
|
||
|
x = (u + s) / 2
|
||
|
|
||
|
f1V = dmp_eval_in(f1, x, 0, 1, F)
|
||
|
f2V = dmp_eval_in(f2, x, 0, 1, F)
|
||
|
|
||
|
I_V = dup_isolate_real_roots_list([f1V, f2V], F, inf=v, sup=t, fast=True, strict=True, basis=True)
|
||
|
|
||
|
I_L1_L, I_L1_R = [], []
|
||
|
I_L2_L, I_L2_R = I_V, I_L2
|
||
|
I_L3_L, I_L3_R = [], []
|
||
|
I_L4_L, I_L4_R = I_L4, _reverse_intervals(I_V)
|
||
|
|
||
|
for I in I_L1:
|
||
|
(a, b), indices, h = I
|
||
|
|
||
|
if a == b:
|
||
|
if a == x:
|
||
|
I_L1_L.append(I)
|
||
|
I_L1_R.append(I)
|
||
|
elif a < x:
|
||
|
I_L1_L.append(I)
|
||
|
else:
|
||
|
I_L1_R.append(I)
|
||
|
else:
|
||
|
if b <= x:
|
||
|
I_L1_L.append(I)
|
||
|
elif a >= x:
|
||
|
I_L1_R.append(I)
|
||
|
else:
|
||
|
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=x, fast=True)
|
||
|
|
||
|
if b <= x:
|
||
|
I_L1_L.append(((a, b), indices, h))
|
||
|
if a >= x:
|
||
|
I_L1_R.append(((a, b), indices, h))
|
||
|
|
||
|
for I in I_L3:
|
||
|
(b, a), indices, h = I
|
||
|
|
||
|
if a == b:
|
||
|
if a == x:
|
||
|
I_L3_L.append(I)
|
||
|
I_L3_R.append(I)
|
||
|
elif a < x:
|
||
|
I_L3_L.append(I)
|
||
|
else:
|
||
|
I_L3_R.append(I)
|
||
|
else:
|
||
|
if b <= x:
|
||
|
I_L3_L.append(I)
|
||
|
elif a >= x:
|
||
|
I_L3_R.append(I)
|
||
|
else:
|
||
|
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=x, fast=True)
|
||
|
|
||
|
if b <= x:
|
||
|
I_L3_L.append(((b, a), indices, h))
|
||
|
if a >= x:
|
||
|
I_L3_R.append(((b, a), indices, h))
|
||
|
|
||
|
Q_L1_L = _intervals_to_quadrants(I_L1_L, f1L1F, f2L1F, u, x, F)
|
||
|
Q_L2_L = _intervals_to_quadrants(I_L2_L, f1V, f2V, v, t, F)
|
||
|
Q_L3_L = _intervals_to_quadrants(I_L3_L, f1L3F, f2L3F, x, u, F)
|
||
|
Q_L4_L = Q_L4
|
||
|
|
||
|
Q_L1_R = _intervals_to_quadrants(I_L1_R, f1L1F, f2L1F, x, s, F)
|
||
|
Q_L2_R = Q_L2
|
||
|
Q_L3_R = _intervals_to_quadrants(I_L3_R, f1L3F, f2L3F, s, x, F)
|
||
|
Q_L4_R = _intervals_to_quadrants(I_L4_R, f1V, f2V, t, v, F)
|
||
|
|
||
|
T_L = _traverse_quadrants(Q_L1_L, Q_L2_L, Q_L3_L, Q_L4_L, exclude=True)
|
||
|
T_R = _traverse_quadrants(Q_L1_R, Q_L2_R, Q_L3_R, Q_L4_R, exclude=True)
|
||
|
|
||
|
N_L = _winding_number(T_L, F)
|
||
|
N_R = _winding_number(T_R, F)
|
||
|
|
||
|
I_L = (I_L1_L, I_L2_L, I_L3_L, I_L4_L)
|
||
|
Q_L = (Q_L1_L, Q_L2_L, Q_L3_L, Q_L4_L)
|
||
|
|
||
|
I_R = (I_L1_R, I_L2_R, I_L3_R, I_L4_R)
|
||
|
Q_R = (Q_L1_R, Q_L2_R, Q_L3_R, Q_L4_R)
|
||
|
|
||
|
F1_L = (f1L1F, f1V, f1L3F, f1L4F)
|
||
|
F2_L = (f2L1F, f2V, f2L3F, f2L4F)
|
||
|
|
||
|
F1_R = (f1L1F, f1L2F, f1L3F, f1V)
|
||
|
F2_R = (f2L1F, f2L2F, f2L3F, f2V)
|
||
|
|
||
|
a, b = (u, v), (x, t)
|
||
|
c, d = (x, v), (s, t)
|
||
|
|
||
|
D_L = (N_L, a, b, I_L, Q_L, F1_L, F2_L)
|
||
|
D_R = (N_R, c, d, I_R, Q_R, F1_R, F2_R)
|
||
|
|
||
|
return D_L, D_R
|
||
|
|
||
|
def _horizontal_bisection(N, a, b, I, Q, F1, F2, f1, f2, F):
|
||
|
"""Horizontal bisection step in Collins-Krandick root isolation algorithm. """
|
||
|
(u, v), (s, t) = a, b
|
||
|
|
||
|
I_L1, I_L2, I_L3, I_L4 = I
|
||
|
Q_L1, Q_L2, Q_L3, Q_L4 = Q
|
||
|
|
||
|
f1L1F, f1L2F, f1L3F, f1L4F = F1
|
||
|
f2L1F, f2L2F, f2L3F, f2L4F = F2
|
||
|
|
||
|
y = (v + t) / 2
|
||
|
|
||
|
f1H = dmp_eval_in(f1, y, 1, 1, F)
|
||
|
f2H = dmp_eval_in(f2, y, 1, 1, F)
|
||
|
|
||
|
I_H = dup_isolate_real_roots_list([f1H, f2H], F, inf=u, sup=s, fast=True, strict=True, basis=True)
|
||
|
|
||
|
I_L1_B, I_L1_U = I_L1, I_H
|
||
|
I_L2_B, I_L2_U = [], []
|
||
|
I_L3_B, I_L3_U = _reverse_intervals(I_H), I_L3
|
||
|
I_L4_B, I_L4_U = [], []
|
||
|
|
||
|
for I in I_L2:
|
||
|
(a, b), indices, h = I
|
||
|
|
||
|
if a == b:
|
||
|
if a == y:
|
||
|
I_L2_B.append(I)
|
||
|
I_L2_U.append(I)
|
||
|
elif a < y:
|
||
|
I_L2_B.append(I)
|
||
|
else:
|
||
|
I_L2_U.append(I)
|
||
|
else:
|
||
|
if b <= y:
|
||
|
I_L2_B.append(I)
|
||
|
elif a >= y:
|
||
|
I_L2_U.append(I)
|
||
|
else:
|
||
|
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=y, fast=True)
|
||
|
|
||
|
if b <= y:
|
||
|
I_L2_B.append(((a, b), indices, h))
|
||
|
if a >= y:
|
||
|
I_L2_U.append(((a, b), indices, h))
|
||
|
|
||
|
for I in I_L4:
|
||
|
(b, a), indices, h = I
|
||
|
|
||
|
if a == b:
|
||
|
if a == y:
|
||
|
I_L4_B.append(I)
|
||
|
I_L4_U.append(I)
|
||
|
elif a < y:
|
||
|
I_L4_B.append(I)
|
||
|
else:
|
||
|
I_L4_U.append(I)
|
||
|
else:
|
||
|
if b <= y:
|
||
|
I_L4_B.append(I)
|
||
|
elif a >= y:
|
||
|
I_L4_U.append(I)
|
||
|
else:
|
||
|
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=y, fast=True)
|
||
|
|
||
|
if b <= y:
|
||
|
I_L4_B.append(((b, a), indices, h))
|
||
|
if a >= y:
|
||
|
I_L4_U.append(((b, a), indices, h))
|
||
|
|
||
|
Q_L1_B = Q_L1
|
||
|
Q_L2_B = _intervals_to_quadrants(I_L2_B, f1L2F, f2L2F, v, y, F)
|
||
|
Q_L3_B = _intervals_to_quadrants(I_L3_B, f1H, f2H, s, u, F)
|
||
|
Q_L4_B = _intervals_to_quadrants(I_L4_B, f1L4F, f2L4F, y, v, F)
|
||
|
|
||
|
Q_L1_U = _intervals_to_quadrants(I_L1_U, f1H, f2H, u, s, F)
|
||
|
Q_L2_U = _intervals_to_quadrants(I_L2_U, f1L2F, f2L2F, y, t, F)
|
||
|
Q_L3_U = Q_L3
|
||
|
Q_L4_U = _intervals_to_quadrants(I_L4_U, f1L4F, f2L4F, t, y, F)
|
||
|
|
||
|
T_B = _traverse_quadrants(Q_L1_B, Q_L2_B, Q_L3_B, Q_L4_B, exclude=True)
|
||
|
T_U = _traverse_quadrants(Q_L1_U, Q_L2_U, Q_L3_U, Q_L4_U, exclude=True)
|
||
|
|
||
|
N_B = _winding_number(T_B, F)
|
||
|
N_U = _winding_number(T_U, F)
|
||
|
|
||
|
I_B = (I_L1_B, I_L2_B, I_L3_B, I_L4_B)
|
||
|
Q_B = (Q_L1_B, Q_L2_B, Q_L3_B, Q_L4_B)
|
||
|
|
||
|
I_U = (I_L1_U, I_L2_U, I_L3_U, I_L4_U)
|
||
|
Q_U = (Q_L1_U, Q_L2_U, Q_L3_U, Q_L4_U)
|
||
|
|
||
|
F1_B = (f1L1F, f1L2F, f1H, f1L4F)
|
||
|
F2_B = (f2L1F, f2L2F, f2H, f2L4F)
|
||
|
|
||
|
F1_U = (f1H, f1L2F, f1L3F, f1L4F)
|
||
|
F2_U = (f2H, f2L2F, f2L3F, f2L4F)
|
||
|
|
||
|
a, b = (u, v), (s, y)
|
||
|
c, d = (u, y), (s, t)
|
||
|
|
||
|
D_B = (N_B, a, b, I_B, Q_B, F1_B, F2_B)
|
||
|
D_U = (N_U, c, d, I_U, Q_U, F1_U, F2_U)
|
||
|
|
||
|
return D_B, D_U
|
||
|
|
||
|
def _depth_first_select(rectangles):
|
||
|
"""Find a rectangle of minimum area for bisection. """
|
||
|
min_area, j = None, None
|
||
|
|
||
|
for i, (_, (u, v), (s, t), _, _, _, _) in enumerate(rectangles):
|
||
|
area = (s - u)*(t - v)
|
||
|
|
||
|
if min_area is None or area < min_area:
|
||
|
min_area, j = area, i
|
||
|
|
||
|
return rectangles.pop(j)
|
||
|
|
||
|
def _rectangle_small_p(a, b, eps):
|
||
|
"""Return ``True`` if the given rectangle is small enough. """
|
||
|
(u, v), (s, t) = a, b
|
||
|
|
||
|
if eps is not None:
|
||
|
return s - u < eps and t - v < eps
|
||
|
else:
|
||
|
return True
|
||
|
|
||
|
def dup_isolate_complex_roots_sqf(f, K, eps=None, inf=None, sup=None, blackbox=False):
|
||
|
"""Isolate complex roots of a square-free polynomial using Collins-Krandick algorithm. """
|
||
|
if not K.is_ZZ and not K.is_QQ:
|
||
|
raise DomainError("isolation of complex roots is not supported over %s" % K)
|
||
|
|
||
|
if dup_degree(f) <= 0:
|
||
|
return []
|
||
|
|
||
|
if K.is_ZZ:
|
||
|
F = K.get_field()
|
||
|
else:
|
||
|
F = K
|
||
|
|
||
|
f = dup_convert(f, K, F)
|
||
|
|
||
|
lc = abs(dup_LC(f, F))
|
||
|
B = 2*max([ F.quo(abs(c), lc) for c in f ])
|
||
|
|
||
|
(u, v), (s, t) = (-B, F.zero), (B, B)
|
||
|
|
||
|
if inf is not None:
|
||
|
u = inf
|
||
|
|
||
|
if sup is not None:
|
||
|
s = sup
|
||
|
|
||
|
if v < 0 or t <= v or s <= u:
|
||
|
raise ValueError("not a valid complex isolation rectangle")
|
||
|
|
||
|
f1, f2 = dup_real_imag(f, F)
|
||
|
|
||
|
f1L1 = dmp_eval_in(f1, v, 1, 1, F)
|
||
|
f2L1 = dmp_eval_in(f2, v, 1, 1, F)
|
||
|
|
||
|
f1L2 = dmp_eval_in(f1, s, 0, 1, F)
|
||
|
f2L2 = dmp_eval_in(f2, s, 0, 1, F)
|
||
|
|
||
|
f1L3 = dmp_eval_in(f1, t, 1, 1, F)
|
||
|
f2L3 = dmp_eval_in(f2, t, 1, 1, F)
|
||
|
|
||
|
f1L4 = dmp_eval_in(f1, u, 0, 1, F)
|
||
|
f2L4 = dmp_eval_in(f2, u, 0, 1, F)
|
||
|
|
||
|
S_L1 = [f1L1, f2L1]
|
||
|
S_L2 = [f1L2, f2L2]
|
||
|
S_L3 = [f1L3, f2L3]
|
||
|
S_L4 = [f1L4, f2L4]
|
||
|
|
||
|
I_L1 = dup_isolate_real_roots_list(S_L1, F, inf=u, sup=s, fast=True, strict=True, basis=True)
|
||
|
I_L2 = dup_isolate_real_roots_list(S_L2, F, inf=v, sup=t, fast=True, strict=True, basis=True)
|
||
|
I_L3 = dup_isolate_real_roots_list(S_L3, F, inf=u, sup=s, fast=True, strict=True, basis=True)
|
||
|
I_L4 = dup_isolate_real_roots_list(S_L4, F, inf=v, sup=t, fast=True, strict=True, basis=True)
|
||
|
|
||
|
I_L3 = _reverse_intervals(I_L3)
|
||
|
I_L4 = _reverse_intervals(I_L4)
|
||
|
|
||
|
Q_L1 = _intervals_to_quadrants(I_L1, f1L1, f2L1, u, s, F)
|
||
|
Q_L2 = _intervals_to_quadrants(I_L2, f1L2, f2L2, v, t, F)
|
||
|
Q_L3 = _intervals_to_quadrants(I_L3, f1L3, f2L3, s, u, F)
|
||
|
Q_L4 = _intervals_to_quadrants(I_L4, f1L4, f2L4, t, v, F)
|
||
|
|
||
|
T = _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4)
|
||
|
N = _winding_number(T, F)
|
||
|
|
||
|
if not N:
|
||
|
return []
|
||
|
|
||
|
I = (I_L1, I_L2, I_L3, I_L4)
|
||
|
Q = (Q_L1, Q_L2, Q_L3, Q_L4)
|
||
|
|
||
|
F1 = (f1L1, f1L2, f1L3, f1L4)
|
||
|
F2 = (f2L1, f2L2, f2L3, f2L4)
|
||
|
|
||
|
rectangles, roots = [(N, (u, v), (s, t), I, Q, F1, F2)], []
|
||
|
|
||
|
while rectangles:
|
||
|
N, (u, v), (s, t), I, Q, F1, F2 = _depth_first_select(rectangles)
|
||
|
|
||
|
if s - u > t - v:
|
||
|
D_L, D_R = _vertical_bisection(N, (u, v), (s, t), I, Q, F1, F2, f1, f2, F)
|
||
|
|
||
|
N_L, a, b, I_L, Q_L, F1_L, F2_L = D_L
|
||
|
N_R, c, d, I_R, Q_R, F1_R, F2_R = D_R
|
||
|
|
||
|
if N_L >= 1:
|
||
|
if N_L == 1 and _rectangle_small_p(a, b, eps):
|
||
|
roots.append(ComplexInterval(a, b, I_L, Q_L, F1_L, F2_L, f1, f2, F))
|
||
|
else:
|
||
|
rectangles.append(D_L)
|
||
|
|
||
|
if N_R >= 1:
|
||
|
if N_R == 1 and _rectangle_small_p(c, d, eps):
|
||
|
roots.append(ComplexInterval(c, d, I_R, Q_R, F1_R, F2_R, f1, f2, F))
|
||
|
else:
|
||
|
rectangles.append(D_R)
|
||
|
else:
|
||
|
D_B, D_U = _horizontal_bisection(N, (u, v), (s, t), I, Q, F1, F2, f1, f2, F)
|
||
|
|
||
|
N_B, a, b, I_B, Q_B, F1_B, F2_B = D_B
|
||
|
N_U, c, d, I_U, Q_U, F1_U, F2_U = D_U
|
||
|
|
||
|
if N_B >= 1:
|
||
|
if N_B == 1 and _rectangle_small_p(a, b, eps):
|
||
|
roots.append(ComplexInterval(
|
||
|
a, b, I_B, Q_B, F1_B, F2_B, f1, f2, F))
|
||
|
else:
|
||
|
rectangles.append(D_B)
|
||
|
|
||
|
if N_U >= 1:
|
||
|
if N_U == 1 and _rectangle_small_p(c, d, eps):
|
||
|
roots.append(ComplexInterval(
|
||
|
c, d, I_U, Q_U, F1_U, F2_U, f1, f2, F))
|
||
|
else:
|
||
|
rectangles.append(D_U)
|
||
|
|
||
|
_roots, roots = sorted(roots, key=lambda r: (r.ax, r.ay)), []
|
||
|
|
||
|
for root in _roots:
|
||
|
roots.extend([root.conjugate(), root])
|
||
|
|
||
|
if blackbox:
|
||
|
return roots
|
||
|
else:
|
||
|
return [ r.as_tuple() for r in roots ]
|
||
|
|
||
|
def dup_isolate_all_roots_sqf(f, K, eps=None, inf=None, sup=None, fast=False, blackbox=False):
|
||
|
"""Isolate real and complex roots of a square-free polynomial ``f``. """
|
||
|
return (
|
||
|
dup_isolate_real_roots_sqf( f, K, eps=eps, inf=inf, sup=sup, fast=fast, blackbox=blackbox),
|
||
|
dup_isolate_complex_roots_sqf(f, K, eps=eps, inf=inf, sup=sup, blackbox=blackbox))
|
||
|
|
||
|
def dup_isolate_all_roots(f, K, eps=None, inf=None, sup=None, fast=False):
|
||
|
"""Isolate real and complex roots of a non-square-free polynomial ``f``. """
|
||
|
if not K.is_ZZ and not K.is_QQ:
|
||
|
raise DomainError("isolation of real and complex roots is not supported over %s" % K)
|
||
|
|
||
|
_, factors = dup_sqf_list(f, K)
|
||
|
|
||
|
if len(factors) == 1:
|
||
|
((f, k),) = factors
|
||
|
|
||
|
real_part, complex_part = dup_isolate_all_roots_sqf(
|
||
|
f, K, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
|
||
|
real_part = [ ((a, b), k) for (a, b) in real_part ]
|
||
|
complex_part = [ ((a, b), k) for (a, b) in complex_part ]
|
||
|
|
||
|
return real_part, complex_part
|
||
|
else:
|
||
|
raise NotImplementedError( "only trivial square-free polynomials are supported")
|
||
|
|
||
|
class RealInterval:
|
||
|
"""A fully qualified representation of a real isolation interval. """
|
||
|
|
||
|
def __init__(self, data, f, dom):
|
||
|
"""Initialize new real interval with complete information. """
|
||
|
if len(data) == 2:
|
||
|
s, t = data
|
||
|
|
||
|
self.neg = False
|
||
|
|
||
|
if s < 0:
|
||
|
if t <= 0:
|
||
|
f, s, t, self.neg = dup_mirror(f, dom), -t, -s, True
|
||
|
else:
|
||
|
raise ValueError("Cannot refine a real root in (%s, %s)" % (s, t))
|
||
|
|
||
|
a, b, c, d = _mobius_from_interval((s, t), dom.get_field())
|
||
|
|
||
|
f = dup_transform(f, dup_strip([a, b]),
|
||
|
dup_strip([c, d]), dom)
|
||
|
|
||
|
self.mobius = a, b, c, d
|
||
|
else:
|
||
|
self.mobius = data[:-1]
|
||
|
self.neg = data[-1]
|
||
|
|
||
|
self.f, self.dom = f, dom
|
||
|
|
||
|
@property
|
||
|
def func(self):
|
||
|
return RealInterval
|
||
|
|
||
|
@property
|
||
|
def args(self):
|
||
|
i = self
|
||
|
return (i.mobius + (i.neg,), i.f, i.dom)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if type(other) is not type(self):
|
||
|
return False
|
||
|
return self.args == other.args
|
||
|
|
||
|
@property
|
||
|
def a(self):
|
||
|
"""Return the position of the left end. """
|
||
|
field = self.dom.get_field()
|
||
|
a, b, c, d = self.mobius
|
||
|
|
||
|
if not self.neg:
|
||
|
if a*d < b*c:
|
||
|
return field(a, c)
|
||
|
return field(b, d)
|
||
|
else:
|
||
|
if a*d > b*c:
|
||
|
return -field(a, c)
|
||
|
return -field(b, d)
|
||
|
|
||
|
@property
|
||
|
def b(self):
|
||
|
"""Return the position of the right end. """
|
||
|
was = self.neg
|
||
|
self.neg = not was
|
||
|
rv = -self.a
|
||
|
self.neg = was
|
||
|
return rv
|
||
|
|
||
|
@property
|
||
|
def dx(self):
|
||
|
"""Return width of the real isolating interval. """
|
||
|
return self.b - self.a
|
||
|
|
||
|
@property
|
||
|
def center(self):
|
||
|
"""Return the center of the real isolating interval. """
|
||
|
return (self.a + self.b)/2
|
||
|
|
||
|
@property
|
||
|
def max_denom(self):
|
||
|
"""Return the largest denominator occurring in either endpoint. """
|
||
|
return max(self.a.denominator, self.b.denominator)
|
||
|
|
||
|
def as_tuple(self):
|
||
|
"""Return tuple representation of real isolating interval. """
|
||
|
return (self.a, self.b)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "(%s, %s)" % (self.a, self.b)
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
"""
|
||
|
Say whether a complex number belongs to this real interval.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
item : pair (re, im) or number re
|
||
|
Either a pair giving the real and imaginary parts of the number,
|
||
|
or else a real number.
|
||
|
|
||
|
"""
|
||
|
if isinstance(item, tuple):
|
||
|
re, im = item
|
||
|
else:
|
||
|
re, im = item, 0
|
||
|
return im == 0 and self.a <= re <= self.b
|
||
|
|
||
|
def is_disjoint(self, other):
|
||
|
"""Return ``True`` if two isolation intervals are disjoint. """
|
||
|
if isinstance(other, RealInterval):
|
||
|
return (self.b < other.a or other.b < self.a)
|
||
|
assert isinstance(other, ComplexInterval)
|
||
|
return (self.b < other.ax or other.bx < self.a
|
||
|
or other.ay*other.by > 0)
|
||
|
|
||
|
def _inner_refine(self):
|
||
|
"""Internal one step real root refinement procedure. """
|
||
|
if self.mobius is None:
|
||
|
return self
|
||
|
|
||
|
f, mobius = dup_inner_refine_real_root(
|
||
|
self.f, self.mobius, self.dom, steps=1, mobius=True)
|
||
|
|
||
|
return RealInterval(mobius + (self.neg,), f, self.dom)
|
||
|
|
||
|
def refine_disjoint(self, other):
|
||
|
"""Refine an isolating interval until it is disjoint with another one. """
|
||
|
expr = self
|
||
|
while not expr.is_disjoint(other):
|
||
|
expr, other = expr._inner_refine(), other._inner_refine()
|
||
|
|
||
|
return expr, other
|
||
|
|
||
|
def refine_size(self, dx):
|
||
|
"""Refine an isolating interval until it is of sufficiently small size. """
|
||
|
expr = self
|
||
|
while not (expr.dx < dx):
|
||
|
expr = expr._inner_refine()
|
||
|
|
||
|
return expr
|
||
|
|
||
|
def refine_step(self, steps=1):
|
||
|
"""Perform several steps of real root refinement algorithm. """
|
||
|
expr = self
|
||
|
for _ in range(steps):
|
||
|
expr = expr._inner_refine()
|
||
|
|
||
|
return expr
|
||
|
|
||
|
def refine(self):
|
||
|
"""Perform one step of real root refinement algorithm. """
|
||
|
return self._inner_refine()
|
||
|
|
||
|
|
||
|
class ComplexInterval:
|
||
|
"""A fully qualified representation of a complex isolation interval.
|
||
|
The printed form is shown as (ax, bx) x (ay, by) where (ax, ay)
|
||
|
and (bx, by) are the coordinates of the southwest and northeast
|
||
|
corners of the interval's rectangle, respectively.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import CRootOf, S
|
||
|
>>> from sympy.abc import x
|
||
|
>>> CRootOf.clear_cache() # for doctest reproducibility
|
||
|
>>> root = CRootOf(x**10 - 2*x + 3, 9)
|
||
|
>>> i = root._get_interval(); i
|
||
|
(3/64, 3/32) x (9/8, 75/64)
|
||
|
|
||
|
The real part of the root lies within the range [0, 3/4] while
|
||
|
the imaginary part lies within the range [9/8, 3/2]:
|
||
|
|
||
|
>>> root.n(3)
|
||
|
0.0766 + 1.14*I
|
||
|
|
||
|
The width of the ranges in the x and y directions on the complex
|
||
|
plane are:
|
||
|
|
||
|
>>> i.dx, i.dy
|
||
|
(3/64, 3/64)
|
||
|
|
||
|
The center of the range is
|
||
|
|
||
|
>>> i.center
|
||
|
(9/128, 147/128)
|
||
|
|
||
|
The northeast coordinate of the rectangle bounding the root in the
|
||
|
complex plane is given by attribute b and the x and y components
|
||
|
are accessed by bx and by:
|
||
|
|
||
|
>>> i.b, i.bx, i.by
|
||
|
((3/32, 75/64), 3/32, 75/64)
|
||
|
|
||
|
The southwest coordinate is similarly given by i.a
|
||
|
|
||
|
>>> i.a, i.ax, i.ay
|
||
|
((3/64, 9/8), 3/64, 9/8)
|
||
|
|
||
|
Although the interval prints to show only the real and imaginary
|
||
|
range of the root, all the information of the underlying root
|
||
|
is contained as properties of the interval.
|
||
|
|
||
|
For example, an interval with a nonpositive imaginary range is
|
||
|
considered to be the conjugate. Since the y values of y are in the
|
||
|
range [0, 1/4] it is not the conjugate:
|
||
|
|
||
|
>>> i.conj
|
||
|
False
|
||
|
|
||
|
The conjugate's interval is
|
||
|
|
||
|
>>> ic = i.conjugate(); ic
|
||
|
(3/64, 3/32) x (-75/64, -9/8)
|
||
|
|
||
|
NOTE: the values printed still represent the x and y range
|
||
|
in which the root -- conjugate, in this case -- is located,
|
||
|
but the underlying a and b values of a root and its conjugate
|
||
|
are the same:
|
||
|
|
||
|
>>> assert i.a == ic.a and i.b == ic.b
|
||
|
|
||
|
What changes are the reported coordinates of the bounding rectangle:
|
||
|
|
||
|
>>> (i.ax, i.ay), (i.bx, i.by)
|
||
|
((3/64, 9/8), (3/32, 75/64))
|
||
|
>>> (ic.ax, ic.ay), (ic.bx, ic.by)
|
||
|
((3/64, -75/64), (3/32, -9/8))
|
||
|
|
||
|
The interval can be refined once:
|
||
|
|
||
|
>>> i # for reference, this is the current interval
|
||
|
(3/64, 3/32) x (9/8, 75/64)
|
||
|
|
||
|
>>> i.refine()
|
||
|
(3/64, 3/32) x (9/8, 147/128)
|
||
|
|
||
|
Several refinement steps can be taken:
|
||
|
|
||
|
>>> i.refine_step(2) # 2 steps
|
||
|
(9/128, 3/32) x (9/8, 147/128)
|
||
|
|
||
|
It is also possible to refine to a given tolerance:
|
||
|
|
||
|
>>> tol = min(i.dx, i.dy)/2
|
||
|
>>> i.refine_size(tol)
|
||
|
(9/128, 21/256) x (9/8, 291/256)
|
||
|
|
||
|
A disjoint interval is one whose bounding rectangle does not
|
||
|
overlap with another. An interval, necessarily, is not disjoint with
|
||
|
itself, but any interval is disjoint with a conjugate since the
|
||
|
conjugate rectangle will always be in the lower half of the complex
|
||
|
plane and the non-conjugate in the upper half:
|
||
|
|
||
|
>>> i.is_disjoint(i), i.is_disjoint(i.conjugate())
|
||
|
(False, True)
|
||
|
|
||
|
The following interval j is not disjoint from i:
|
||
|
|
||
|
>>> close = CRootOf(x**10 - 2*x + 300/S(101), 9)
|
||
|
>>> j = close._get_interval(); j
|
||
|
(75/1616, 75/808) x (225/202, 1875/1616)
|
||
|
>>> i.is_disjoint(j)
|
||
|
False
|
||
|
|
||
|
The two can be made disjoint, however:
|
||
|
|
||
|
>>> newi, newj = i.refine_disjoint(j)
|
||
|
>>> newi
|
||
|
(39/512, 159/2048) x (2325/2048, 4653/4096)
|
||
|
>>> newj
|
||
|
(3975/51712, 2025/25856) x (29325/25856, 117375/103424)
|
||
|
|
||
|
Even though the real ranges overlap, the imaginary do not, so
|
||
|
the roots have been resolved as distinct. Intervals are disjoint
|
||
|
when either the real or imaginary component of the intervals is
|
||
|
distinct. In the case above, the real components have not been
|
||
|
resolved (so we do not know, yet, which root has the smaller real
|
||
|
part) but the imaginary part of ``close`` is larger than ``root``:
|
||
|
|
||
|
>>> close.n(3)
|
||
|
0.0771 + 1.13*I
|
||
|
>>> root.n(3)
|
||
|
0.0766 + 1.14*I
|
||
|
"""
|
||
|
|
||
|
def __init__(self, a, b, I, Q, F1, F2, f1, f2, dom, conj=False):
|
||
|
"""Initialize new complex interval with complete information. """
|
||
|
# a and b are the SW and NE corner of the bounding interval,
|
||
|
# (ax, ay) and (bx, by), respectively, for the NON-CONJUGATE
|
||
|
# root (the one with the positive imaginary part); when working
|
||
|
# with the conjugate, the a and b value are still non-negative
|
||
|
# but the ay, by are reversed and have oppositite sign
|
||
|
self.a, self.b = a, b
|
||
|
self.I, self.Q = I, Q
|
||
|
|
||
|
self.f1, self.F1 = f1, F1
|
||
|
self.f2, self.F2 = f2, F2
|
||
|
|
||
|
self.dom = dom
|
||
|
self.conj = conj
|
||
|
|
||
|
@property
|
||
|
def func(self):
|
||
|
return ComplexInterval
|
||
|
|
||
|
@property
|
||
|
def args(self):
|
||
|
i = self
|
||
|
return (i.a, i.b, i.I, i.Q, i.F1, i.F2, i.f1, i.f2, i.dom, i.conj)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if type(other) is not type(self):
|
||
|
return False
|
||
|
return self.args == other.args
|
||
|
|
||
|
@property
|
||
|
def ax(self):
|
||
|
"""Return ``x`` coordinate of south-western corner. """
|
||
|
return self.a[0]
|
||
|
|
||
|
@property
|
||
|
def ay(self):
|
||
|
"""Return ``y`` coordinate of south-western corner. """
|
||
|
if not self.conj:
|
||
|
return self.a[1]
|
||
|
else:
|
||
|
return -self.b[1]
|
||
|
|
||
|
@property
|
||
|
def bx(self):
|
||
|
"""Return ``x`` coordinate of north-eastern corner. """
|
||
|
return self.b[0]
|
||
|
|
||
|
@property
|
||
|
def by(self):
|
||
|
"""Return ``y`` coordinate of north-eastern corner. """
|
||
|
if not self.conj:
|
||
|
return self.b[1]
|
||
|
else:
|
||
|
return -self.a[1]
|
||
|
|
||
|
@property
|
||
|
def dx(self):
|
||
|
"""Return width of the complex isolating interval. """
|
||
|
return self.b[0] - self.a[0]
|
||
|
|
||
|
@property
|
||
|
def dy(self):
|
||
|
"""Return height of the complex isolating interval. """
|
||
|
return self.b[1] - self.a[1]
|
||
|
|
||
|
@property
|
||
|
def center(self):
|
||
|
"""Return the center of the complex isolating interval. """
|
||
|
return ((self.ax + self.bx)/2, (self.ay + self.by)/2)
|
||
|
|
||
|
@property
|
||
|
def max_denom(self):
|
||
|
"""Return the largest denominator occurring in either endpoint. """
|
||
|
return max(self.ax.denominator, self.bx.denominator,
|
||
|
self.ay.denominator, self.by.denominator)
|
||
|
|
||
|
def as_tuple(self):
|
||
|
"""Return tuple representation of the complex isolating
|
||
|
interval's SW and NE corners, respectively. """
|
||
|
return ((self.ax, self.ay), (self.bx, self.by))
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "(%s, %s) x (%s, %s)" % (self.ax, self.bx, self.ay, self.by)
|
||
|
|
||
|
def conjugate(self):
|
||
|
"""This complex interval really is located in lower half-plane. """
|
||
|
return ComplexInterval(self.a, self.b, self.I, self.Q,
|
||
|
self.F1, self.F2, self.f1, self.f2, self.dom, conj=True)
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
"""
|
||
|
Say whether a complex number belongs to this complex rectangular
|
||
|
region.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
item : pair (re, im) or number re
|
||
|
Either a pair giving the real and imaginary parts of the number,
|
||
|
or else a real number.
|
||
|
|
||
|
"""
|
||
|
if isinstance(item, tuple):
|
||
|
re, im = item
|
||
|
else:
|
||
|
re, im = item, 0
|
||
|
return self.ax <= re <= self.bx and self.ay <= im <= self.by
|
||
|
|
||
|
def is_disjoint(self, other):
|
||
|
"""Return ``True`` if two isolation intervals are disjoint. """
|
||
|
if isinstance(other, RealInterval):
|
||
|
return other.is_disjoint(self)
|
||
|
if self.conj != other.conj: # above and below real axis
|
||
|
return True
|
||
|
re_distinct = (self.bx < other.ax or other.bx < self.ax)
|
||
|
if re_distinct:
|
||
|
return True
|
||
|
im_distinct = (self.by < other.ay or other.by < self.ay)
|
||
|
return im_distinct
|
||
|
|
||
|
def _inner_refine(self):
|
||
|
"""Internal one step complex root refinement procedure. """
|
||
|
(u, v), (s, t) = self.a, self.b
|
||
|
|
||
|
I, Q = self.I, self.Q
|
||
|
|
||
|
f1, F1 = self.f1, self.F1
|
||
|
f2, F2 = self.f2, self.F2
|
||
|
|
||
|
dom = self.dom
|
||
|
|
||
|
if s - u > t - v:
|
||
|
D_L, D_R = _vertical_bisection(1, (u, v), (s, t), I, Q, F1, F2, f1, f2, dom)
|
||
|
|
||
|
if D_L[0] == 1:
|
||
|
_, a, b, I, Q, F1, F2 = D_L
|
||
|
else:
|
||
|
_, a, b, I, Q, F1, F2 = D_R
|
||
|
else:
|
||
|
D_B, D_U = _horizontal_bisection(1, (u, v), (s, t), I, Q, F1, F2, f1, f2, dom)
|
||
|
|
||
|
if D_B[0] == 1:
|
||
|
_, a, b, I, Q, F1, F2 = D_B
|
||
|
else:
|
||
|
_, a, b, I, Q, F1, F2 = D_U
|
||
|
|
||
|
return ComplexInterval(a, b, I, Q, F1, F2, f1, f2, dom, self.conj)
|
||
|
|
||
|
def refine_disjoint(self, other):
|
||
|
"""Refine an isolating interval until it is disjoint with another one. """
|
||
|
expr = self
|
||
|
while not expr.is_disjoint(other):
|
||
|
expr, other = expr._inner_refine(), other._inner_refine()
|
||
|
|
||
|
return expr, other
|
||
|
|
||
|
def refine_size(self, dx, dy=None):
|
||
|
"""Refine an isolating interval until it is of sufficiently small size. """
|
||
|
if dy is None:
|
||
|
dy = dx
|
||
|
expr = self
|
||
|
while not (expr.dx < dx and expr.dy < dy):
|
||
|
expr = expr._inner_refine()
|
||
|
|
||
|
return expr
|
||
|
|
||
|
def refine_step(self, steps=1):
|
||
|
"""Perform several steps of complex root refinement algorithm. """
|
||
|
expr = self
|
||
|
for _ in range(steps):
|
||
|
expr = expr._inner_refine()
|
||
|
|
||
|
return expr
|
||
|
|
||
|
def refine(self):
|
||
|
"""Perform one step of complex root refinement algorithm. """
|
||
|
return self._inner_refine()
|