83 lines
2.3 KiB
Python
83 lines
2.3 KiB
Python
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch import inf
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.cauchy import Cauchy
|
||
|
from torch.distributions.transformed_distribution import TransformedDistribution
|
||
|
from torch.distributions.transforms import AbsTransform
|
||
|
|
||
|
__all__ = ["HalfCauchy"]
|
||
|
|
||
|
|
||
|
class HalfCauchy(TransformedDistribution):
|
||
|
r"""
|
||
|
Creates a half-Cauchy distribution parameterized by `scale` where::
|
||
|
|
||
|
X ~ Cauchy(0, scale)
|
||
|
Y = |X| ~ HalfCauchy(scale)
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = HalfCauchy(torch.tensor([1.0]))
|
||
|
>>> m.sample() # half-cauchy distributed with scale=1
|
||
|
tensor([ 2.3214])
|
||
|
|
||
|
Args:
|
||
|
scale (float or Tensor): scale of the full Cauchy distribution
|
||
|
"""
|
||
|
arg_constraints = {"scale": constraints.positive}
|
||
|
support = constraints.nonnegative
|
||
|
has_rsample = True
|
||
|
|
||
|
def __init__(self, scale, validate_args=None):
|
||
|
base_dist = Cauchy(0, scale, validate_args=False)
|
||
|
super().__init__(base_dist, AbsTransform(), validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(HalfCauchy, _instance)
|
||
|
return super().expand(batch_shape, _instance=new)
|
||
|
|
||
|
@property
|
||
|
def scale(self):
|
||
|
return self.base_dist.scale
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return torch.full(
|
||
|
self._extended_shape(),
|
||
|
math.inf,
|
||
|
dtype=self.scale.dtype,
|
||
|
device=self.scale.device,
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return torch.zeros_like(self.scale)
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return self.base_dist.variance
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
value = torch.as_tensor(
|
||
|
value, dtype=self.base_dist.scale.dtype, device=self.base_dist.scale.device
|
||
|
)
|
||
|
log_prob = self.base_dist.log_prob(value) + math.log(2)
|
||
|
log_prob = torch.where(value >= 0, log_prob, -inf)
|
||
|
return log_prob
|
||
|
|
||
|
def cdf(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
return 2 * self.base_dist.cdf(value) - 1
|
||
|
|
||
|
def icdf(self, prob):
|
||
|
return self.base_dist.icdf((prob + 1) / 2)
|
||
|
|
||
|
def entropy(self):
|
||
|
return self.base_dist.entropy() - math.log(2)
|