179 lines
7.5 KiB
Python
179 lines
7.5 KiB
Python
|
from collections import OrderedDict
|
||
|
from functools import partial
|
||
|
from typing import Any, Dict, Optional
|
||
|
|
||
|
from torch import nn, Tensor
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
from ...transforms._presets import SemanticSegmentation
|
||
|
from ...utils import _log_api_usage_once
|
||
|
from .._api import register_model, Weights, WeightsEnum
|
||
|
from .._meta import _VOC_CATEGORIES
|
||
|
from .._utils import _ovewrite_value_param, handle_legacy_interface, IntermediateLayerGetter
|
||
|
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights, MobileNetV3
|
||
|
|
||
|
|
||
|
__all__ = ["LRASPP", "LRASPP_MobileNet_V3_Large_Weights", "lraspp_mobilenet_v3_large"]
|
||
|
|
||
|
|
||
|
class LRASPP(nn.Module):
|
||
|
"""
|
||
|
Implements a Lite R-ASPP Network for semantic segmentation from
|
||
|
`"Searching for MobileNetV3"
|
||
|
<https://arxiv.org/abs/1905.02244>`_.
|
||
|
|
||
|
Args:
|
||
|
backbone (nn.Module): the network used to compute the features for the model.
|
||
|
The backbone should return an OrderedDict[Tensor], with the key being
|
||
|
"high" for the high level feature map and "low" for the low level feature map.
|
||
|
low_channels (int): the number of channels of the low level features.
|
||
|
high_channels (int): the number of channels of the high level features.
|
||
|
num_classes (int, optional): number of output classes of the model (including the background).
|
||
|
inter_channels (int, optional): the number of channels for intermediate computations.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self, backbone: nn.Module, low_channels: int, high_channels: int, num_classes: int, inter_channels: int = 128
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
_log_api_usage_once(self)
|
||
|
self.backbone = backbone
|
||
|
self.classifier = LRASPPHead(low_channels, high_channels, num_classes, inter_channels)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Dict[str, Tensor]:
|
||
|
features = self.backbone(input)
|
||
|
out = self.classifier(features)
|
||
|
out = F.interpolate(out, size=input.shape[-2:], mode="bilinear", align_corners=False)
|
||
|
|
||
|
result = OrderedDict()
|
||
|
result["out"] = out
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
class LRASPPHead(nn.Module):
|
||
|
def __init__(self, low_channels: int, high_channels: int, num_classes: int, inter_channels: int) -> None:
|
||
|
super().__init__()
|
||
|
self.cbr = nn.Sequential(
|
||
|
nn.Conv2d(high_channels, inter_channels, 1, bias=False),
|
||
|
nn.BatchNorm2d(inter_channels),
|
||
|
nn.ReLU(inplace=True),
|
||
|
)
|
||
|
self.scale = nn.Sequential(
|
||
|
nn.AdaptiveAvgPool2d(1),
|
||
|
nn.Conv2d(high_channels, inter_channels, 1, bias=False),
|
||
|
nn.Sigmoid(),
|
||
|
)
|
||
|
self.low_classifier = nn.Conv2d(low_channels, num_classes, 1)
|
||
|
self.high_classifier = nn.Conv2d(inter_channels, num_classes, 1)
|
||
|
|
||
|
def forward(self, input: Dict[str, Tensor]) -> Tensor:
|
||
|
low = input["low"]
|
||
|
high = input["high"]
|
||
|
|
||
|
x = self.cbr(high)
|
||
|
s = self.scale(high)
|
||
|
x = x * s
|
||
|
x = F.interpolate(x, size=low.shape[-2:], mode="bilinear", align_corners=False)
|
||
|
|
||
|
return self.low_classifier(low) + self.high_classifier(x)
|
||
|
|
||
|
|
||
|
def _lraspp_mobilenetv3(backbone: MobileNetV3, num_classes: int) -> LRASPP:
|
||
|
backbone = backbone.features
|
||
|
# Gather the indices of blocks which are strided. These are the locations of C1, ..., Cn-1 blocks.
|
||
|
# The first and last blocks are always included because they are the C0 (conv1) and Cn.
|
||
|
stage_indices = [0] + [i for i, b in enumerate(backbone) if getattr(b, "_is_cn", False)] + [len(backbone) - 1]
|
||
|
low_pos = stage_indices[-4] # use C2 here which has output_stride = 8
|
||
|
high_pos = stage_indices[-1] # use C5 which has output_stride = 16
|
||
|
low_channels = backbone[low_pos].out_channels
|
||
|
high_channels = backbone[high_pos].out_channels
|
||
|
backbone = IntermediateLayerGetter(backbone, return_layers={str(low_pos): "low", str(high_pos): "high"})
|
||
|
|
||
|
return LRASPP(backbone, low_channels, high_channels, num_classes)
|
||
|
|
||
|
|
||
|
class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum):
|
||
|
COCO_WITH_VOC_LABELS_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/lraspp_mobilenet_v3_large-d234d4ea.pth",
|
||
|
transforms=partial(SemanticSegmentation, resize_size=520),
|
||
|
meta={
|
||
|
"num_params": 3221538,
|
||
|
"categories": _VOC_CATEGORIES,
|
||
|
"min_size": (1, 1),
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large",
|
||
|
"_metrics": {
|
||
|
"COCO-val2017-VOC-labels": {
|
||
|
"miou": 57.9,
|
||
|
"pixel_acc": 91.2,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 2.086,
|
||
|
"_file_size": 12.49,
|
||
|
"_docs": """
|
||
|
These weights were trained on a subset of COCO, using only the 20 categories that are present in the
|
||
|
Pascal VOC dataset.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = COCO_WITH_VOC_LABELS_V1
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(
|
||
|
weights=("pretrained", LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1),
|
||
|
weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
|
||
|
)
|
||
|
def lraspp_mobilenet_v3_large(
|
||
|
*,
|
||
|
weights: Optional[LRASPP_MobileNet_V3_Large_Weights] = None,
|
||
|
progress: bool = True,
|
||
|
num_classes: Optional[int] = None,
|
||
|
weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
|
||
|
**kwargs: Any,
|
||
|
) -> LRASPP:
|
||
|
"""Constructs a Lite R-ASPP Network model with a MobileNetV3-Large backbone from
|
||
|
`Searching for MobileNetV3 <https://arxiv.org/abs/1905.02244>`_ paper.
|
||
|
|
||
|
.. betastatus:: segmentation module
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
num_classes (int, optional): number of output classes of the model (including the background).
|
||
|
aux_loss (bool, optional): If True, it uses an auxiliary loss.
|
||
|
weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The pretrained
|
||
|
weights for the backbone.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.segmentation.LRASPP``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/lraspp.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.segmentation.LRASPP_MobileNet_V3_Large_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
if kwargs.pop("aux_loss", False):
|
||
|
raise NotImplementedError("This model does not use auxiliary loss")
|
||
|
|
||
|
weights = LRASPP_MobileNet_V3_Large_Weights.verify(weights)
|
||
|
weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)
|
||
|
|
||
|
if weights is not None:
|
||
|
weights_backbone = None
|
||
|
num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
|
||
|
elif num_classes is None:
|
||
|
num_classes = 21
|
||
|
|
||
|
backbone = mobilenet_v3_large(weights=weights_backbone, dilated=True)
|
||
|
model = _lraspp_mobilenetv3(backbone, num_classes)
|
||
|
|
||
|
if weights is not None:
|
||
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
||
|
|
||
|
return model
|