322 lines
11 KiB
Python
322 lines
11 KiB
Python
|
"""Truncated SVD for sparse matrices, aka latent semantic analysis (LSA)."""
|
||
|
|
||
|
# Author: Lars Buitinck
|
||
|
# Olivier Grisel <olivier.grisel@ensta.org>
|
||
|
# Michael Becker <mike@beckerfuffle.com>
|
||
|
# License: 3-clause BSD.
|
||
|
|
||
|
from numbers import Integral, Real
|
||
|
|
||
|
import numpy as np
|
||
|
import scipy.sparse as sp
|
||
|
from scipy.sparse.linalg import svds
|
||
|
|
||
|
from ..base import (
|
||
|
BaseEstimator,
|
||
|
ClassNamePrefixFeaturesOutMixin,
|
||
|
TransformerMixin,
|
||
|
_fit_context,
|
||
|
)
|
||
|
from ..utils import check_array, check_random_state
|
||
|
from ..utils._arpack import _init_arpack_v0
|
||
|
from ..utils._param_validation import Interval, StrOptions
|
||
|
from ..utils.extmath import randomized_svd, safe_sparse_dot, svd_flip
|
||
|
from ..utils.sparsefuncs import mean_variance_axis
|
||
|
from ..utils.validation import check_is_fitted
|
||
|
|
||
|
__all__ = ["TruncatedSVD"]
|
||
|
|
||
|
|
||
|
class TruncatedSVD(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
|
||
|
"""Dimensionality reduction using truncated SVD (aka LSA).
|
||
|
|
||
|
This transformer performs linear dimensionality reduction by means of
|
||
|
truncated singular value decomposition (SVD). Contrary to PCA, this
|
||
|
estimator does not center the data before computing the singular value
|
||
|
decomposition. This means it can work with sparse matrices
|
||
|
efficiently.
|
||
|
|
||
|
In particular, truncated SVD works on term count/tf-idf matrices as
|
||
|
returned by the vectorizers in :mod:`sklearn.feature_extraction.text`. In
|
||
|
that context, it is known as latent semantic analysis (LSA).
|
||
|
|
||
|
This estimator supports two algorithms: a fast randomized SVD solver, and
|
||
|
a "naive" algorithm that uses ARPACK as an eigensolver on `X * X.T` or
|
||
|
`X.T * X`, whichever is more efficient.
|
||
|
|
||
|
Read more in the :ref:`User Guide <LSA>`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
n_components : int, default=2
|
||
|
Desired dimensionality of output data.
|
||
|
If algorithm='arpack', must be strictly less than the number of features.
|
||
|
If algorithm='randomized', must be less than or equal to the number of features.
|
||
|
The default value is useful for visualisation. For LSA, a value of
|
||
|
100 is recommended.
|
||
|
|
||
|
algorithm : {'arpack', 'randomized'}, default='randomized'
|
||
|
SVD solver to use. Either "arpack" for the ARPACK wrapper in SciPy
|
||
|
(scipy.sparse.linalg.svds), or "randomized" for the randomized
|
||
|
algorithm due to Halko (2009).
|
||
|
|
||
|
n_iter : int, default=5
|
||
|
Number of iterations for randomized SVD solver. Not used by ARPACK. The
|
||
|
default is larger than the default in
|
||
|
:func:`~sklearn.utils.extmath.randomized_svd` to handle sparse
|
||
|
matrices that may have large slowly decaying spectrum.
|
||
|
|
||
|
n_oversamples : int, default=10
|
||
|
Number of oversamples for randomized SVD solver. Not used by ARPACK.
|
||
|
See :func:`~sklearn.utils.extmath.randomized_svd` for a complete
|
||
|
description.
|
||
|
|
||
|
.. versionadded:: 1.1
|
||
|
|
||
|
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
||
|
Power iteration normalizer for randomized SVD solver.
|
||
|
Not used by ARPACK. See :func:`~sklearn.utils.extmath.randomized_svd`
|
||
|
for more details.
|
||
|
|
||
|
.. versionadded:: 1.1
|
||
|
|
||
|
random_state : int, RandomState instance or None, default=None
|
||
|
Used during randomized svd. Pass an int for reproducible results across
|
||
|
multiple function calls.
|
||
|
See :term:`Glossary <random_state>`.
|
||
|
|
||
|
tol : float, default=0.0
|
||
|
Tolerance for ARPACK. 0 means machine precision. Ignored by randomized
|
||
|
SVD solver.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
components_ : ndarray of shape (n_components, n_features)
|
||
|
The right singular vectors of the input data.
|
||
|
|
||
|
explained_variance_ : ndarray of shape (n_components,)
|
||
|
The variance of the training samples transformed by a projection to
|
||
|
each component.
|
||
|
|
||
|
explained_variance_ratio_ : ndarray of shape (n_components,)
|
||
|
Percentage of variance explained by each of the selected components.
|
||
|
|
||
|
singular_values_ : ndarray of shape (n_components,)
|
||
|
The singular values corresponding to each of the selected components.
|
||
|
The singular values are equal to the 2-norms of the ``n_components``
|
||
|
variables in the lower-dimensional space.
|
||
|
|
||
|
n_features_in_ : int
|
||
|
Number of features seen during :term:`fit`.
|
||
|
|
||
|
.. versionadded:: 0.24
|
||
|
|
||
|
feature_names_in_ : ndarray of shape (`n_features_in_`,)
|
||
|
Names of features seen during :term:`fit`. Defined only when `X`
|
||
|
has feature names that are all strings.
|
||
|
|
||
|
.. versionadded:: 1.0
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DictionaryLearning : Find a dictionary that sparsely encodes data.
|
||
|
FactorAnalysis : A simple linear generative model with
|
||
|
Gaussian latent variables.
|
||
|
IncrementalPCA : Incremental principal components analysis.
|
||
|
KernelPCA : Kernel Principal component analysis.
|
||
|
NMF : Non-Negative Matrix Factorization.
|
||
|
PCA : Principal component analysis.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
SVD suffers from a problem called "sign indeterminacy", which means the
|
||
|
sign of the ``components_`` and the output from transform depend on the
|
||
|
algorithm and random state. To work around this, fit instances of this
|
||
|
class to data once, then keep the instance around to do transformations.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
:arxiv:`Halko, et al. (2009). "Finding structure with randomness:
|
||
|
Stochastic algorithms for constructing approximate matrix decompositions"
|
||
|
<0909.4061>`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from sklearn.decomposition import TruncatedSVD
|
||
|
>>> from scipy.sparse import csr_matrix
|
||
|
>>> import numpy as np
|
||
|
>>> np.random.seed(0)
|
||
|
>>> X_dense = np.random.rand(100, 100)
|
||
|
>>> X_dense[:, 2 * np.arange(50)] = 0
|
||
|
>>> X = csr_matrix(X_dense)
|
||
|
>>> svd = TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
||
|
>>> svd.fit(X)
|
||
|
TruncatedSVD(n_components=5, n_iter=7, random_state=42)
|
||
|
>>> print(svd.explained_variance_ratio_)
|
||
|
[0.0157... 0.0512... 0.0499... 0.0479... 0.0453...]
|
||
|
>>> print(svd.explained_variance_ratio_.sum())
|
||
|
0.2102...
|
||
|
>>> print(svd.singular_values_)
|
||
|
[35.2410... 4.5981... 4.5420... 4.4486... 4.3288...]
|
||
|
"""
|
||
|
|
||
|
_parameter_constraints: dict = {
|
||
|
"n_components": [Interval(Integral, 1, None, closed="left")],
|
||
|
"algorithm": [StrOptions({"arpack", "randomized"})],
|
||
|
"n_iter": [Interval(Integral, 0, None, closed="left")],
|
||
|
"n_oversamples": [Interval(Integral, 1, None, closed="left")],
|
||
|
"power_iteration_normalizer": [StrOptions({"auto", "OR", "LU", "none"})],
|
||
|
"random_state": ["random_state"],
|
||
|
"tol": [Interval(Real, 0, None, closed="left")],
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
n_components=2,
|
||
|
*,
|
||
|
algorithm="randomized",
|
||
|
n_iter=5,
|
||
|
n_oversamples=10,
|
||
|
power_iteration_normalizer="auto",
|
||
|
random_state=None,
|
||
|
tol=0.0,
|
||
|
):
|
||
|
self.algorithm = algorithm
|
||
|
self.n_components = n_components
|
||
|
self.n_iter = n_iter
|
||
|
self.n_oversamples = n_oversamples
|
||
|
self.power_iteration_normalizer = power_iteration_normalizer
|
||
|
self.random_state = random_state
|
||
|
self.tol = tol
|
||
|
|
||
|
def fit(self, X, y=None):
|
||
|
"""Fit model on training data X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : Ignored
|
||
|
Not used, present here for API consistency by convention.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
self : object
|
||
|
Returns the transformer object.
|
||
|
"""
|
||
|
self.fit_transform(X)
|
||
|
return self
|
||
|
|
||
|
@_fit_context(prefer_skip_nested_validation=True)
|
||
|
def fit_transform(self, X, y=None):
|
||
|
"""Fit model to X and perform dimensionality reduction on X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
Training data.
|
||
|
|
||
|
y : Ignored
|
||
|
Not used, present here for API consistency by convention.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_new : ndarray of shape (n_samples, n_components)
|
||
|
Reduced version of X. This will always be a dense array.
|
||
|
"""
|
||
|
X = self._validate_data(X, accept_sparse=["csr", "csc"], ensure_min_features=2)
|
||
|
random_state = check_random_state(self.random_state)
|
||
|
|
||
|
if self.algorithm == "arpack":
|
||
|
v0 = _init_arpack_v0(min(X.shape), random_state)
|
||
|
U, Sigma, VT = svds(X, k=self.n_components, tol=self.tol, v0=v0)
|
||
|
# svds doesn't abide by scipy.linalg.svd/randomized_svd
|
||
|
# conventions, so reverse its outputs.
|
||
|
Sigma = Sigma[::-1]
|
||
|
# u_based_decision=False is needed to be consistent with PCA.
|
||
|
U, VT = svd_flip(U[:, ::-1], VT[::-1], u_based_decision=False)
|
||
|
|
||
|
elif self.algorithm == "randomized":
|
||
|
if self.n_components > X.shape[1]:
|
||
|
raise ValueError(
|
||
|
f"n_components({self.n_components}) must be <="
|
||
|
f" n_features({X.shape[1]})."
|
||
|
)
|
||
|
U, Sigma, VT = randomized_svd(
|
||
|
X,
|
||
|
self.n_components,
|
||
|
n_iter=self.n_iter,
|
||
|
n_oversamples=self.n_oversamples,
|
||
|
power_iteration_normalizer=self.power_iteration_normalizer,
|
||
|
random_state=random_state,
|
||
|
flip_sign=False,
|
||
|
)
|
||
|
U, VT = svd_flip(U, VT, u_based_decision=False)
|
||
|
|
||
|
self.components_ = VT
|
||
|
|
||
|
# As a result of the SVD approximation error on X ~ U @ Sigma @ V.T,
|
||
|
# X @ V is not the same as U @ Sigma
|
||
|
if self.algorithm == "randomized" or (
|
||
|
self.algorithm == "arpack" and self.tol > 0
|
||
|
):
|
||
|
X_transformed = safe_sparse_dot(X, self.components_.T)
|
||
|
else:
|
||
|
X_transformed = U * Sigma
|
||
|
|
||
|
# Calculate explained variance & explained variance ratio
|
||
|
self.explained_variance_ = exp_var = np.var(X_transformed, axis=0)
|
||
|
if sp.issparse(X):
|
||
|
_, full_var = mean_variance_axis(X, axis=0)
|
||
|
full_var = full_var.sum()
|
||
|
else:
|
||
|
full_var = np.var(X, axis=0).sum()
|
||
|
self.explained_variance_ratio_ = exp_var / full_var
|
||
|
self.singular_values_ = Sigma # Store the singular values.
|
||
|
|
||
|
return X_transformed
|
||
|
|
||
|
def transform(self, X):
|
||
|
"""Perform dimensionality reduction on X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
||
|
New data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_new : ndarray of shape (n_samples, n_components)
|
||
|
Reduced version of X. This will always be a dense array.
|
||
|
"""
|
||
|
check_is_fitted(self)
|
||
|
X = self._validate_data(X, accept_sparse=["csr", "csc"], reset=False)
|
||
|
return safe_sparse_dot(X, self.components_.T)
|
||
|
|
||
|
def inverse_transform(self, X):
|
||
|
"""Transform X back to its original space.
|
||
|
|
||
|
Returns an array X_original whose transform would be X.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like of shape (n_samples, n_components)
|
||
|
New data.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
X_original : ndarray of shape (n_samples, n_features)
|
||
|
Note that this is always a dense array.
|
||
|
"""
|
||
|
X = check_array(X)
|
||
|
return np.dot(X, self.components_)
|
||
|
|
||
|
def _more_tags(self):
|
||
|
return {"preserves_dtype": [np.float64, np.float32]}
|
||
|
|
||
|
@property
|
||
|
def _n_features_out(self):
|
||
|
"""Number of transformed output features."""
|
||
|
return self.components_.shape[0]
|