Traktor/myenv/Lib/site-packages/torchvision/datasets/clevr.py

89 lines
3.4 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
import json
import pathlib
from typing import Any, Callable, List, Optional, Tuple, Union
from urllib.parse import urlparse
from PIL import Image
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
class CLEVRClassification(VisionDataset):
"""`CLEVR <https://cs.stanford.edu/people/jcjohns/clevr/>`_ classification dataset.
The number of objects in a scene are used as label.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where directory ``root/clevr`` exists or will be saved to if download is
set to True.
split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed
version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in them target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If
dataset is already downloaded, it is not downloaded again.
"""
_URL = "https://dl.fbaipublicfiles.com/clevr/CLEVR_v1.0.zip"
_MD5 = "b11922020e72d0cd9154779b2d3d07d2"
def __init__(
self,
root: Union[str, pathlib.Path],
split: str = "train",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self._split = verify_str_arg(split, "split", ("train", "val", "test"))
super().__init__(root, transform=transform, target_transform=target_transform)
self._base_folder = pathlib.Path(self.root) / "clevr"
self._data_folder = self._base_folder / pathlib.Path(urlparse(self._URL).path).stem
if download:
self._download()
if not self._check_exists():
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
self._image_files = sorted(self._data_folder.joinpath("images", self._split).glob("*"))
self._labels: List[Optional[int]]
if self._split != "test":
with open(self._data_folder / "scenes" / f"CLEVR_{self._split}_scenes.json") as file:
content = json.load(file)
num_objects = {scene["image_filename"]: len(scene["objects"]) for scene in content["scenes"]}
self._labels = [num_objects[image_file.name] for image_file in self._image_files]
else:
self._labels = [None] * len(self._image_files)
def __len__(self) -> int:
return len(self._image_files)
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
image_file = self._image_files[idx]
label = self._labels[idx]
image = Image.open(image_file).convert("RGB")
if self.transform:
image = self.transform(image)
if self.target_transform:
label = self.target_transform(label)
return image, label
def _check_exists(self) -> bool:
return self._data_folder.exists() and self._data_folder.is_dir()
def _download(self) -> None:
if self._check_exists():
return
download_and_extract_archive(self._URL, str(self._base_folder), md5=self._MD5)
def extra_repr(self) -> str:
return f"split={self._split}"