127 lines
4.9 KiB
Python
127 lines
4.9 KiB
Python
|
import numpy as np
|
||
|
import random
|
||
|
import pygame
|
||
|
from constant import width, height, size, rows, cols
|
||
|
from board import Board
|
||
|
from tractor import Tractor
|
||
|
|
||
|
|
||
|
routes_num = 20 # Ilość ścieżek, które będziemy generować
|
||
|
board = Board()
|
||
|
dirt_positions = board.get_dirt_positions()
|
||
|
dirt_count = len(dirt_positions)
|
||
|
|
||
|
def manhattan(a, b):
|
||
|
return abs(a[0] - b[0]) + abs(a[1] - b[1])
|
||
|
|
||
|
def find_routes(routes_num):
|
||
|
population_set = [] # zapisujemy trasy - losowe ułóżenia
|
||
|
for i in range(routes_num):
|
||
|
# losowo wygenerowane kolejności na trasie
|
||
|
single_route = np.random.choice(list(range(dirt_count)), dirt_count, replace=False)
|
||
|
population_set.append(single_route)
|
||
|
return np.array(population_set)
|
||
|
|
||
|
|
||
|
def sum_up_for_route(route_indices):
|
||
|
sum = 0
|
||
|
for i in range(len(route_indices) - 1):
|
||
|
current_dirt = dirt_positions[route_indices[i]]
|
||
|
next_dirt = dirt_positions[route_indices[i + 1]]
|
||
|
sum += manhattan(current_dirt, next_dirt)
|
||
|
return sum
|
||
|
|
||
|
|
||
|
def routes_sum(population_set): # zapisujemy na liście finalne sumy odległości dla każdej z opcji tras
|
||
|
list_of_sums = np.zeros(routes_num)
|
||
|
|
||
|
for i in range(routes_num):
|
||
|
list_of_sums[i] = sum_up_for_route(population_set[i]) # wywołujemy dla każdej trasy na liście
|
||
|
|
||
|
return list_of_sums
|
||
|
|
||
|
|
||
|
def calculate_fitness(distances):
|
||
|
# Odwrotność odległości jako fitness
|
||
|
# Dodajemy małą wartość (np. 1) aby uniknąć dzielenia przez zero
|
||
|
return 1 / (distances + 1)
|
||
|
|
||
|
|
||
|
def selection(population_set, list_of_sums):
|
||
|
# Oblicz wartości fitness dla każdej trasy
|
||
|
fitness_values = calculate_fitness(list_of_sums)
|
||
|
# Normalizuj wartości fitness, aby sumowały się do 1 (wymagane dla np.random.choice)
|
||
|
probabilities = fitness_values / fitness_values.sum()
|
||
|
# Wybierz rodziców na podstawie prawdopodobieństw (wartości fitness)
|
||
|
progenitor_indices_a = np.random.choice(range(len(population_set)), len(population_set), p=probabilities, replace=True)
|
||
|
progenitor_indices_b = np.random.choice(range(len(population_set)), len(population_set), p=probabilities, replace=True)
|
||
|
# Wybierz rzeczywiste trasy
|
||
|
progenitor_a = population_set[progenitor_indices_a]
|
||
|
progenitor_b = population_set[progenitor_indices_b]
|
||
|
|
||
|
return np.array([progenitor_a, progenitor_b])
|
||
|
|
||
|
def one_point_crossover(parent_a, parent_b): #krzyzowanie jednopunktowe
|
||
|
crossover_point = np.random.randint(1, len(parent_a))
|
||
|
child = np.concatenate((parent_a[:crossover_point], [x for x in parent_b if x not in parent_a[:crossover_point]]))
|
||
|
return child
|
||
|
|
||
|
def population_mating(progenitor_list):
|
||
|
new_population_set = []
|
||
|
for i in range(len(progenitor_list[0])):
|
||
|
progenitor_a, progenitor_b = progenitor_list[0][i], progenitor_list[1][i]
|
||
|
child = one_point_crossover(progenitor_a, progenitor_b)
|
||
|
new_population_set.append(child)
|
||
|
return new_population_set
|
||
|
|
||
|
def mutation_of_child(child):
|
||
|
for i in range(dirt_count): # dla każdego elementu dajemy losową szansę zamiany int *rate
|
||
|
x = np.random.randint(0, dirt_count)
|
||
|
y = np.random.randint(0, dirt_count)
|
||
|
|
||
|
child[x], child[y] = child[y], child[x] # zamiana miejscami
|
||
|
|
||
|
return child
|
||
|
|
||
|
'''def mutation_of_child(child, mutation_rate=0.1):#procent moze pomoc w niezaklucaniu trasy gdy jesy duza trasa ale idk
|
||
|
num_mutations = int(len(child) * mutation_rate)
|
||
|
for _ in range(num_mutations):
|
||
|
x = np.random.randint(0, len(child))
|
||
|
y = np.random.randint(0, len(child))
|
||
|
child[x], child[y] = child[y], child[x]
|
||
|
return child'''
|
||
|
|
||
|
|
||
|
def mutate_population(new_population_set):
|
||
|
final_mutated_population = []
|
||
|
for child in new_population_set:
|
||
|
final_mutated_population.append(mutation_of_child(child)) # dodajemy zmutowane dziecko do finalnej listy
|
||
|
return final_mutated_population
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
population_set = find_routes(routes_num)
|
||
|
list_of_sums = routes_sum(population_set)
|
||
|
progenitor_list = selection(population_set, list_of_sums)
|
||
|
new_population_set = population_mating(progenitor_list)
|
||
|
final_mutated_population = mutate_population(new_population_set)
|
||
|
final_route = [-1, np.inf, np.array([])] # format listy
|
||
|
for i in range(20):
|
||
|
list_of_sums = routes_sum(final_mutated_population)
|
||
|
# zapisujemy najlepsze rozwiązanie
|
||
|
if list_of_sums.min() < final_route[1]:
|
||
|
final_route[0] = i
|
||
|
final_route[1] = list_of_sums.min()
|
||
|
final_route[2] = np.array(final_mutated_population)[list_of_sums.min() == list_of_sums]
|
||
|
|
||
|
|
||
|
progenitor_list = selection(population_set, list_of_sums)
|
||
|
new_population_set = population_mating(progenitor_list)
|
||
|
final_mutated_population = mutate_population(new_population_set)
|
||
|
|
||
|
print(f"Najlepsza trasa znaleziona w iteracji: {final_route[0]}")
|
||
|
print(f"Minimalna suma odległości: {final_route[1]}")
|
||
|
print(f"Kolejne pola: {final_route[2]}")
|
||
|
|