340 lines
12 KiB
Python
340 lines
12 KiB
Python
|
"""
|
||
|
Javascript code printer
|
||
|
|
||
|
The JavascriptCodePrinter converts single SymPy expressions into single
|
||
|
Javascript expressions, using the functions defined in the Javascript
|
||
|
Math object where possible.
|
||
|
|
||
|
"""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
from typing import Any
|
||
|
|
||
|
from sympy.core import S
|
||
|
from sympy.core.numbers import equal_valued
|
||
|
from sympy.printing.codeprinter import CodePrinter
|
||
|
from sympy.printing.precedence import precedence, PRECEDENCE
|
||
|
|
||
|
|
||
|
# dictionary mapping SymPy function to (argument_conditions, Javascript_function).
|
||
|
# Used in JavascriptCodePrinter._print_Function(self)
|
||
|
known_functions = {
|
||
|
'Abs': 'Math.abs',
|
||
|
'acos': 'Math.acos',
|
||
|
'acosh': 'Math.acosh',
|
||
|
'asin': 'Math.asin',
|
||
|
'asinh': 'Math.asinh',
|
||
|
'atan': 'Math.atan',
|
||
|
'atan2': 'Math.atan2',
|
||
|
'atanh': 'Math.atanh',
|
||
|
'ceiling': 'Math.ceil',
|
||
|
'cos': 'Math.cos',
|
||
|
'cosh': 'Math.cosh',
|
||
|
'exp': 'Math.exp',
|
||
|
'floor': 'Math.floor',
|
||
|
'log': 'Math.log',
|
||
|
'Max': 'Math.max',
|
||
|
'Min': 'Math.min',
|
||
|
'sign': 'Math.sign',
|
||
|
'sin': 'Math.sin',
|
||
|
'sinh': 'Math.sinh',
|
||
|
'tan': 'Math.tan',
|
||
|
'tanh': 'Math.tanh',
|
||
|
}
|
||
|
|
||
|
|
||
|
class JavascriptCodePrinter(CodePrinter):
|
||
|
""""A Printer to convert Python expressions to strings of JavaScript code
|
||
|
"""
|
||
|
printmethod = '_javascript'
|
||
|
language = 'JavaScript'
|
||
|
|
||
|
_default_settings: dict[str, Any] = {
|
||
|
'order': None,
|
||
|
'full_prec': 'auto',
|
||
|
'precision': 17,
|
||
|
'user_functions': {},
|
||
|
'human': True,
|
||
|
'allow_unknown_functions': False,
|
||
|
'contract': True,
|
||
|
}
|
||
|
|
||
|
def __init__(self, settings={}):
|
||
|
CodePrinter.__init__(self, settings)
|
||
|
self.known_functions = dict(known_functions)
|
||
|
userfuncs = settings.get('user_functions', {})
|
||
|
self.known_functions.update(userfuncs)
|
||
|
|
||
|
def _rate_index_position(self, p):
|
||
|
return p*5
|
||
|
|
||
|
def _get_statement(self, codestring):
|
||
|
return "%s;" % codestring
|
||
|
|
||
|
def _get_comment(self, text):
|
||
|
return "// {}".format(text)
|
||
|
|
||
|
def _declare_number_const(self, name, value):
|
||
|
return "var {} = {};".format(name, value.evalf(self._settings['precision']))
|
||
|
|
||
|
def _format_code(self, lines):
|
||
|
return self.indent_code(lines)
|
||
|
|
||
|
def _traverse_matrix_indices(self, mat):
|
||
|
rows, cols = mat.shape
|
||
|
return ((i, j) for i in range(rows) for j in range(cols))
|
||
|
|
||
|
def _get_loop_opening_ending(self, indices):
|
||
|
open_lines = []
|
||
|
close_lines = []
|
||
|
loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
|
||
|
for i in indices:
|
||
|
# Javascript arrays start at 0 and end at dimension-1
|
||
|
open_lines.append(loopstart % {
|
||
|
'varble': self._print(i.label),
|
||
|
'start': self._print(i.lower),
|
||
|
'end': self._print(i.upper + 1)})
|
||
|
close_lines.append("}")
|
||
|
return open_lines, close_lines
|
||
|
|
||
|
def _print_Pow(self, expr):
|
||
|
PREC = precedence(expr)
|
||
|
if equal_valued(expr.exp, -1):
|
||
|
return '1/%s' % (self.parenthesize(expr.base, PREC))
|
||
|
elif equal_valued(expr.exp, 0.5):
|
||
|
return 'Math.sqrt(%s)' % self._print(expr.base)
|
||
|
elif expr.exp == S.One/3:
|
||
|
return 'Math.cbrt(%s)' % self._print(expr.base)
|
||
|
else:
|
||
|
return 'Math.pow(%s, %s)' % (self._print(expr.base),
|
||
|
self._print(expr.exp))
|
||
|
|
||
|
def _print_Rational(self, expr):
|
||
|
p, q = int(expr.p), int(expr.q)
|
||
|
return '%d/%d' % (p, q)
|
||
|
|
||
|
def _print_Mod(self, expr):
|
||
|
num, den = expr.args
|
||
|
PREC = precedence(expr)
|
||
|
snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args]
|
||
|
# % is remainder (same sign as numerator), not modulo (same sign as
|
||
|
# denominator), in js. Hence, % only works as modulo if both numbers
|
||
|
# have the same sign
|
||
|
if (num.is_nonnegative and den.is_nonnegative or
|
||
|
num.is_nonpositive and den.is_nonpositive):
|
||
|
return f"{snum} % {sden}"
|
||
|
return f"(({snum} % {sden}) + {sden}) % {sden}"
|
||
|
|
||
|
def _print_Relational(self, expr):
|
||
|
lhs_code = self._print(expr.lhs)
|
||
|
rhs_code = self._print(expr.rhs)
|
||
|
op = expr.rel_op
|
||
|
return "{} {} {}".format(lhs_code, op, rhs_code)
|
||
|
|
||
|
def _print_Indexed(self, expr):
|
||
|
# calculate index for 1d array
|
||
|
dims = expr.shape
|
||
|
elem = S.Zero
|
||
|
offset = S.One
|
||
|
for i in reversed(range(expr.rank)):
|
||
|
elem += expr.indices[i]*offset
|
||
|
offset *= dims[i]
|
||
|
return "%s[%s]" % (self._print(expr.base.label), self._print(elem))
|
||
|
|
||
|
def _print_Idx(self, expr):
|
||
|
return self._print(expr.label)
|
||
|
|
||
|
def _print_Exp1(self, expr):
|
||
|
return "Math.E"
|
||
|
|
||
|
def _print_Pi(self, expr):
|
||
|
return 'Math.PI'
|
||
|
|
||
|
def _print_Infinity(self, expr):
|
||
|
return 'Number.POSITIVE_INFINITY'
|
||
|
|
||
|
def _print_NegativeInfinity(self, expr):
|
||
|
return 'Number.NEGATIVE_INFINITY'
|
||
|
|
||
|
def _print_Piecewise(self, expr):
|
||
|
from sympy.codegen.ast import Assignment
|
||
|
if expr.args[-1].cond != True:
|
||
|
# We need the last conditional to be a True, otherwise the resulting
|
||
|
# function may not return a result.
|
||
|
raise ValueError("All Piecewise expressions must contain an "
|
||
|
"(expr, True) statement to be used as a default "
|
||
|
"condition. Without one, the generated "
|
||
|
"expression may not evaluate to anything under "
|
||
|
"some condition.")
|
||
|
lines = []
|
||
|
if expr.has(Assignment):
|
||
|
for i, (e, c) in enumerate(expr.args):
|
||
|
if i == 0:
|
||
|
lines.append("if (%s) {" % self._print(c))
|
||
|
elif i == len(expr.args) - 1 and c == True:
|
||
|
lines.append("else {")
|
||
|
else:
|
||
|
lines.append("else if (%s) {" % self._print(c))
|
||
|
code0 = self._print(e)
|
||
|
lines.append(code0)
|
||
|
lines.append("}")
|
||
|
return "\n".join(lines)
|
||
|
else:
|
||
|
# The piecewise was used in an expression, need to do inline
|
||
|
# operators. This has the downside that inline operators will
|
||
|
# not work for statements that span multiple lines (Matrix or
|
||
|
# Indexed expressions).
|
||
|
ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e))
|
||
|
for e, c in expr.args[:-1]]
|
||
|
last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
|
||
|
return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])
|
||
|
|
||
|
def _print_MatrixElement(self, expr):
|
||
|
return "{}[{}]".format(self.parenthesize(expr.parent,
|
||
|
PRECEDENCE["Atom"], strict=True),
|
||
|
expr.j + expr.i*expr.parent.shape[1])
|
||
|
|
||
|
def indent_code(self, code):
|
||
|
"""Accepts a string of code or a list of code lines"""
|
||
|
|
||
|
if isinstance(code, str):
|
||
|
code_lines = self.indent_code(code.splitlines(True))
|
||
|
return ''.join(code_lines)
|
||
|
|
||
|
tab = " "
|
||
|
inc_token = ('{', '(', '{\n', '(\n')
|
||
|
dec_token = ('}', ')')
|
||
|
|
||
|
code = [ line.lstrip(' \t') for line in code ]
|
||
|
|
||
|
increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
|
||
|
decrease = [ int(any(map(line.startswith, dec_token)))
|
||
|
for line in code ]
|
||
|
|
||
|
pretty = []
|
||
|
level = 0
|
||
|
for n, line in enumerate(code):
|
||
|
if line in ('', '\n'):
|
||
|
pretty.append(line)
|
||
|
continue
|
||
|
level -= decrease[n]
|
||
|
pretty.append("%s%s" % (tab*level, line))
|
||
|
level += increase[n]
|
||
|
return pretty
|
||
|
|
||
|
|
||
|
def jscode(expr, assign_to=None, **settings):
|
||
|
"""Converts an expr to a string of javascript code
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : Expr
|
||
|
A SymPy expression to be converted.
|
||
|
assign_to : optional
|
||
|
When given, the argument is used as the name of the variable to which
|
||
|
the expression is assigned. Can be a string, ``Symbol``,
|
||
|
``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
|
||
|
line-wrapping, or for expressions that generate multi-line statements.
|
||
|
precision : integer, optional
|
||
|
The precision for numbers such as pi [default=15].
|
||
|
user_functions : dict, optional
|
||
|
A dictionary where keys are ``FunctionClass`` instances and values are
|
||
|
their string representations. Alternatively, the dictionary value can
|
||
|
be a list of tuples i.e. [(argument_test, js_function_string)]. See
|
||
|
below for examples.
|
||
|
human : bool, optional
|
||
|
If True, the result is a single string that may contain some constant
|
||
|
declarations for the number symbols. If False, the same information is
|
||
|
returned in a tuple of (symbols_to_declare, not_supported_functions,
|
||
|
code_text). [default=True].
|
||
|
contract: bool, optional
|
||
|
If True, ``Indexed`` instances are assumed to obey tensor contraction
|
||
|
rules and the corresponding nested loops over indices are generated.
|
||
|
Setting contract=False will not generate loops, instead the user is
|
||
|
responsible to provide values for the indices in the code.
|
||
|
[default=True].
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs
|
||
|
>>> x, tau = symbols("x, tau")
|
||
|
>>> jscode((2*tau)**Rational(7, 2))
|
||
|
'8*Math.sqrt(2)*Math.pow(tau, 7/2)'
|
||
|
>>> jscode(sin(x), assign_to="s")
|
||
|
's = Math.sin(x);'
|
||
|
|
||
|
Custom printing can be defined for certain types by passing a dictionary of
|
||
|
"type" : "function" to the ``user_functions`` kwarg. Alternatively, the
|
||
|
dictionary value can be a list of tuples i.e. [(argument_test,
|
||
|
js_function_string)].
|
||
|
|
||
|
>>> custom_functions = {
|
||
|
... "ceiling": "CEIL",
|
||
|
... "Abs": [(lambda x: not x.is_integer, "fabs"),
|
||
|
... (lambda x: x.is_integer, "ABS")]
|
||
|
... }
|
||
|
>>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions)
|
||
|
'fabs(x) + CEIL(x)'
|
||
|
|
||
|
``Piecewise`` expressions are converted into conditionals. If an
|
||
|
``assign_to`` variable is provided an if statement is created, otherwise
|
||
|
the ternary operator is used. Note that if the ``Piecewise`` lacks a
|
||
|
default term, represented by ``(expr, True)`` then an error will be thrown.
|
||
|
This is to prevent generating an expression that may not evaluate to
|
||
|
anything.
|
||
|
|
||
|
>>> from sympy import Piecewise
|
||
|
>>> expr = Piecewise((x + 1, x > 0), (x, True))
|
||
|
>>> print(jscode(expr, tau))
|
||
|
if (x > 0) {
|
||
|
tau = x + 1;
|
||
|
}
|
||
|
else {
|
||
|
tau = x;
|
||
|
}
|
||
|
|
||
|
Support for loops is provided through ``Indexed`` types. With
|
||
|
``contract=True`` these expressions will be turned into loops, whereas
|
||
|
``contract=False`` will just print the assignment expression that should be
|
||
|
looped over:
|
||
|
|
||
|
>>> from sympy import Eq, IndexedBase, Idx
|
||
|
>>> len_y = 5
|
||
|
>>> y = IndexedBase('y', shape=(len_y,))
|
||
|
>>> t = IndexedBase('t', shape=(len_y,))
|
||
|
>>> Dy = IndexedBase('Dy', shape=(len_y-1,))
|
||
|
>>> i = Idx('i', len_y-1)
|
||
|
>>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
|
||
|
>>> jscode(e.rhs, assign_to=e.lhs, contract=False)
|
||
|
'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'
|
||
|
|
||
|
Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
|
||
|
must be provided to ``assign_to``. Note that any expression that can be
|
||
|
generated normally can also exist inside a Matrix:
|
||
|
|
||
|
>>> from sympy import Matrix, MatrixSymbol
|
||
|
>>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
|
||
|
>>> A = MatrixSymbol('A', 3, 1)
|
||
|
>>> print(jscode(mat, A))
|
||
|
A[0] = Math.pow(x, 2);
|
||
|
if (x > 0) {
|
||
|
A[1] = x + 1;
|
||
|
}
|
||
|
else {
|
||
|
A[1] = x;
|
||
|
}
|
||
|
A[2] = Math.sin(x);
|
||
|
"""
|
||
|
|
||
|
return JavascriptCodePrinter(settings).doprint(expr, assign_to)
|
||
|
|
||
|
|
||
|
def print_jscode(expr, **settings):
|
||
|
"""Prints the Javascript representation of the given expression.
|
||
|
|
||
|
See jscode for the meaning of the optional arguments.
|
||
|
"""
|
||
|
print(jscode(expr, **settings))
|