268 lines
12 KiB
Python
268 lines
12 KiB
Python
|
"""
|
||
|
This module contains tensor creation utilities.
|
||
|
"""
|
||
|
|
||
|
import collections.abc
|
||
|
import math
|
||
|
import warnings
|
||
|
from typing import cast, List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
_INTEGRAL_TYPES = [
|
||
|
torch.uint8,
|
||
|
torch.int8,
|
||
|
torch.int16,
|
||
|
torch.int32,
|
||
|
torch.int64,
|
||
|
torch.uint16,
|
||
|
torch.uint32,
|
||
|
torch.uint64,
|
||
|
]
|
||
|
_FLOATING_TYPES = [torch.float16, torch.bfloat16, torch.float32, torch.float64]
|
||
|
_FLOATING_8BIT_TYPES = [
|
||
|
torch.float8_e4m3fn,
|
||
|
torch.float8_e5m2,
|
||
|
torch.float8_e4m3fnuz,
|
||
|
torch.float8_e5m2fnuz,
|
||
|
]
|
||
|
_COMPLEX_TYPES = [torch.complex32, torch.complex64, torch.complex128]
|
||
|
_BOOLEAN_OR_INTEGRAL_TYPES = [torch.bool, *_INTEGRAL_TYPES]
|
||
|
_FLOATING_OR_COMPLEX_TYPES = [*_FLOATING_TYPES, *_COMPLEX_TYPES]
|
||
|
|
||
|
|
||
|
def _uniform_random_(t: torch.Tensor, low: float, high: float) -> torch.Tensor:
|
||
|
# uniform_ requires to-from <= std::numeric_limits<scalar_t>::max()
|
||
|
# Work around this by scaling the range before and after the PRNG
|
||
|
if high - low >= torch.finfo(t.dtype).max:
|
||
|
return t.uniform_(low / 2, high / 2).mul_(2)
|
||
|
else:
|
||
|
return t.uniform_(low, high)
|
||
|
|
||
|
|
||
|
def make_tensor(
|
||
|
*shape: Union[int, torch.Size, List[int], Tuple[int, ...]],
|
||
|
dtype: torch.dtype,
|
||
|
device: Union[str, torch.device],
|
||
|
low: Optional[float] = None,
|
||
|
high: Optional[float] = None,
|
||
|
requires_grad: bool = False,
|
||
|
noncontiguous: bool = False,
|
||
|
exclude_zero: bool = False,
|
||
|
memory_format: Optional[torch.memory_format] = None,
|
||
|
) -> torch.Tensor:
|
||
|
r"""Creates a tensor with the given :attr:`shape`, :attr:`device`, and :attr:`dtype`, and filled with
|
||
|
values uniformly drawn from ``[low, high)``.
|
||
|
|
||
|
If :attr:`low` or :attr:`high` are specified and are outside the range of the :attr:`dtype`'s representable
|
||
|
finite values then they are clamped to the lowest or highest representable finite value, respectively.
|
||
|
If ``None``, then the following table describes the default values for :attr:`low` and :attr:`high`,
|
||
|
which depend on :attr:`dtype`.
|
||
|
|
||
|
+---------------------------+------------+----------+
|
||
|
| ``dtype`` | ``low`` | ``high`` |
|
||
|
+===========================+============+==========+
|
||
|
| boolean type | ``0`` | ``2`` |
|
||
|
+---------------------------+------------+----------+
|
||
|
| unsigned integral type | ``0`` | ``10`` |
|
||
|
+---------------------------+------------+----------+
|
||
|
| signed integral types | ``-9`` | ``10`` |
|
||
|
+---------------------------+------------+----------+
|
||
|
| floating types | ``-9`` | ``9`` |
|
||
|
+---------------------------+------------+----------+
|
||
|
| complex types | ``-9`` | ``9`` |
|
||
|
+---------------------------+------------+----------+
|
||
|
|
||
|
Args:
|
||
|
shape (Tuple[int, ...]): Single integer or a sequence of integers defining the shape of the output tensor.
|
||
|
dtype (:class:`torch.dtype`): The data type of the returned tensor.
|
||
|
device (Union[str, torch.device]): The device of the returned tensor.
|
||
|
low (Optional[Number]): Sets the lower limit (inclusive) of the given range. If a number is provided it is
|
||
|
clamped to the least representable finite value of the given dtype. When ``None`` (default),
|
||
|
this value is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
|
||
|
high (Optional[Number]): Sets the upper limit (exclusive) of the given range. If a number is provided it is
|
||
|
clamped to the greatest representable finite value of the given dtype. When ``None`` (default) this value
|
||
|
is determined based on the :attr:`dtype` (see the table above). Default: ``None``.
|
||
|
|
||
|
.. deprecated:: 2.1
|
||
|
|
||
|
Passing ``low==high`` to :func:`~torch.testing.make_tensor` for floating or complex types is deprecated
|
||
|
since 2.1 and will be removed in 2.3. Use :func:`torch.full` instead.
|
||
|
|
||
|
requires_grad (Optional[bool]): If autograd should record operations on the returned tensor. Default: ``False``.
|
||
|
noncontiguous (Optional[bool]): If `True`, the returned tensor will be noncontiguous. This argument is
|
||
|
ignored if the constructed tensor has fewer than two elements. Mutually exclusive with ``memory_format``.
|
||
|
exclude_zero (Optional[bool]): If ``True`` then zeros are replaced with the dtype's small positive value
|
||
|
depending on the :attr:`dtype`. For bool and integer types zero is replaced with one. For floating
|
||
|
point types it is replaced with the dtype's smallest positive normal number (the "tiny" value of the
|
||
|
:attr:`dtype`'s :func:`~torch.finfo` object), and for complex types it is replaced with a complex number
|
||
|
whose real and imaginary parts are both the smallest positive normal number representable by the complex
|
||
|
type. Default ``False``.
|
||
|
memory_format (Optional[torch.memory_format]): The memory format of the returned tensor. Mutually exclusive
|
||
|
with ``noncontiguous``.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: If ``requires_grad=True`` is passed for integral `dtype`
|
||
|
ValueError: If ``low >= high``.
|
||
|
ValueError: If either :attr:`low` or :attr:`high` is ``nan``.
|
||
|
ValueError: If both :attr:`noncontiguous` and :attr:`memory_format` are passed.
|
||
|
TypeError: If :attr:`dtype` isn't supported by this function.
|
||
|
|
||
|
Examples:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
||
|
>>> from torch.testing import make_tensor
|
||
|
>>> # Creates a float tensor with values in [-1, 1)
|
||
|
>>> make_tensor((3,), device='cpu', dtype=torch.float32, low=-1, high=1)
|
||
|
>>> # xdoctest: +SKIP
|
||
|
tensor([ 0.1205, 0.2282, -0.6380])
|
||
|
>>> # Creates a bool tensor on CUDA
|
||
|
>>> make_tensor((2, 2), device='cuda', dtype=torch.bool)
|
||
|
tensor([[False, False],
|
||
|
[False, True]], device='cuda:0')
|
||
|
"""
|
||
|
|
||
|
def modify_low_high(
|
||
|
low: Optional[float],
|
||
|
high: Optional[float],
|
||
|
*,
|
||
|
lowest_inclusive: float,
|
||
|
highest_exclusive: float,
|
||
|
default_low: float,
|
||
|
default_high: float,
|
||
|
) -> Tuple[float, float]:
|
||
|
"""
|
||
|
Modifies (and raises ValueError when appropriate) low and high values given by the user (input_low, input_high)
|
||
|
if required.
|
||
|
"""
|
||
|
|
||
|
def clamp(a: float, l: float, h: float) -> float:
|
||
|
return min(max(a, l), h)
|
||
|
|
||
|
low = low if low is not None else default_low
|
||
|
high = high if high is not None else default_high
|
||
|
|
||
|
if any(isinstance(value, float) and math.isnan(value) for value in [low, high]):
|
||
|
raise ValueError(
|
||
|
f"`low` and `high` cannot be NaN, but got {low=} and {high=}"
|
||
|
)
|
||
|
elif low == high and dtype in _FLOATING_OR_COMPLEX_TYPES:
|
||
|
warnings.warn(
|
||
|
"Passing `low==high` to `torch.testing.make_tensor` for floating or complex types "
|
||
|
"is deprecated since 2.1 and will be removed in 2.3. "
|
||
|
"Use torch.full(...) instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
elif low >= high:
|
||
|
raise ValueError(f"`low` must be less than `high`, but got {low} >= {high}")
|
||
|
elif high < lowest_inclusive or low >= highest_exclusive:
|
||
|
raise ValueError(
|
||
|
f"The value interval specified by `low` and `high` is [{low}, {high}), "
|
||
|
f"but {dtype} only supports [{lowest_inclusive}, {highest_exclusive})"
|
||
|
)
|
||
|
|
||
|
low = clamp(low, lowest_inclusive, highest_exclusive)
|
||
|
high = clamp(high, lowest_inclusive, highest_exclusive)
|
||
|
|
||
|
if dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
||
|
# 1. `low` is ceiled to avoid creating values smaller than `low` and thus outside the specified interval
|
||
|
# 2. Following the same reasoning as for 1., `high` should be floored. However, the higher bound of
|
||
|
# `torch.randint` is exclusive, and thus we need to ceil here as well.
|
||
|
return math.ceil(low), math.ceil(high)
|
||
|
|
||
|
return low, high
|
||
|
|
||
|
if len(shape) == 1 and isinstance(shape[0], collections.abc.Sequence):
|
||
|
shape = shape[0] # type: ignore[assignment]
|
||
|
shape = cast(Tuple[int, ...], tuple(shape))
|
||
|
|
||
|
if noncontiguous and memory_format is not None:
|
||
|
raise ValueError(
|
||
|
f"The parameters `noncontiguous` and `memory_format` are mutually exclusive, "
|
||
|
f"but got {noncontiguous=} and {memory_format=}"
|
||
|
)
|
||
|
|
||
|
if requires_grad and dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
||
|
raise ValueError(
|
||
|
f"`requires_grad=True` is not supported for boolean and integral dtypes, but got {dtype=}"
|
||
|
)
|
||
|
|
||
|
if dtype is torch.bool:
|
||
|
low, high = cast(
|
||
|
Tuple[int, int],
|
||
|
modify_low_high(
|
||
|
low,
|
||
|
high,
|
||
|
lowest_inclusive=0,
|
||
|
highest_exclusive=2,
|
||
|
default_low=0,
|
||
|
default_high=2,
|
||
|
),
|
||
|
)
|
||
|
result = torch.randint(low, high, shape, device=device, dtype=dtype)
|
||
|
elif dtype in _BOOLEAN_OR_INTEGRAL_TYPES:
|
||
|
low, high = cast(
|
||
|
Tuple[int, int],
|
||
|
modify_low_high(
|
||
|
low,
|
||
|
high,
|
||
|
lowest_inclusive=torch.iinfo(dtype).min,
|
||
|
highest_exclusive=torch.iinfo(dtype).max
|
||
|
# In theory, `highest_exclusive` should always be the maximum value + 1. However, `torch.randint`
|
||
|
# internally converts the bounds to an int64 and would overflow. In other words: `torch.randint` cannot
|
||
|
# sample 2**63 - 1, i.e. the maximum value of `torch.int64` and we need to account for that here.
|
||
|
+ (1 if dtype is not torch.int64 else 0),
|
||
|
# This is incorrect for `torch.uint8`, but since we clamp to `lowest`, i.e. 0 for `torch.uint8`,
|
||
|
# _after_ we use the default value, we don't need to special case it here
|
||
|
default_low=-9,
|
||
|
default_high=10,
|
||
|
),
|
||
|
)
|
||
|
result = torch.randint(low, high, shape, device=device, dtype=dtype)
|
||
|
elif dtype in _FLOATING_OR_COMPLEX_TYPES:
|
||
|
low, high = modify_low_high(
|
||
|
low,
|
||
|
high,
|
||
|
lowest_inclusive=torch.finfo(dtype).min,
|
||
|
highest_exclusive=torch.finfo(dtype).max,
|
||
|
default_low=-9,
|
||
|
default_high=9,
|
||
|
)
|
||
|
result = torch.empty(shape, device=device, dtype=dtype)
|
||
|
_uniform_random_(
|
||
|
torch.view_as_real(result) if dtype in _COMPLEX_TYPES else result, low, high
|
||
|
)
|
||
|
elif dtype in _FLOATING_8BIT_TYPES:
|
||
|
low, high = modify_low_high(
|
||
|
low,
|
||
|
high,
|
||
|
lowest_inclusive=torch.finfo(dtype).min,
|
||
|
highest_exclusive=torch.finfo(dtype).max,
|
||
|
default_low=-9,
|
||
|
default_high=9,
|
||
|
)
|
||
|
result = torch.empty(shape, device=device, dtype=torch.float32)
|
||
|
_uniform_random_(result, low, high)
|
||
|
result = result.to(dtype)
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
f"The requested dtype '{dtype}' is not supported by torch.testing.make_tensor()."
|
||
|
" To request support, file an issue at: https://github.com/pytorch/pytorch/issues"
|
||
|
)
|
||
|
|
||
|
if noncontiguous and result.numel() > 1:
|
||
|
result = torch.repeat_interleave(result, 2, dim=-1)
|
||
|
result = result[..., ::2]
|
||
|
elif memory_format is not None:
|
||
|
result = result.clone(memory_format=memory_format)
|
||
|
|
||
|
if exclude_zero:
|
||
|
result[result == 0] = (
|
||
|
1 if dtype in _BOOLEAN_OR_INTEGRAL_TYPES else torch.finfo(dtype).tiny
|
||
|
)
|
||
|
|
||
|
if dtype in _FLOATING_OR_COMPLEX_TYPES:
|
||
|
result.requires_grad = requires_grad
|
||
|
|
||
|
return result
|