1246 lines
40 KiB
Python
1246 lines
40 KiB
Python
|
import functools
|
||
|
import math
|
||
|
import numbers
|
||
|
import operator
|
||
|
import weakref
|
||
|
from typing import List
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.utils import (
|
||
|
_sum_rightmost,
|
||
|
broadcast_all,
|
||
|
lazy_property,
|
||
|
tril_matrix_to_vec,
|
||
|
vec_to_tril_matrix,
|
||
|
)
|
||
|
from torch.nn.functional import pad, softplus
|
||
|
|
||
|
__all__ = [
|
||
|
"AbsTransform",
|
||
|
"AffineTransform",
|
||
|
"CatTransform",
|
||
|
"ComposeTransform",
|
||
|
"CorrCholeskyTransform",
|
||
|
"CumulativeDistributionTransform",
|
||
|
"ExpTransform",
|
||
|
"IndependentTransform",
|
||
|
"LowerCholeskyTransform",
|
||
|
"PositiveDefiniteTransform",
|
||
|
"PowerTransform",
|
||
|
"ReshapeTransform",
|
||
|
"SigmoidTransform",
|
||
|
"SoftplusTransform",
|
||
|
"TanhTransform",
|
||
|
"SoftmaxTransform",
|
||
|
"StackTransform",
|
||
|
"StickBreakingTransform",
|
||
|
"Transform",
|
||
|
"identity_transform",
|
||
|
]
|
||
|
|
||
|
|
||
|
class Transform:
|
||
|
"""
|
||
|
Abstract class for invertable transformations with computable log
|
||
|
det jacobians. They are primarily used in
|
||
|
:class:`torch.distributions.TransformedDistribution`.
|
||
|
|
||
|
Caching is useful for transforms whose inverses are either expensive or
|
||
|
numerically unstable. Note that care must be taken with memoized values
|
||
|
since the autograd graph may be reversed. For example while the following
|
||
|
works with or without caching::
|
||
|
|
||
|
y = t(x)
|
||
|
t.log_abs_det_jacobian(x, y).backward() # x will receive gradients.
|
||
|
|
||
|
However the following will error when caching due to dependency reversal::
|
||
|
|
||
|
y = t(x)
|
||
|
z = t.inv(y)
|
||
|
grad(z.sum(), [y]) # error because z is x
|
||
|
|
||
|
Derived classes should implement one or both of :meth:`_call` or
|
||
|
:meth:`_inverse`. Derived classes that set `bijective=True` should also
|
||
|
implement :meth:`log_abs_det_jacobian`.
|
||
|
|
||
|
Args:
|
||
|
cache_size (int): Size of cache. If zero, no caching is done. If one,
|
||
|
the latest single value is cached. Only 0 and 1 are supported.
|
||
|
|
||
|
Attributes:
|
||
|
domain (:class:`~torch.distributions.constraints.Constraint`):
|
||
|
The constraint representing valid inputs to this transform.
|
||
|
codomain (:class:`~torch.distributions.constraints.Constraint`):
|
||
|
The constraint representing valid outputs to this transform
|
||
|
which are inputs to the inverse transform.
|
||
|
bijective (bool): Whether this transform is bijective. A transform
|
||
|
``t`` is bijective iff ``t.inv(t(x)) == x`` and
|
||
|
``t(t.inv(y)) == y`` for every ``x`` in the domain and ``y`` in
|
||
|
the codomain. Transforms that are not bijective should at least
|
||
|
maintain the weaker pseudoinverse properties
|
||
|
``t(t.inv(t(x)) == t(x)`` and ``t.inv(t(t.inv(y))) == t.inv(y)``.
|
||
|
sign (int or Tensor): For bijective univariate transforms, this
|
||
|
should be +1 or -1 depending on whether transform is monotone
|
||
|
increasing or decreasing.
|
||
|
"""
|
||
|
|
||
|
bijective = False
|
||
|
domain: constraints.Constraint
|
||
|
codomain: constraints.Constraint
|
||
|
|
||
|
def __init__(self, cache_size=0):
|
||
|
self._cache_size = cache_size
|
||
|
self._inv = None
|
||
|
if cache_size == 0:
|
||
|
pass # default behavior
|
||
|
elif cache_size == 1:
|
||
|
self._cached_x_y = None, None
|
||
|
else:
|
||
|
raise ValueError("cache_size must be 0 or 1")
|
||
|
super().__init__()
|
||
|
|
||
|
def __getstate__(self):
|
||
|
state = self.__dict__.copy()
|
||
|
state["_inv"] = None
|
||
|
return state
|
||
|
|
||
|
@property
|
||
|
def event_dim(self):
|
||
|
if self.domain.event_dim == self.codomain.event_dim:
|
||
|
return self.domain.event_dim
|
||
|
raise ValueError("Please use either .domain.event_dim or .codomain.event_dim")
|
||
|
|
||
|
@property
|
||
|
def inv(self):
|
||
|
"""
|
||
|
Returns the inverse :class:`Transform` of this transform.
|
||
|
This should satisfy ``t.inv.inv is t``.
|
||
|
"""
|
||
|
inv = None
|
||
|
if self._inv is not None:
|
||
|
inv = self._inv()
|
||
|
if inv is None:
|
||
|
inv = _InverseTransform(self)
|
||
|
self._inv = weakref.ref(inv)
|
||
|
return inv
|
||
|
|
||
|
@property
|
||
|
def sign(self):
|
||
|
"""
|
||
|
Returns the sign of the determinant of the Jacobian, if applicable.
|
||
|
In general this only makes sense for bijective transforms.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
if type(self).__init__ is Transform.__init__:
|
||
|
return type(self)(cache_size=cache_size)
|
||
|
raise NotImplementedError(f"{type(self)}.with_cache is not implemented")
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return self is other
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
# Necessary for Python2
|
||
|
return not self.__eq__(other)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
"""
|
||
|
Computes the transform `x => y`.
|
||
|
"""
|
||
|
if self._cache_size == 0:
|
||
|
return self._call(x)
|
||
|
x_old, y_old = self._cached_x_y
|
||
|
if x is x_old:
|
||
|
return y_old
|
||
|
y = self._call(x)
|
||
|
self._cached_x_y = x, y
|
||
|
return y
|
||
|
|
||
|
def _inv_call(self, y):
|
||
|
"""
|
||
|
Inverts the transform `y => x`.
|
||
|
"""
|
||
|
if self._cache_size == 0:
|
||
|
return self._inverse(y)
|
||
|
x_old, y_old = self._cached_x_y
|
||
|
if y is y_old:
|
||
|
return x_old
|
||
|
x = self._inverse(y)
|
||
|
self._cached_x_y = x, y
|
||
|
return x
|
||
|
|
||
|
def _call(self, x):
|
||
|
"""
|
||
|
Abstract method to compute forward transformation.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
"""
|
||
|
Abstract method to compute inverse transformation.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
"""
|
||
|
Computes the log det jacobian `log |dy/dx|` given input and output.
|
||
|
"""
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __repr__(self):
|
||
|
return self.__class__.__name__ + "()"
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
"""
|
||
|
Infers the shape of the forward computation, given the input shape.
|
||
|
Defaults to preserving shape.
|
||
|
"""
|
||
|
return shape
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
"""
|
||
|
Infers the shapes of the inverse computation, given the output shape.
|
||
|
Defaults to preserving shape.
|
||
|
"""
|
||
|
return shape
|
||
|
|
||
|
|
||
|
class _InverseTransform(Transform):
|
||
|
"""
|
||
|
Inverts a single :class:`Transform`.
|
||
|
This class is private; please instead use the ``Transform.inv`` property.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, transform: Transform):
|
||
|
super().__init__(cache_size=transform._cache_size)
|
||
|
self._inv: Transform = transform
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def domain(self):
|
||
|
assert self._inv is not None
|
||
|
return self._inv.codomain
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def codomain(self):
|
||
|
assert self._inv is not None
|
||
|
return self._inv.domain
|
||
|
|
||
|
@property
|
||
|
def bijective(self):
|
||
|
assert self._inv is not None
|
||
|
return self._inv.bijective
|
||
|
|
||
|
@property
|
||
|
def sign(self):
|
||
|
assert self._inv is not None
|
||
|
return self._inv.sign
|
||
|
|
||
|
@property
|
||
|
def inv(self):
|
||
|
return self._inv
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
assert self._inv is not None
|
||
|
return self.inv.with_cache(cache_size).inv
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, _InverseTransform):
|
||
|
return False
|
||
|
assert self._inv is not None
|
||
|
return self._inv == other._inv
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.__class__.__name__}({repr(self._inv)})"
|
||
|
|
||
|
def __call__(self, x):
|
||
|
assert self._inv is not None
|
||
|
return self._inv._inv_call(x)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
assert self._inv is not None
|
||
|
return -self._inv.log_abs_det_jacobian(y, x)
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
return self._inv.inverse_shape(shape)
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
return self._inv.forward_shape(shape)
|
||
|
|
||
|
|
||
|
class ComposeTransform(Transform):
|
||
|
"""
|
||
|
Composes multiple transforms in a chain.
|
||
|
The transforms being composed are responsible for caching.
|
||
|
|
||
|
Args:
|
||
|
parts (list of :class:`Transform`): A list of transforms to compose.
|
||
|
cache_size (int): Size of cache. If zero, no caching is done. If one,
|
||
|
the latest single value is cached. Only 0 and 1 are supported.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, parts: List[Transform], cache_size=0):
|
||
|
if cache_size:
|
||
|
parts = [part.with_cache(cache_size) for part in parts]
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
self.parts = parts
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, ComposeTransform):
|
||
|
return False
|
||
|
return self.parts == other.parts
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def domain(self):
|
||
|
if not self.parts:
|
||
|
return constraints.real
|
||
|
domain = self.parts[0].domain
|
||
|
# Adjust event_dim to be maximum among all parts.
|
||
|
event_dim = self.parts[-1].codomain.event_dim
|
||
|
for part in reversed(self.parts):
|
||
|
event_dim += part.domain.event_dim - part.codomain.event_dim
|
||
|
event_dim = max(event_dim, part.domain.event_dim)
|
||
|
assert event_dim >= domain.event_dim
|
||
|
if event_dim > domain.event_dim:
|
||
|
domain = constraints.independent(domain, event_dim - domain.event_dim)
|
||
|
return domain
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def codomain(self):
|
||
|
if not self.parts:
|
||
|
return constraints.real
|
||
|
codomain = self.parts[-1].codomain
|
||
|
# Adjust event_dim to be maximum among all parts.
|
||
|
event_dim = self.parts[0].domain.event_dim
|
||
|
for part in self.parts:
|
||
|
event_dim += part.codomain.event_dim - part.domain.event_dim
|
||
|
event_dim = max(event_dim, part.codomain.event_dim)
|
||
|
assert event_dim >= codomain.event_dim
|
||
|
if event_dim > codomain.event_dim:
|
||
|
codomain = constraints.independent(codomain, event_dim - codomain.event_dim)
|
||
|
return codomain
|
||
|
|
||
|
@lazy_property
|
||
|
def bijective(self):
|
||
|
return all(p.bijective for p in self.parts)
|
||
|
|
||
|
@lazy_property
|
||
|
def sign(self):
|
||
|
sign = 1
|
||
|
for p in self.parts:
|
||
|
sign = sign * p.sign
|
||
|
return sign
|
||
|
|
||
|
@property
|
||
|
def inv(self):
|
||
|
inv = None
|
||
|
if self._inv is not None:
|
||
|
inv = self._inv()
|
||
|
if inv is None:
|
||
|
inv = ComposeTransform([p.inv for p in reversed(self.parts)])
|
||
|
self._inv = weakref.ref(inv)
|
||
|
inv._inv = weakref.ref(self)
|
||
|
return inv
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return ComposeTransform(self.parts, cache_size=cache_size)
|
||
|
|
||
|
def __call__(self, x):
|
||
|
for part in self.parts:
|
||
|
x = part(x)
|
||
|
return x
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
if not self.parts:
|
||
|
return torch.zeros_like(x)
|
||
|
|
||
|
# Compute intermediates. This will be free if parts[:-1] are all cached.
|
||
|
xs = [x]
|
||
|
for part in self.parts[:-1]:
|
||
|
xs.append(part(xs[-1]))
|
||
|
xs.append(y)
|
||
|
|
||
|
terms = []
|
||
|
event_dim = self.domain.event_dim
|
||
|
for part, x, y in zip(self.parts, xs[:-1], xs[1:]):
|
||
|
terms.append(
|
||
|
_sum_rightmost(
|
||
|
part.log_abs_det_jacobian(x, y), event_dim - part.domain.event_dim
|
||
|
)
|
||
|
)
|
||
|
event_dim += part.codomain.event_dim - part.domain.event_dim
|
||
|
return functools.reduce(operator.add, terms)
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
for part in self.parts:
|
||
|
shape = part.forward_shape(shape)
|
||
|
return shape
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
for part in reversed(self.parts):
|
||
|
shape = part.inverse_shape(shape)
|
||
|
return shape
|
||
|
|
||
|
def __repr__(self):
|
||
|
fmt_string = self.__class__.__name__ + "(\n "
|
||
|
fmt_string += ",\n ".join([p.__repr__() for p in self.parts])
|
||
|
fmt_string += "\n)"
|
||
|
return fmt_string
|
||
|
|
||
|
|
||
|
identity_transform = ComposeTransform([])
|
||
|
|
||
|
|
||
|
class IndependentTransform(Transform):
|
||
|
"""
|
||
|
Wrapper around another transform to treat
|
||
|
``reinterpreted_batch_ndims``-many extra of the right most dimensions as
|
||
|
dependent. This has no effect on the forward or backward transforms, but
|
||
|
does sum out ``reinterpreted_batch_ndims``-many of the rightmost dimensions
|
||
|
in :meth:`log_abs_det_jacobian`.
|
||
|
|
||
|
Args:
|
||
|
base_transform (:class:`Transform`): A base transform.
|
||
|
reinterpreted_batch_ndims (int): The number of extra rightmost
|
||
|
dimensions to treat as dependent.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, base_transform, reinterpreted_batch_ndims, cache_size=0):
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
self.base_transform = base_transform.with_cache(cache_size)
|
||
|
self.reinterpreted_batch_ndims = reinterpreted_batch_ndims
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return IndependentTransform(
|
||
|
self.base_transform, self.reinterpreted_batch_ndims, cache_size=cache_size
|
||
|
)
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def domain(self):
|
||
|
return constraints.independent(
|
||
|
self.base_transform.domain, self.reinterpreted_batch_ndims
|
||
|
)
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def codomain(self):
|
||
|
return constraints.independent(
|
||
|
self.base_transform.codomain, self.reinterpreted_batch_ndims
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def bijective(self):
|
||
|
return self.base_transform.bijective
|
||
|
|
||
|
@property
|
||
|
def sign(self):
|
||
|
return self.base_transform.sign
|
||
|
|
||
|
def _call(self, x):
|
||
|
if x.dim() < self.domain.event_dim:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
return self.base_transform(x)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
if y.dim() < self.codomain.event_dim:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
return self.base_transform.inv(y)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
result = self.base_transform.log_abs_det_jacobian(x, y)
|
||
|
result = _sum_rightmost(result, self.reinterpreted_batch_ndims)
|
||
|
return result
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.__class__.__name__}({repr(self.base_transform)}, {self.reinterpreted_batch_ndims})"
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
return self.base_transform.forward_shape(shape)
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
return self.base_transform.inverse_shape(shape)
|
||
|
|
||
|
|
||
|
class ReshapeTransform(Transform):
|
||
|
"""
|
||
|
Unit Jacobian transform to reshape the rightmost part of a tensor.
|
||
|
|
||
|
Note that ``in_shape`` and ``out_shape`` must have the same number of
|
||
|
elements, just as for :meth:`torch.Tensor.reshape`.
|
||
|
|
||
|
Arguments:
|
||
|
in_shape (torch.Size): The input event shape.
|
||
|
out_shape (torch.Size): The output event shape.
|
||
|
"""
|
||
|
|
||
|
bijective = True
|
||
|
|
||
|
def __init__(self, in_shape, out_shape, cache_size=0):
|
||
|
self.in_shape = torch.Size(in_shape)
|
||
|
self.out_shape = torch.Size(out_shape)
|
||
|
if self.in_shape.numel() != self.out_shape.numel():
|
||
|
raise ValueError("in_shape, out_shape have different numbers of elements")
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
|
||
|
@constraints.dependent_property
|
||
|
def domain(self):
|
||
|
return constraints.independent(constraints.real, len(self.in_shape))
|
||
|
|
||
|
@constraints.dependent_property
|
||
|
def codomain(self):
|
||
|
return constraints.independent(constraints.real, len(self.out_shape))
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return ReshapeTransform(self.in_shape, self.out_shape, cache_size=cache_size)
|
||
|
|
||
|
def _call(self, x):
|
||
|
batch_shape = x.shape[: x.dim() - len(self.in_shape)]
|
||
|
return x.reshape(batch_shape + self.out_shape)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
batch_shape = y.shape[: y.dim() - len(self.out_shape)]
|
||
|
return y.reshape(batch_shape + self.in_shape)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
batch_shape = x.shape[: x.dim() - len(self.in_shape)]
|
||
|
return x.new_zeros(batch_shape)
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
if len(shape) < len(self.in_shape):
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
cut = len(shape) - len(self.in_shape)
|
||
|
if shape[cut:] != self.in_shape:
|
||
|
raise ValueError(
|
||
|
f"Shape mismatch: expected {shape[cut:]} but got {self.in_shape}"
|
||
|
)
|
||
|
return shape[:cut] + self.out_shape
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
if len(shape) < len(self.out_shape):
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
cut = len(shape) - len(self.out_shape)
|
||
|
if shape[cut:] != self.out_shape:
|
||
|
raise ValueError(
|
||
|
f"Shape mismatch: expected {shape[cut:]} but got {self.out_shape}"
|
||
|
)
|
||
|
return shape[:cut] + self.in_shape
|
||
|
|
||
|
|
||
|
class ExpTransform(Transform):
|
||
|
r"""
|
||
|
Transform via the mapping :math:`y = \exp(x)`.
|
||
|
"""
|
||
|
domain = constraints.real
|
||
|
codomain = constraints.positive
|
||
|
bijective = True
|
||
|
sign = +1
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, ExpTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
return x.exp()
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
return y.log()
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
return x
|
||
|
|
||
|
|
||
|
class PowerTransform(Transform):
|
||
|
r"""
|
||
|
Transform via the mapping :math:`y = x^{\text{exponent}}`.
|
||
|
"""
|
||
|
domain = constraints.positive
|
||
|
codomain = constraints.positive
|
||
|
bijective = True
|
||
|
|
||
|
def __init__(self, exponent, cache_size=0):
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
(self.exponent,) = broadcast_all(exponent)
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return PowerTransform(self.exponent, cache_size=cache_size)
|
||
|
|
||
|
@lazy_property
|
||
|
def sign(self):
|
||
|
return self.exponent.sign()
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, PowerTransform):
|
||
|
return False
|
||
|
return self.exponent.eq(other.exponent).all().item()
|
||
|
|
||
|
def _call(self, x):
|
||
|
return x.pow(self.exponent)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
return y.pow(1 / self.exponent)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
return (self.exponent * y / x).abs().log()
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ()))
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ()))
|
||
|
|
||
|
|
||
|
def _clipped_sigmoid(x):
|
||
|
finfo = torch.finfo(x.dtype)
|
||
|
return torch.clamp(torch.sigmoid(x), min=finfo.tiny, max=1.0 - finfo.eps)
|
||
|
|
||
|
|
||
|
class SigmoidTransform(Transform):
|
||
|
r"""
|
||
|
Transform via the mapping :math:`y = \frac{1}{1 + \exp(-x)}` and :math:`x = \text{logit}(y)`.
|
||
|
"""
|
||
|
domain = constraints.real
|
||
|
codomain = constraints.unit_interval
|
||
|
bijective = True
|
||
|
sign = +1
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, SigmoidTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
return _clipped_sigmoid(x)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
finfo = torch.finfo(y.dtype)
|
||
|
y = y.clamp(min=finfo.tiny, max=1.0 - finfo.eps)
|
||
|
return y.log() - (-y).log1p()
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
return -F.softplus(-x) - F.softplus(x)
|
||
|
|
||
|
|
||
|
class SoftplusTransform(Transform):
|
||
|
r"""
|
||
|
Transform via the mapping :math:`\text{Softplus}(x) = \log(1 + \exp(x))`.
|
||
|
The implementation reverts to the linear function when :math:`x > 20`.
|
||
|
"""
|
||
|
domain = constraints.real
|
||
|
codomain = constraints.positive
|
||
|
bijective = True
|
||
|
sign = +1
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, SoftplusTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
return softplus(x)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
return (-y).expm1().neg().log() + y
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
return -softplus(-x)
|
||
|
|
||
|
|
||
|
class TanhTransform(Transform):
|
||
|
r"""
|
||
|
Transform via the mapping :math:`y = \tanh(x)`.
|
||
|
|
||
|
It is equivalent to
|
||
|
```
|
||
|
ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)])
|
||
|
```
|
||
|
However this might not be numerically stable, thus it is recommended to use `TanhTransform`
|
||
|
instead.
|
||
|
|
||
|
Note that one should use `cache_size=1` when it comes to `NaN/Inf` values.
|
||
|
|
||
|
"""
|
||
|
domain = constraints.real
|
||
|
codomain = constraints.interval(-1.0, 1.0)
|
||
|
bijective = True
|
||
|
sign = +1
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, TanhTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
return x.tanh()
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
# We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
|
||
|
# one should use `cache_size=1` instead
|
||
|
return torch.atanh(y)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
# We use a formula that is more numerically stable, see details in the following link
|
||
|
# https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80
|
||
|
return 2.0 * (math.log(2.0) - x - softplus(-2.0 * x))
|
||
|
|
||
|
|
||
|
class AbsTransform(Transform):
|
||
|
r"""
|
||
|
Transform via the mapping :math:`y = |x|`.
|
||
|
"""
|
||
|
domain = constraints.real
|
||
|
codomain = constraints.positive
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, AbsTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
return x.abs()
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
return y
|
||
|
|
||
|
|
||
|
class AffineTransform(Transform):
|
||
|
r"""
|
||
|
Transform via the pointwise affine mapping :math:`y = \text{loc} + \text{scale} \times x`.
|
||
|
|
||
|
Args:
|
||
|
loc (Tensor or float): Location parameter.
|
||
|
scale (Tensor or float): Scale parameter.
|
||
|
event_dim (int): Optional size of `event_shape`. This should be zero
|
||
|
for univariate random variables, 1 for distributions over vectors,
|
||
|
2 for distributions over matrices, etc.
|
||
|
"""
|
||
|
bijective = True
|
||
|
|
||
|
def __init__(self, loc, scale, event_dim=0, cache_size=0):
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
self.loc = loc
|
||
|
self.scale = scale
|
||
|
self._event_dim = event_dim
|
||
|
|
||
|
@property
|
||
|
def event_dim(self):
|
||
|
return self._event_dim
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def domain(self):
|
||
|
if self.event_dim == 0:
|
||
|
return constraints.real
|
||
|
return constraints.independent(constraints.real, self.event_dim)
|
||
|
|
||
|
@constraints.dependent_property(is_discrete=False)
|
||
|
def codomain(self):
|
||
|
if self.event_dim == 0:
|
||
|
return constraints.real
|
||
|
return constraints.independent(constraints.real, self.event_dim)
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return AffineTransform(
|
||
|
self.loc, self.scale, self.event_dim, cache_size=cache_size
|
||
|
)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
if not isinstance(other, AffineTransform):
|
||
|
return False
|
||
|
|
||
|
if isinstance(self.loc, numbers.Number) and isinstance(
|
||
|
other.loc, numbers.Number
|
||
|
):
|
||
|
if self.loc != other.loc:
|
||
|
return False
|
||
|
else:
|
||
|
if not (self.loc == other.loc).all().item():
|
||
|
return False
|
||
|
|
||
|
if isinstance(self.scale, numbers.Number) and isinstance(
|
||
|
other.scale, numbers.Number
|
||
|
):
|
||
|
if self.scale != other.scale:
|
||
|
return False
|
||
|
else:
|
||
|
if not (self.scale == other.scale).all().item():
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def sign(self):
|
||
|
if isinstance(self.scale, numbers.Real):
|
||
|
return 1 if float(self.scale) > 0 else -1 if float(self.scale) < 0 else 0
|
||
|
return self.scale.sign()
|
||
|
|
||
|
def _call(self, x):
|
||
|
return self.loc + self.scale * x
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
return (y - self.loc) / self.scale
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
shape = x.shape
|
||
|
scale = self.scale
|
||
|
if isinstance(scale, numbers.Real):
|
||
|
result = torch.full_like(x, math.log(abs(scale)))
|
||
|
else:
|
||
|
result = torch.abs(scale).log()
|
||
|
if self.event_dim:
|
||
|
result_size = result.size()[: -self.event_dim] + (-1,)
|
||
|
result = result.view(result_size).sum(-1)
|
||
|
shape = shape[: -self.event_dim]
|
||
|
return result.expand(shape)
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
return torch.broadcast_shapes(
|
||
|
shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ())
|
||
|
)
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
return torch.broadcast_shapes(
|
||
|
shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ())
|
||
|
)
|
||
|
|
||
|
|
||
|
class CorrCholeskyTransform(Transform):
|
||
|
r"""
|
||
|
Transforms an uncontrained real vector :math:`x` with length :math:`D*(D-1)/2` into the
|
||
|
Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower
|
||
|
triangular matrix with positive diagonals and unit Euclidean norm for each row.
|
||
|
The transform is processed as follows:
|
||
|
|
||
|
1. First we convert x into a lower triangular matrix in row order.
|
||
|
2. For each row :math:`X_i` of the lower triangular part, we apply a *signed* version of
|
||
|
class :class:`StickBreakingTransform` to transform :math:`X_i` into a
|
||
|
unit Euclidean length vector using the following steps:
|
||
|
- Scales into the interval :math:`(-1, 1)` domain: :math:`r_i = \tanh(X_i)`.
|
||
|
- Transforms into an unsigned domain: :math:`z_i = r_i^2`.
|
||
|
- Applies :math:`s_i = StickBreakingTransform(z_i)`.
|
||
|
- Transforms back into signed domain: :math:`y_i = sign(r_i) * \sqrt{s_i}`.
|
||
|
"""
|
||
|
domain = constraints.real_vector
|
||
|
codomain = constraints.corr_cholesky
|
||
|
bijective = True
|
||
|
|
||
|
def _call(self, x):
|
||
|
x = torch.tanh(x)
|
||
|
eps = torch.finfo(x.dtype).eps
|
||
|
x = x.clamp(min=-1 + eps, max=1 - eps)
|
||
|
r = vec_to_tril_matrix(x, diag=-1)
|
||
|
# apply stick-breaking on the squared values
|
||
|
# Note that y = sign(r) * sqrt(z * z1m_cumprod)
|
||
|
# = (sign(r) * sqrt(z)) * sqrt(z1m_cumprod) = r * sqrt(z1m_cumprod)
|
||
|
z = r**2
|
||
|
z1m_cumprod_sqrt = (1 - z).sqrt().cumprod(-1)
|
||
|
# Diagonal elements must be 1.
|
||
|
r = r + torch.eye(r.shape[-1], dtype=r.dtype, device=r.device)
|
||
|
y = r * pad(z1m_cumprod_sqrt[..., :-1], [1, 0], value=1)
|
||
|
return y
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
# inverse stick-breaking
|
||
|
# See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html
|
||
|
y_cumsum = 1 - torch.cumsum(y * y, dim=-1)
|
||
|
y_cumsum_shifted = pad(y_cumsum[..., :-1], [1, 0], value=1)
|
||
|
y_vec = tril_matrix_to_vec(y, diag=-1)
|
||
|
y_cumsum_vec = tril_matrix_to_vec(y_cumsum_shifted, diag=-1)
|
||
|
t = y_vec / (y_cumsum_vec).sqrt()
|
||
|
# inverse of tanh
|
||
|
x = (t.log1p() - t.neg().log1p()) / 2
|
||
|
return x
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y, intermediates=None):
|
||
|
# Because domain and codomain are two spaces with different dimensions, determinant of
|
||
|
# Jacobian is not well-defined. We return `log_abs_det_jacobian` of `x` and the
|
||
|
# flattened lower triangular part of `y`.
|
||
|
|
||
|
# See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html
|
||
|
y1m_cumsum = 1 - (y * y).cumsum(dim=-1)
|
||
|
# by taking diagonal=-2, we don't need to shift z_cumprod to the right
|
||
|
# also works for 2 x 2 matrix
|
||
|
y1m_cumsum_tril = tril_matrix_to_vec(y1m_cumsum, diag=-2)
|
||
|
stick_breaking_logdet = 0.5 * (y1m_cumsum_tril).log().sum(-1)
|
||
|
tanh_logdet = -2 * (x + softplus(-2 * x) - math.log(2.0)).sum(dim=-1)
|
||
|
return stick_breaking_logdet + tanh_logdet
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
# Reshape from (..., N) to (..., D, D).
|
||
|
if len(shape) < 1:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
N = shape[-1]
|
||
|
D = round((0.25 + 2 * N) ** 0.5 + 0.5)
|
||
|
if D * (D - 1) // 2 != N:
|
||
|
raise ValueError("Input is not a flattend lower-diagonal number")
|
||
|
return shape[:-1] + (D, D)
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
# Reshape from (..., D, D) to (..., N).
|
||
|
if len(shape) < 2:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
if shape[-2] != shape[-1]:
|
||
|
raise ValueError("Input is not square")
|
||
|
D = shape[-1]
|
||
|
N = D * (D - 1) // 2
|
||
|
return shape[:-2] + (N,)
|
||
|
|
||
|
|
||
|
class SoftmaxTransform(Transform):
|
||
|
r"""
|
||
|
Transform from unconstrained space to the simplex via :math:`y = \exp(x)` then
|
||
|
normalizing.
|
||
|
|
||
|
This is not bijective and cannot be used for HMC. However this acts mostly
|
||
|
coordinate-wise (except for the final normalization), and thus is
|
||
|
appropriate for coordinate-wise optimization algorithms.
|
||
|
"""
|
||
|
domain = constraints.real_vector
|
||
|
codomain = constraints.simplex
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, SoftmaxTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
logprobs = x
|
||
|
probs = (logprobs - logprobs.max(-1, True)[0]).exp()
|
||
|
return probs / probs.sum(-1, True)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
probs = y
|
||
|
return probs.log()
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
if len(shape) < 1:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
return shape
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
if len(shape) < 1:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
return shape
|
||
|
|
||
|
|
||
|
class StickBreakingTransform(Transform):
|
||
|
"""
|
||
|
Transform from unconstrained space to the simplex of one additional
|
||
|
dimension via a stick-breaking process.
|
||
|
|
||
|
This transform arises as an iterated sigmoid transform in a stick-breaking
|
||
|
construction of the `Dirichlet` distribution: the first logit is
|
||
|
transformed via sigmoid to the first probability and the probability of
|
||
|
everything else, and then the process recurses.
|
||
|
|
||
|
This is bijective and appropriate for use in HMC; however it mixes
|
||
|
coordinates together and is less appropriate for optimization.
|
||
|
"""
|
||
|
|
||
|
domain = constraints.real_vector
|
||
|
codomain = constraints.simplex
|
||
|
bijective = True
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, StickBreakingTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
|
||
|
z = _clipped_sigmoid(x - offset.log())
|
||
|
z_cumprod = (1 - z).cumprod(-1)
|
||
|
y = pad(z, [0, 1], value=1) * pad(z_cumprod, [1, 0], value=1)
|
||
|
return y
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
y_crop = y[..., :-1]
|
||
|
offset = y.shape[-1] - y.new_ones(y_crop.shape[-1]).cumsum(-1)
|
||
|
sf = 1 - y_crop.cumsum(-1)
|
||
|
# we clamp to make sure that sf is positive which sometimes does not
|
||
|
# happen when y[-1] ~ 0 or y[:-1].sum() ~ 1
|
||
|
sf = torch.clamp(sf, min=torch.finfo(y.dtype).tiny)
|
||
|
x = y_crop.log() - sf.log() + offset.log()
|
||
|
return x
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1)
|
||
|
x = x - offset.log()
|
||
|
# use the identity 1 - sigmoid(x) = exp(-x) * sigmoid(x)
|
||
|
detJ = (-x + F.logsigmoid(x) + y[..., :-1].log()).sum(-1)
|
||
|
return detJ
|
||
|
|
||
|
def forward_shape(self, shape):
|
||
|
if len(shape) < 1:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
return shape[:-1] + (shape[-1] + 1,)
|
||
|
|
||
|
def inverse_shape(self, shape):
|
||
|
if len(shape) < 1:
|
||
|
raise ValueError("Too few dimensions on input")
|
||
|
return shape[:-1] + (shape[-1] - 1,)
|
||
|
|
||
|
|
||
|
class LowerCholeskyTransform(Transform):
|
||
|
"""
|
||
|
Transform from unconstrained matrices to lower-triangular matrices with
|
||
|
nonnegative diagonal entries.
|
||
|
|
||
|
This is useful for parameterizing positive definite matrices in terms of
|
||
|
their Cholesky factorization.
|
||
|
"""
|
||
|
|
||
|
domain = constraints.independent(constraints.real, 2)
|
||
|
codomain = constraints.lower_cholesky
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, LowerCholeskyTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
return x.tril(-1) + x.diagonal(dim1=-2, dim2=-1).exp().diag_embed()
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
return y.tril(-1) + y.diagonal(dim1=-2, dim2=-1).log().diag_embed()
|
||
|
|
||
|
|
||
|
class PositiveDefiniteTransform(Transform):
|
||
|
"""
|
||
|
Transform from unconstrained matrices to positive-definite matrices.
|
||
|
"""
|
||
|
|
||
|
domain = constraints.independent(constraints.real, 2)
|
||
|
codomain = constraints.positive_definite # type: ignore[assignment]
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, PositiveDefiniteTransform)
|
||
|
|
||
|
def _call(self, x):
|
||
|
x = LowerCholeskyTransform()(x)
|
||
|
return x @ x.mT
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
y = torch.linalg.cholesky(y)
|
||
|
return LowerCholeskyTransform().inv(y)
|
||
|
|
||
|
|
||
|
class CatTransform(Transform):
|
||
|
"""
|
||
|
Transform functor that applies a sequence of transforms `tseq`
|
||
|
component-wise to each submatrix at `dim`, of length `lengths[dim]`,
|
||
|
in a way compatible with :func:`torch.cat`.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0)
|
||
|
x = torch.cat([x0, x0], dim=0)
|
||
|
t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10])
|
||
|
t = CatTransform([t0, t0], dim=0, lengths=[20, 20])
|
||
|
y = t(x)
|
||
|
"""
|
||
|
|
||
|
transforms: List[Transform]
|
||
|
|
||
|
def __init__(self, tseq, dim=0, lengths=None, cache_size=0):
|
||
|
assert all(isinstance(t, Transform) for t in tseq)
|
||
|
if cache_size:
|
||
|
tseq = [t.with_cache(cache_size) for t in tseq]
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
self.transforms = list(tseq)
|
||
|
if lengths is None:
|
||
|
lengths = [1] * len(self.transforms)
|
||
|
self.lengths = list(lengths)
|
||
|
assert len(self.lengths) == len(self.transforms)
|
||
|
self.dim = dim
|
||
|
|
||
|
@lazy_property
|
||
|
def event_dim(self):
|
||
|
return max(t.event_dim for t in self.transforms)
|
||
|
|
||
|
@lazy_property
|
||
|
def length(self):
|
||
|
return sum(self.lengths)
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return CatTransform(self.transforms, self.dim, self.lengths, cache_size)
|
||
|
|
||
|
def _call(self, x):
|
||
|
assert -x.dim() <= self.dim < x.dim()
|
||
|
assert x.size(self.dim) == self.length
|
||
|
yslices = []
|
||
|
start = 0
|
||
|
for trans, length in zip(self.transforms, self.lengths):
|
||
|
xslice = x.narrow(self.dim, start, length)
|
||
|
yslices.append(trans(xslice))
|
||
|
start = start + length # avoid += for jit compat
|
||
|
return torch.cat(yslices, dim=self.dim)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
assert -y.dim() <= self.dim < y.dim()
|
||
|
assert y.size(self.dim) == self.length
|
||
|
xslices = []
|
||
|
start = 0
|
||
|
for trans, length in zip(self.transforms, self.lengths):
|
||
|
yslice = y.narrow(self.dim, start, length)
|
||
|
xslices.append(trans.inv(yslice))
|
||
|
start = start + length # avoid += for jit compat
|
||
|
return torch.cat(xslices, dim=self.dim)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
assert -x.dim() <= self.dim < x.dim()
|
||
|
assert x.size(self.dim) == self.length
|
||
|
assert -y.dim() <= self.dim < y.dim()
|
||
|
assert y.size(self.dim) == self.length
|
||
|
logdetjacs = []
|
||
|
start = 0
|
||
|
for trans, length in zip(self.transforms, self.lengths):
|
||
|
xslice = x.narrow(self.dim, start, length)
|
||
|
yslice = y.narrow(self.dim, start, length)
|
||
|
logdetjac = trans.log_abs_det_jacobian(xslice, yslice)
|
||
|
if trans.event_dim < self.event_dim:
|
||
|
logdetjac = _sum_rightmost(logdetjac, self.event_dim - trans.event_dim)
|
||
|
logdetjacs.append(logdetjac)
|
||
|
start = start + length # avoid += for jit compat
|
||
|
# Decide whether to concatenate or sum.
|
||
|
dim = self.dim
|
||
|
if dim >= 0:
|
||
|
dim = dim - x.dim()
|
||
|
dim = dim + self.event_dim
|
||
|
if dim < 0:
|
||
|
return torch.cat(logdetjacs, dim=dim)
|
||
|
else:
|
||
|
return sum(logdetjacs)
|
||
|
|
||
|
@property
|
||
|
def bijective(self):
|
||
|
return all(t.bijective for t in self.transforms)
|
||
|
|
||
|
@constraints.dependent_property
|
||
|
def domain(self):
|
||
|
return constraints.cat(
|
||
|
[t.domain for t in self.transforms], self.dim, self.lengths
|
||
|
)
|
||
|
|
||
|
@constraints.dependent_property
|
||
|
def codomain(self):
|
||
|
return constraints.cat(
|
||
|
[t.codomain for t in self.transforms], self.dim, self.lengths
|
||
|
)
|
||
|
|
||
|
|
||
|
class StackTransform(Transform):
|
||
|
"""
|
||
|
Transform functor that applies a sequence of transforms `tseq`
|
||
|
component-wise to each submatrix at `dim`
|
||
|
in a way compatible with :func:`torch.stack`.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1)
|
||
|
t = StackTransform([ExpTransform(), identity_transform], dim=1)
|
||
|
y = t(x)
|
||
|
"""
|
||
|
|
||
|
transforms: List[Transform]
|
||
|
|
||
|
def __init__(self, tseq, dim=0, cache_size=0):
|
||
|
assert all(isinstance(t, Transform) for t in tseq)
|
||
|
if cache_size:
|
||
|
tseq = [t.with_cache(cache_size) for t in tseq]
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
self.transforms = list(tseq)
|
||
|
self.dim = dim
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return StackTransform(self.transforms, self.dim, cache_size)
|
||
|
|
||
|
def _slice(self, z):
|
||
|
return [z.select(self.dim, i) for i in range(z.size(self.dim))]
|
||
|
|
||
|
def _call(self, x):
|
||
|
assert -x.dim() <= self.dim < x.dim()
|
||
|
assert x.size(self.dim) == len(self.transforms)
|
||
|
yslices = []
|
||
|
for xslice, trans in zip(self._slice(x), self.transforms):
|
||
|
yslices.append(trans(xslice))
|
||
|
return torch.stack(yslices, dim=self.dim)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
assert -y.dim() <= self.dim < y.dim()
|
||
|
assert y.size(self.dim) == len(self.transforms)
|
||
|
xslices = []
|
||
|
for yslice, trans in zip(self._slice(y), self.transforms):
|
||
|
xslices.append(trans.inv(yslice))
|
||
|
return torch.stack(xslices, dim=self.dim)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
assert -x.dim() <= self.dim < x.dim()
|
||
|
assert x.size(self.dim) == len(self.transforms)
|
||
|
assert -y.dim() <= self.dim < y.dim()
|
||
|
assert y.size(self.dim) == len(self.transforms)
|
||
|
logdetjacs = []
|
||
|
yslices = self._slice(y)
|
||
|
xslices = self._slice(x)
|
||
|
for xslice, yslice, trans in zip(xslices, yslices, self.transforms):
|
||
|
logdetjacs.append(trans.log_abs_det_jacobian(xslice, yslice))
|
||
|
return torch.stack(logdetjacs, dim=self.dim)
|
||
|
|
||
|
@property
|
||
|
def bijective(self):
|
||
|
return all(t.bijective for t in self.transforms)
|
||
|
|
||
|
@constraints.dependent_property
|
||
|
def domain(self):
|
||
|
return constraints.stack([t.domain for t in self.transforms], self.dim)
|
||
|
|
||
|
@constraints.dependent_property
|
||
|
def codomain(self):
|
||
|
return constraints.stack([t.codomain for t in self.transforms], self.dim)
|
||
|
|
||
|
|
||
|
class CumulativeDistributionTransform(Transform):
|
||
|
"""
|
||
|
Transform via the cumulative distribution function of a probability distribution.
|
||
|
|
||
|
Args:
|
||
|
distribution (Distribution): Distribution whose cumulative distribution function to use for
|
||
|
the transformation.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# Construct a Gaussian copula from a multivariate normal.
|
||
|
base_dist = MultivariateNormal(
|
||
|
loc=torch.zeros(2),
|
||
|
scale_tril=LKJCholesky(2).sample(),
|
||
|
)
|
||
|
transform = CumulativeDistributionTransform(Normal(0, 1))
|
||
|
copula = TransformedDistribution(base_dist, [transform])
|
||
|
"""
|
||
|
|
||
|
bijective = True
|
||
|
codomain = constraints.unit_interval
|
||
|
sign = +1
|
||
|
|
||
|
def __init__(self, distribution, cache_size=0):
|
||
|
super().__init__(cache_size=cache_size)
|
||
|
self.distribution = distribution
|
||
|
|
||
|
@property
|
||
|
def domain(self):
|
||
|
return self.distribution.support
|
||
|
|
||
|
def _call(self, x):
|
||
|
return self.distribution.cdf(x)
|
||
|
|
||
|
def _inverse(self, y):
|
||
|
return self.distribution.icdf(y)
|
||
|
|
||
|
def log_abs_det_jacobian(self, x, y):
|
||
|
return self.distribution.log_prob(x)
|
||
|
|
||
|
def with_cache(self, cache_size=1):
|
||
|
if self._cache_size == cache_size:
|
||
|
return self
|
||
|
return CumulativeDistributionTransform(self.distribution, cache_size=cache_size)
|