150 lines
4.3 KiB
Python
150 lines
4.3 KiB
Python
|
"""Tests for square-free decomposition algorithms and related tools. """
|
||
|
|
||
|
from sympy.polys.rings import ring
|
||
|
from sympy.polys.domains import FF, ZZ, QQ
|
||
|
from sympy.polys.specialpolys import f_polys
|
||
|
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = f_polys()
|
||
|
|
||
|
def test_dup_sqf():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
assert R.dup_sqf_part(0) == 0
|
||
|
assert R.dup_sqf_p(0) is True
|
||
|
|
||
|
assert R.dup_sqf_part(7) == 1
|
||
|
assert R.dup_sqf_p(7) is True
|
||
|
|
||
|
assert R.dup_sqf_part(2*x + 2) == x + 1
|
||
|
assert R.dup_sqf_p(2*x + 2) is True
|
||
|
|
||
|
assert R.dup_sqf_part(x**3 + x + 1) == x**3 + x + 1
|
||
|
assert R.dup_sqf_p(x**3 + x + 1) is True
|
||
|
|
||
|
assert R.dup_sqf_part(-x**3 + x + 1) == x**3 - x - 1
|
||
|
assert R.dup_sqf_p(-x**3 + x + 1) is True
|
||
|
|
||
|
assert R.dup_sqf_part(2*x**3 + 3*x**2) == 2*x**2 + 3*x
|
||
|
assert R.dup_sqf_p(2*x**3 + 3*x**2) is False
|
||
|
|
||
|
assert R.dup_sqf_part(-2*x**3 + 3*x**2) == 2*x**2 - 3*x
|
||
|
assert R.dup_sqf_p(-2*x**3 + 3*x**2) is False
|
||
|
|
||
|
assert R.dup_sqf_list(0) == (0, [])
|
||
|
assert R.dup_sqf_list(1) == (1, [])
|
||
|
|
||
|
assert R.dup_sqf_list(x) == (1, [(x, 1)])
|
||
|
assert R.dup_sqf_list(2*x**2) == (2, [(x, 2)])
|
||
|
assert R.dup_sqf_list(3*x**3) == (3, [(x, 3)])
|
||
|
|
||
|
assert R.dup_sqf_list(-x**5 + x**4 + x - 1) == \
|
||
|
(-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
|
||
|
assert R.dup_sqf_list(x**8 + 6*x**6 + 12*x**4 + 8*x**2) == \
|
||
|
( 1, [(x, 2), (x**2 + 2, 3)])
|
||
|
|
||
|
assert R.dup_sqf_list(2*x**2 + 4*x + 2) == (2, [(x + 1, 2)])
|
||
|
|
||
|
R, x = ring("x", QQ)
|
||
|
assert R.dup_sqf_list(2*x**2 + 4*x + 2) == (2, [(x + 1, 2)])
|
||
|
|
||
|
R, x = ring("x", FF(2))
|
||
|
assert R.dup_sqf_list(x**2 + 1) == (1, [(x + 1, 2)])
|
||
|
|
||
|
R, x = ring("x", FF(3))
|
||
|
assert R.dup_sqf_list(x**10 + 2*x**7 + 2*x**4 + x) == \
|
||
|
(1, [(x, 1),
|
||
|
(x + 1, 3),
|
||
|
(x + 2, 6)])
|
||
|
|
||
|
R1, x = ring("x", ZZ)
|
||
|
R2, y = ring("y", FF(3))
|
||
|
|
||
|
f = x**3 + 1
|
||
|
g = y**3 + 1
|
||
|
|
||
|
assert R1.dup_sqf_part(f) == f
|
||
|
assert R2.dup_sqf_part(g) == y + 1
|
||
|
|
||
|
assert R1.dup_sqf_p(f) is True
|
||
|
assert R2.dup_sqf_p(g) is False
|
||
|
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
A = x**4 - 3*x**2 + 6
|
||
|
D = x**6 - 5*x**4 + 5*x**2 + 4
|
||
|
|
||
|
f, g = D, R.dmp_sub(A, R.dmp_mul(R.dmp_diff(D, 1), y))
|
||
|
res = R.dmp_resultant(f, g)
|
||
|
h = (4*y**2 + 1).drop(x)
|
||
|
|
||
|
assert R.drop(x).dup_sqf_list(res) == (45796, [(h, 3)])
|
||
|
|
||
|
Rt, t = ring("t", ZZ)
|
||
|
R, x = ring("x", Rt)
|
||
|
assert R.dup_sqf_list_include(t**3*x**2) == [(t**3, 1), (x, 2)]
|
||
|
|
||
|
|
||
|
def test_dmp_sqf():
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
assert R.dmp_sqf_part(0) == 0
|
||
|
assert R.dmp_sqf_p(0) is True
|
||
|
|
||
|
assert R.dmp_sqf_part(7) == 1
|
||
|
assert R.dmp_sqf_p(7) is True
|
||
|
|
||
|
assert R.dmp_sqf_list(3) == (3, [])
|
||
|
assert R.dmp_sqf_list_include(3) == [(3, 1)]
|
||
|
|
||
|
R, x, y, z = ring("x,y,z", ZZ)
|
||
|
assert R.dmp_sqf_p(f_0) is True
|
||
|
assert R.dmp_sqf_p(f_0**2) is False
|
||
|
assert R.dmp_sqf_p(f_1) is True
|
||
|
assert R.dmp_sqf_p(f_1**2) is False
|
||
|
assert R.dmp_sqf_p(f_2) is True
|
||
|
assert R.dmp_sqf_p(f_2**2) is False
|
||
|
assert R.dmp_sqf_p(f_3) is True
|
||
|
assert R.dmp_sqf_p(f_3**2) is False
|
||
|
assert R.dmp_sqf_p(f_5) is False
|
||
|
assert R.dmp_sqf_p(f_5**2) is False
|
||
|
|
||
|
assert R.dmp_sqf_p(f_4) is True
|
||
|
assert R.dmp_sqf_part(f_4) == -f_4
|
||
|
|
||
|
assert R.dmp_sqf_part(f_5) == x + y - z
|
||
|
|
||
|
R, x, y, z, t = ring("x,y,z,t", ZZ)
|
||
|
assert R.dmp_sqf_p(f_6) is True
|
||
|
assert R.dmp_sqf_part(f_6) == f_6
|
||
|
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = -x**5 + x**4 + x - 1
|
||
|
|
||
|
assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
|
||
|
assert R.dmp_sqf_list_include(f) == [(-x**3 - x**2 - x - 1, 1), (x - 1, 2)]
|
||
|
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
f = -x**5 + x**4 + x - 1
|
||
|
|
||
|
assert R.dmp_sqf_list(f) == (-1, [(x**3 + x**2 + x + 1, 1), (x - 1, 2)])
|
||
|
assert R.dmp_sqf_list_include(f) == [(-x**3 - x**2 - x - 1, 1), (x - 1, 2)]
|
||
|
|
||
|
f = -x**2 + 2*x - 1
|
||
|
assert R.dmp_sqf_list_include(f) == [(-1, 1), (x - 1, 2)]
|
||
|
|
||
|
R, x, y = ring("x,y", FF(2))
|
||
|
raises(NotImplementedError, lambda: R.dmp_sqf_list(y**2 + 1))
|
||
|
|
||
|
|
||
|
def test_dup_gff_list():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
f = x**5 + 2*x**4 - x**3 - 2*x**2
|
||
|
assert R.dup_gff_list(f) == [(x, 1), (x + 2, 4)]
|
||
|
|
||
|
g = x**9 - 20*x**8 + 166*x**7 - 744*x**6 + 1965*x**5 - 3132*x**4 + 2948*x**3 - 1504*x**2 + 320*x
|
||
|
assert R.dup_gff_list(g) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)]
|
||
|
|
||
|
raises(ValueError, lambda: R.dup_gff_list(0))
|