150 lines
5.2 KiB
Python
150 lines
5.2 KiB
Python
|
from numbers import Number
|
||
|
|
||
|
import torch
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.distribution import Distribution
|
||
|
from torch.distributions.transformed_distribution import TransformedDistribution
|
||
|
from torch.distributions.transforms import SigmoidTransform
|
||
|
from torch.distributions.utils import (
|
||
|
broadcast_all,
|
||
|
clamp_probs,
|
||
|
lazy_property,
|
||
|
logits_to_probs,
|
||
|
probs_to_logits,
|
||
|
)
|
||
|
|
||
|
__all__ = ["LogitRelaxedBernoulli", "RelaxedBernoulli"]
|
||
|
|
||
|
|
||
|
class LogitRelaxedBernoulli(Distribution):
|
||
|
r"""
|
||
|
Creates a LogitRelaxedBernoulli distribution parameterized by :attr:`probs`
|
||
|
or :attr:`logits` (but not both), which is the logit of a RelaxedBernoulli
|
||
|
distribution.
|
||
|
|
||
|
Samples are logits of values in (0, 1). See [1] for more details.
|
||
|
|
||
|
Args:
|
||
|
temperature (Tensor): relaxation temperature
|
||
|
probs (Number, Tensor): the probability of sampling `1`
|
||
|
logits (Number, Tensor): the log-odds of sampling `1`
|
||
|
|
||
|
[1] The Concrete Distribution: A Continuous Relaxation of Discrete Random
|
||
|
Variables (Maddison et al, 2017)
|
||
|
|
||
|
[2] Categorical Reparametrization with Gumbel-Softmax
|
||
|
(Jang et al, 2017)
|
||
|
"""
|
||
|
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
|
||
|
support = constraints.real
|
||
|
|
||
|
def __init__(self, temperature, probs=None, logits=None, validate_args=None):
|
||
|
self.temperature = temperature
|
||
|
if (probs is None) == (logits is None):
|
||
|
raise ValueError(
|
||
|
"Either `probs` or `logits` must be specified, but not both."
|
||
|
)
|
||
|
if probs is not None:
|
||
|
is_scalar = isinstance(probs, Number)
|
||
|
(self.probs,) = broadcast_all(probs)
|
||
|
else:
|
||
|
is_scalar = isinstance(logits, Number)
|
||
|
(self.logits,) = broadcast_all(logits)
|
||
|
self._param = self.probs if probs is not None else self.logits
|
||
|
if is_scalar:
|
||
|
batch_shape = torch.Size()
|
||
|
else:
|
||
|
batch_shape = self._param.size()
|
||
|
super().__init__(batch_shape, validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(LogitRelaxedBernoulli, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
new.temperature = self.temperature
|
||
|
if "probs" in self.__dict__:
|
||
|
new.probs = self.probs.expand(batch_shape)
|
||
|
new._param = new.probs
|
||
|
if "logits" in self.__dict__:
|
||
|
new.logits = self.logits.expand(batch_shape)
|
||
|
new._param = new.logits
|
||
|
super(LogitRelaxedBernoulli, new).__init__(batch_shape, validate_args=False)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
def _new(self, *args, **kwargs):
|
||
|
return self._param.new(*args, **kwargs)
|
||
|
|
||
|
@lazy_property
|
||
|
def logits(self):
|
||
|
return probs_to_logits(self.probs, is_binary=True)
|
||
|
|
||
|
@lazy_property
|
||
|
def probs(self):
|
||
|
return logits_to_probs(self.logits, is_binary=True)
|
||
|
|
||
|
@property
|
||
|
def param_shape(self):
|
||
|
return self._param.size()
|
||
|
|
||
|
def rsample(self, sample_shape=torch.Size()):
|
||
|
shape = self._extended_shape(sample_shape)
|
||
|
probs = clamp_probs(self.probs.expand(shape))
|
||
|
uniforms = clamp_probs(
|
||
|
torch.rand(shape, dtype=probs.dtype, device=probs.device)
|
||
|
)
|
||
|
return (
|
||
|
uniforms.log() - (-uniforms).log1p() + probs.log() - (-probs).log1p()
|
||
|
) / self.temperature
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
logits, value = broadcast_all(self.logits, value)
|
||
|
diff = logits - value.mul(self.temperature)
|
||
|
return self.temperature.log() + diff - 2 * diff.exp().log1p()
|
||
|
|
||
|
|
||
|
class RelaxedBernoulli(TransformedDistribution):
|
||
|
r"""
|
||
|
Creates a RelaxedBernoulli distribution, parametrized by
|
||
|
:attr:`temperature`, and either :attr:`probs` or :attr:`logits`
|
||
|
(but not both). This is a relaxed version of the `Bernoulli` distribution,
|
||
|
so the values are in (0, 1), and has reparametrizable samples.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = RelaxedBernoulli(torch.tensor([2.2]),
|
||
|
... torch.tensor([0.1, 0.2, 0.3, 0.99]))
|
||
|
>>> m.sample()
|
||
|
tensor([ 0.2951, 0.3442, 0.8918, 0.9021])
|
||
|
|
||
|
Args:
|
||
|
temperature (Tensor): relaxation temperature
|
||
|
probs (Number, Tensor): the probability of sampling `1`
|
||
|
logits (Number, Tensor): the log-odds of sampling `1`
|
||
|
"""
|
||
|
arg_constraints = {"probs": constraints.unit_interval, "logits": constraints.real}
|
||
|
support = constraints.unit_interval
|
||
|
has_rsample = True
|
||
|
|
||
|
def __init__(self, temperature, probs=None, logits=None, validate_args=None):
|
||
|
base_dist = LogitRelaxedBernoulli(temperature, probs, logits)
|
||
|
super().__init__(base_dist, SigmoidTransform(), validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(RelaxedBernoulli, _instance)
|
||
|
return super().expand(batch_shape, _instance=new)
|
||
|
|
||
|
@property
|
||
|
def temperature(self):
|
||
|
return self.base_dist.temperature
|
||
|
|
||
|
@property
|
||
|
def logits(self):
|
||
|
return self.base_dist.logits
|
||
|
|
||
|
@property
|
||
|
def probs(self):
|
||
|
return self.base_dist.probs
|