65 lines
2.0 KiB
Python
65 lines
2.0 KiB
Python
|
|
||
|
from torch import nn
|
||
|
|
||
|
class QuantStub(nn.Module):
|
||
|
r"""Quantize stub module, before calibration, this is same as an observer,
|
||
|
it will be swapped as `nnq.Quantize` in `convert`.
|
||
|
|
||
|
Args:
|
||
|
qconfig: quantization configuration for the tensor,
|
||
|
if qconfig is not provided, we will get qconfig from parent modules
|
||
|
"""
|
||
|
def __init__(self, qconfig=None):
|
||
|
super().__init__()
|
||
|
if qconfig:
|
||
|
self.qconfig = qconfig
|
||
|
|
||
|
def forward(self, x):
|
||
|
return x
|
||
|
|
||
|
|
||
|
class DeQuantStub(nn.Module):
|
||
|
r"""Dequantize stub module, before calibration, this is same as identity,
|
||
|
this will be swapped as `nnq.DeQuantize` in `convert`.
|
||
|
|
||
|
Args:
|
||
|
qconfig: quantization configuration for the tensor,
|
||
|
if qconfig is not provided, we will get qconfig from parent modules
|
||
|
"""
|
||
|
def __init__(self, qconfig=None):
|
||
|
super().__init__()
|
||
|
if qconfig:
|
||
|
self.qconfig = qconfig
|
||
|
|
||
|
def forward(self, x):
|
||
|
return x
|
||
|
|
||
|
|
||
|
class QuantWrapper(nn.Module):
|
||
|
r"""A wrapper class that wraps the input module, adds QuantStub and
|
||
|
DeQuantStub and surround the call to module with call to quant and dequant
|
||
|
modules.
|
||
|
|
||
|
This is used by the `quantization` utility functions to add the quant and
|
||
|
dequant modules, before `convert` function `QuantStub` will just be observer,
|
||
|
it observes the input tensor, after `convert`, `QuantStub`
|
||
|
will be swapped to `nnq.Quantize` which does actual quantization. Similarly
|
||
|
for `DeQuantStub`.
|
||
|
"""
|
||
|
quant: QuantStub
|
||
|
dequant: DeQuantStub
|
||
|
module: nn.Module
|
||
|
|
||
|
def __init__(self, module):
|
||
|
super().__init__()
|
||
|
qconfig = getattr(module, "qconfig", None)
|
||
|
self.add_module('quant', QuantStub(qconfig))
|
||
|
self.add_module('dequant', DeQuantStub(qconfig))
|
||
|
self.add_module('module', module)
|
||
|
self.train(module.training)
|
||
|
|
||
|
def forward(self, X):
|
||
|
X = self.quant(X)
|
||
|
X = self.module(X)
|
||
|
return self.dequant(X)
|