Traktor/myenv/Lib/site-packages/torch/distributed/checkpoint/optimizer.py

349 lines
13 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
# Copyright (c) Meta Platforms, Inc. and affiliates
import dataclasses
from typing import cast, Dict, List, Optional, Sequence, Tuple, Union
import torch
import torch.distributed as dist
from torch._utils import _get_device_module
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
from torch.distributed._shard.sharded_tensor.metadata import (
TensorProperties as ShardTensorProperties,
)
from torch.distributed._shard.sharded_tensor.shard import Shard
from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ChunkShardingSpec
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint._nested_dict import unflatten_state_dict
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner
from torch.distributed.checkpoint.metadata import (
BytesStorageMetadata,
ChunkStorageMetadata,
Metadata,
MetadataIndex,
STATE_DICT_TYPE,
TensorProperties,
TensorStorageMetadata,
)
from torch.distributed.checkpoint.planner import LoadPlan, LoadPlanner
from torch.distributed.checkpoint.planner_helpers import (
_create_read_items,
create_read_items_for_chunk_list,
)
from torch.distributed.checkpoint.state_dict_loader import load_state_dict
from torch.distributed.checkpoint.storage import StorageReader
from torch.distributed.checkpoint.utils import (
_element_wise_add,
_element_wise_sub,
_normalize_device_info,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.remote_device import _remote_device
STATE_DICT_2D_LAYOUT = Dict[str, Tuple[Optional[Sequence[int]], Sequence[int]]]
# TODO: Update docstrings for optimizer.py
__all__ = [
"load_sharded_optimizer_state_dict",
]
def _gen_rank_device(global_rank: int, device_type: str = "cuda") -> str:
if device_type == "cpu":
return "cpu"
device_module = _get_device_module(device_type)
if device_module.is_available():
return _normalize_device_info(
device_type, global_rank % device_module.device_count()
)
return "cpu"
def _create_colwise_spec(
pg: Optional[dist.ProcessGroup] = None,
) -> ChunkShardingSpec:
pg_device_type = dist.distributed_c10d._get_pg_default_device(pg).type
if pg is None:
placements = [
f"rank:{idx}/{_gen_rank_device(idx, pg_device_type)}"
for idx in range(dist.get_world_size())
]
else:
placements = [
f"rank:{idx}/{_gen_rank_device(dist.get_global_rank(pg, idx), pg_device_type)}"
for idx in range(pg.size())
]
return ChunkShardingSpec(
dim=0,
placements=cast(List[Union[_remote_device, str]], placements),
)
def _is_nested_tensor(val: torch.Tensor) -> bool:
if type(val) is ShardedTensor:
if len(val.local_shards()) == 0:
return False
if type(val.local_shards()[0].tensor) is ShardedTensor:
return True
if type(val.local_shards()[0].tensor) is DTensor:
raise ValueError("Cannot handle DTensor nested insided ShardedTensor")
elif type(val) is DTensor and (
type(val._local_tensor) is DTensor or type(val._local_tensor) is ShardedTensor
):
raise ValueError("Cannot handle nested DTensor")
return False
def _alloc_tensor(
props: TensorProperties, size: Sequence[int], device_type: str = "cuda"
) -> torch.Tensor:
return torch.empty(
size=size,
dtype=props.dtype,
layout=props.layout,
requires_grad=props.requires_grad,
pin_memory=props.pin_memory,
device=cast(torch.device, _get_device_module(device_type).current_device()),
)
def _get_state_dict_2d_layout(
state_dict: STATE_DICT_TYPE,
) -> Tuple[STATE_DICT_2D_LAYOUT, Optional[dist.ProcessGroup]]:
"""
Load the right TP slice of the optimizer state.
This is not easy since the per-tensor slicing can't be inferred from checkpoint metadata.
We take advantage of the model state_dict producing a sliced ST to figure out what we need to load.
This is pretty fragile and it might be easier for FSDP to compute this info for us.
Returns a dictionary where keys are the same of the state_dict and the value is a tuple of
(offset, size) for the current rank TP slice.
N.B. The state_dict *MUST* come from FSDP.sharded_state_dict.
"""
specs: STATE_DICT_2D_LAYOUT = {}
dp_pg: Optional[dist.ProcessGroup] = None
for key, value in state_dict.items():
specs[key] = (None, value.size())
if _is_nested_tensor(value):
assert (
len(value.local_shards()) == 1
), "Cannot handle ST with multiple shards"
assert isinstance(
value, ShardedTensor
), "Can only handle nested ShardedTensor"
shard = value.local_shards()[0]
specs[key] = (
shard.metadata.shard_offsets,
shard.metadata.shard_sizes,
)
dp_pg = shard.tensor._process_group # type: ignore[attr-defined]
return (
specs,
dp_pg,
)
class _ReaderWithOffset(DefaultLoadPlanner):
translation: Dict[MetadataIndex, MetadataIndex]
state_dict: STATE_DICT_TYPE
metadata: Metadata
def __init__(self, fqn_to_offset: Dict[str, Sequence[int]]) -> None:
super().__init__()
self.fqn_to_offset = fqn_to_offset
self.metadata = Metadata({})
self.state_dict = {}
self.translation = {}
def create_local_plan(self) -> LoadPlan:
requests = []
self.translation = {}
for fqn, obj in self.state_dict.items():
md = self.metadata.state_dict_metadata[fqn]
if not isinstance(obj, ShardedTensor):
requests += _create_read_items(fqn, md, obj)
continue
if fqn not in self.fqn_to_offset:
requests += _create_read_items(fqn, md, obj)
continue
offset = self.fqn_to_offset[fqn]
assert len(obj.local_shards()) == 1
original_shard = obj.local_shards()[0]
local_chunks = [
ChunkStorageMetadata(
offsets=torch.Size(
_element_wise_add(original_shard.metadata.shard_offsets, offset)
),
sizes=torch.Size(original_shard.metadata.shard_sizes),
)
]
reqs = create_read_items_for_chunk_list(
fqn, cast(TensorStorageMetadata, md), local_chunks
)
# TODO: The ReadItems will have a displaced MetadataIndex, fix it.
# TODO: we should change _create_sharded_read_items to have more ergonomic API
for ri in reqs:
assert ri.dest_index.offset is not None
original_offset = _element_wise_sub(ri.dest_index.offset, offset)
original_index = dataclasses.replace(
ri.dest_index, offset=torch.Size(original_offset)
)
self.translation[ri.dest_index] = original_index
requests += reqs
return LoadPlan(requests)
def lookup_tensor(self, index: MetadataIndex) -> torch.Tensor:
return super().lookup_tensor(self.translation.get(index, index))
def load_sharded_optimizer_state_dict(
model_state_dict: STATE_DICT_TYPE,
optimizer_key: str,
storage_reader: StorageReader,
planner: Optional[LoadPlanner] = None,
) -> STATE_DICT_TYPE:
"""
Load a state_dict in conjunction with FSDP sharded optimizer state.
This is the current recommended way to checkpoint FSDP.
>>> # xdoctest: +SKIP
>>> import torch.distributed.checkpoint as dist_cp
>>> # Save
>>> model: torch.nn.Model
>>> optim_params = model.parameters()
>>> optim = torch.optim.SGD(optim_params, lr=0.01)
>>> # Save
>>> with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
>>> state_dict = {
>>> "optimizer": FSDP.optim_state_dict(model, optim),
>>> "model": model.state_dict()
>>> }
>>> dist_cp.save_state_dict(
>>> state_dict=optim_state,
>>> storage_writer=dist_cp.FileSystemWriter("checkpoint"),
>>> planner=dist_cp.DefaultSavePlanner(),
>>> )
>>>
>>> # Load
>>> with FSDP.state_dict_type(model_tp, StateDictType.SHARDED_STATE_DICT):
>>> model_state_dict = model_tp.state_dict()
>>> checkpoint = {
>>> "model": model_state_dict
>>> }
>>> dist_cp.load_state_dict(
>>> state_dict=checkpoint,
>>> storage_reader=dist_cp.FileSystemReader(checkpoint_file),
>>> planner=dist_cp.DefaultLoadPlanner(),
>>> )
>>> model.load_state_dict(checkpoint["model_state"])
>>>
>>> optim_state = dist_cp.load_sharded_optimizer_state_dict(
>>> model_state_dict,
>>> optimizer_key="optimizer",
>>> storage_reader=dist_cp.FileSystemReader("checkpoint"),
>>> )
>>>
>>> flattened_osd = FSDP.optim_state_dict_to_load(
>>> model, optim, optim_state["optimizer"]
>>> )
>>>
>>> optim.load_state_dict(flattened_osd)
"""
metadata = storage_reader.read_metadata()
layout_specs, dp_pg = _get_state_dict_2d_layout(model_state_dict)
dp_pg_device_type = dist.distributed_c10d._get_pg_default_device(dp_pg).type
device_module = _get_device_module(dp_pg_device_type)
if dp_pg is None:
placements = []
for i in range(dist.get_world_size()):
device_info = _normalize_device_info(
dp_pg_device_type, i % device_module.device_count()
)
placements.append(f"rank:{i}/{device_info}")
sharding_spec = ChunkShardingSpec(dim=0, placements=placements) # type: ignore[arg-type]
else:
sharding_spec = _create_colwise_spec(dp_pg)
# Create a state_dict for optimizer state
state_dict: STATE_DICT_TYPE = {}
fqn_to_offset: Dict[str, Sequence[int]] = {}
for key, value in metadata.state_dict_metadata.items():
key_path = metadata.planner_data[key]
if key_path[0] != optimizer_key:
continue
if isinstance(value, BytesStorageMetadata):
state_dict[key] = "<bytes_io>"
continue
# value: TensorStorageMetadata
if value.size.numel() == 1:
state_dict[key] = _alloc_tensor(
value.properties, value.size, dp_pg_device_type
)
elif dp_pg is None:
state_dict[key] = _create_chunk_sharded_tensor(
_alloc_tensor(value.properties, value.size, dp_pg_device_type),
rank=dist.get_rank(),
world_size=dist.get_world_size(),
num_devices_per_node=device_module.device_count(),
pg=_get_default_group(),
)
else:
spec_key = key_path[2]
alloc_size = layout_specs.get(spec_key, (None, value.size))[1]
properties = ShardTensorProperties(
dtype=value.properties.dtype,
layout=value.properties.layout,
requires_grad=value.properties.requires_grad,
memory_format=value.properties.memory_format,
pin_memory=value.properties.pin_memory,
)
st_md = sharding_spec.build_metadata(torch.Size(alloc_size), properties)
local_shards = []
current_rank = dist.get_rank(dp_pg)
for shard_md in st_md.shards_metadata:
if cast(_remote_device, shard_md.placement).rank() != current_rank:
continue
local_shards.append(
Shard(
tensor=_alloc_tensor(
value.properties, shard_md.shard_sizes, dp_pg_device_type
),
metadata=shard_md,
)
)
st = ShardedTensor._init_from_local_shards_and_global_metadata(
local_shards, st_md, process_group=dp_pg
)
if spec_key in layout_specs and layout_specs[spec_key][0] is not None:
fqn_to_offset[key] = cast(Sequence[int], layout_specs[spec_key][0])
state_dict[key] = st
# Whether we unflatten before or after doesn't matter
load_state_dict(
state_dict=state_dict,
storage_reader=storage_reader,
# FIXME the type of planner is wrong in load_state_dict
planner=_ReaderWithOffset(fqn_to_offset) if dp_pg is not None else planner,
)
state_dict = unflatten_state_dict(state_dict, metadata.planner_data)
return state_dict