73 lines
2.9 KiB
Python
73 lines
2.9 KiB
Python
|
from typing import List, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.fx
|
||
|
from torch import nn, Tensor
|
||
|
from torch.jit.annotations import BroadcastingList2
|
||
|
from torch.nn.modules.utils import _pair
|
||
|
from torchvision.extension import _assert_has_ops
|
||
|
|
||
|
from ..utils import _log_api_usage_once
|
||
|
from ._utils import check_roi_boxes_shape, convert_boxes_to_roi_format
|
||
|
|
||
|
|
||
|
@torch.fx.wrap
|
||
|
def roi_pool(
|
||
|
input: Tensor,
|
||
|
boxes: Union[Tensor, List[Tensor]],
|
||
|
output_size: BroadcastingList2[int],
|
||
|
spatial_scale: float = 1.0,
|
||
|
) -> Tensor:
|
||
|
"""
|
||
|
Performs Region of Interest (RoI) Pool operator described in Fast R-CNN
|
||
|
|
||
|
Args:
|
||
|
input (Tensor[N, C, H, W]): The input tensor, i.e. a batch with ``N`` elements. Each element
|
||
|
contains ``C`` feature maps of dimensions ``H x W``.
|
||
|
boxes (Tensor[K, 5] or List[Tensor[L, 4]]): the box coordinates in (x1, y1, x2, y2)
|
||
|
format where the regions will be taken from.
|
||
|
The coordinate must satisfy ``0 <= x1 < x2`` and ``0 <= y1 < y2``.
|
||
|
If a single Tensor is passed, then the first column should
|
||
|
contain the index of the corresponding element in the batch, i.e. a number in ``[0, N - 1]``.
|
||
|
If a list of Tensors is passed, then each Tensor will correspond to the boxes for an element i
|
||
|
in the batch.
|
||
|
output_size (int or Tuple[int, int]): the size of the output after the cropping
|
||
|
is performed, as (height, width)
|
||
|
spatial_scale (float): a scaling factor that maps the box coordinates to
|
||
|
the input coordinates. For example, if your boxes are defined on the scale
|
||
|
of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of
|
||
|
the original image), you'll want to set this to 0.5. Default: 1.0
|
||
|
|
||
|
Returns:
|
||
|
Tensor[K, C, output_size[0], output_size[1]]: The pooled RoIs.
|
||
|
"""
|
||
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||
|
_log_api_usage_once(roi_pool)
|
||
|
_assert_has_ops()
|
||
|
check_roi_boxes_shape(boxes)
|
||
|
rois = boxes
|
||
|
output_size = _pair(output_size)
|
||
|
if not isinstance(rois, torch.Tensor):
|
||
|
rois = convert_boxes_to_roi_format(rois)
|
||
|
output, _ = torch.ops.torchvision.roi_pool(input, rois, spatial_scale, output_size[0], output_size[1])
|
||
|
return output
|
||
|
|
||
|
|
||
|
class RoIPool(nn.Module):
|
||
|
"""
|
||
|
See :func:`roi_pool`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, output_size: BroadcastingList2[int], spatial_scale: float):
|
||
|
super().__init__()
|
||
|
_log_api_usage_once(self)
|
||
|
self.output_size = output_size
|
||
|
self.spatial_scale = spatial_scale
|
||
|
|
||
|
def forward(self, input: Tensor, rois: Union[Tensor, List[Tensor]]) -> Tensor:
|
||
|
return roi_pool(input, rois, self.output_size, self.spatial_scale)
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
s = f"{self.__class__.__name__}(output_size={self.output_size}, spatial_scale={self.spatial_scale})"
|
||
|
return s
|