1147 lines
41 KiB
Python
1147 lines
41 KiB
Python
|
import re
|
||
|
import warnings
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
import scipy as sp
|
||
|
from numpy.testing import assert_array_equal
|
||
|
|
||
|
from sklearn import config_context, datasets
|
||
|
from sklearn.base import clone
|
||
|
from sklearn.datasets import load_iris, make_classification, make_low_rank_matrix
|
||
|
from sklearn.decomposition import PCA
|
||
|
from sklearn.decomposition._pca import _assess_dimension, _infer_dimension
|
||
|
from sklearn.utils._array_api import (
|
||
|
_atol_for_type,
|
||
|
_convert_to_numpy,
|
||
|
yield_namespace_device_dtype_combinations,
|
||
|
)
|
||
|
from sklearn.utils._array_api import device as array_device
|
||
|
from sklearn.utils._testing import _array_api_for_tests, assert_allclose
|
||
|
from sklearn.utils.estimator_checks import (
|
||
|
_get_check_estimator_ids,
|
||
|
check_array_api_input_and_values,
|
||
|
)
|
||
|
from sklearn.utils.fixes import CSC_CONTAINERS, CSR_CONTAINERS
|
||
|
|
||
|
iris = datasets.load_iris()
|
||
|
PCA_SOLVERS = ["full", "covariance_eigh", "arpack", "randomized", "auto"]
|
||
|
|
||
|
# `SPARSE_M` and `SPARSE_N` could be larger, but be aware:
|
||
|
# * SciPy's generation of random sparse matrix can be costly
|
||
|
# * A (SPARSE_M, SPARSE_N) dense array is allocated to compare against
|
||
|
SPARSE_M, SPARSE_N = 1000, 300 # arbitrary
|
||
|
SPARSE_MAX_COMPONENTS = min(SPARSE_M, SPARSE_N)
|
||
|
|
||
|
|
||
|
def _check_fitted_pca_close(pca1, pca2, rtol=1e-7, atol=1e-12):
|
||
|
assert_allclose(pca1.components_, pca2.components_, rtol=rtol, atol=atol)
|
||
|
assert_allclose(
|
||
|
pca1.explained_variance_, pca2.explained_variance_, rtol=rtol, atol=atol
|
||
|
)
|
||
|
assert_allclose(pca1.singular_values_, pca2.singular_values_, rtol=rtol, atol=atol)
|
||
|
assert_allclose(pca1.mean_, pca2.mean_, rtol=rtol, atol=atol)
|
||
|
assert_allclose(pca1.noise_variance_, pca2.noise_variance_, rtol=rtol, atol=atol)
|
||
|
|
||
|
assert pca1.n_components_ == pca2.n_components_
|
||
|
assert pca1.n_samples_ == pca2.n_samples_
|
||
|
assert pca1.n_features_in_ == pca2.n_features_in_
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
@pytest.mark.parametrize("n_components", range(1, iris.data.shape[1]))
|
||
|
def test_pca(svd_solver, n_components):
|
||
|
X = iris.data
|
||
|
pca = PCA(n_components=n_components, svd_solver=svd_solver)
|
||
|
|
||
|
# check the shape of fit.transform
|
||
|
X_r = pca.fit(X).transform(X)
|
||
|
assert X_r.shape[1] == n_components
|
||
|
|
||
|
# check the equivalence of fit.transform and fit_transform
|
||
|
X_r2 = pca.fit_transform(X)
|
||
|
assert_allclose(X_r, X_r2)
|
||
|
X_r = pca.transform(X)
|
||
|
assert_allclose(X_r, X_r2)
|
||
|
|
||
|
# Test get_covariance and get_precision
|
||
|
cov = pca.get_covariance()
|
||
|
precision = pca.get_precision()
|
||
|
assert_allclose(np.dot(cov, precision), np.eye(X.shape[1]), atol=1e-12)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("density", [0.01, 0.1, 0.30])
|
||
|
@pytest.mark.parametrize("n_components", [1, 2, 10])
|
||
|
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
||
|
@pytest.mark.parametrize("svd_solver", ["arpack", "covariance_eigh"])
|
||
|
@pytest.mark.parametrize("scale", [1, 10, 100])
|
||
|
def test_pca_sparse(
|
||
|
global_random_seed, svd_solver, sparse_container, n_components, density, scale
|
||
|
):
|
||
|
"""Check that the results are the same for sparse and dense input."""
|
||
|
|
||
|
# Set atol in addition of the default rtol to account for the very wide range of
|
||
|
# result values (1e-8 to 1e0).
|
||
|
atol = 1e-12
|
||
|
transform_atol = 1e-10
|
||
|
|
||
|
random_state = np.random.default_rng(global_random_seed)
|
||
|
X = sparse_container(
|
||
|
sp.sparse.random(
|
||
|
SPARSE_M,
|
||
|
SPARSE_N,
|
||
|
random_state=random_state,
|
||
|
density=density,
|
||
|
)
|
||
|
)
|
||
|
# Scale the data + vary the column means
|
||
|
scale_vector = random_state.random(X.shape[1]) * scale
|
||
|
X = X.multiply(scale_vector)
|
||
|
|
||
|
pca = PCA(
|
||
|
n_components=n_components,
|
||
|
svd_solver=svd_solver,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
pca.fit(X)
|
||
|
|
||
|
Xd = X.toarray()
|
||
|
pcad = PCA(
|
||
|
n_components=n_components,
|
||
|
svd_solver=svd_solver,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
pcad.fit(Xd)
|
||
|
|
||
|
# Fitted attributes equality
|
||
|
_check_fitted_pca_close(pca, pcad, atol=atol)
|
||
|
|
||
|
# Test transform
|
||
|
X2 = sparse_container(
|
||
|
sp.sparse.random(
|
||
|
SPARSE_M,
|
||
|
SPARSE_N,
|
||
|
random_state=random_state,
|
||
|
density=density,
|
||
|
)
|
||
|
)
|
||
|
X2d = X2.toarray()
|
||
|
|
||
|
assert_allclose(pca.transform(X2), pca.transform(X2d), atol=transform_atol)
|
||
|
assert_allclose(pca.transform(X2), pcad.transform(X2d), atol=transform_atol)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
||
|
def test_pca_sparse_fit_transform(global_random_seed, sparse_container):
|
||
|
random_state = np.random.default_rng(global_random_seed)
|
||
|
X = sparse_container(
|
||
|
sp.sparse.random(
|
||
|
SPARSE_M,
|
||
|
SPARSE_N,
|
||
|
random_state=random_state,
|
||
|
density=0.01,
|
||
|
)
|
||
|
)
|
||
|
X2 = sparse_container(
|
||
|
sp.sparse.random(
|
||
|
SPARSE_M,
|
||
|
SPARSE_N,
|
||
|
random_state=random_state,
|
||
|
density=0.01,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
pca_fit = PCA(n_components=10, svd_solver="arpack", random_state=global_random_seed)
|
||
|
pca_fit_transform = PCA(
|
||
|
n_components=10, svd_solver="arpack", random_state=global_random_seed
|
||
|
)
|
||
|
|
||
|
pca_fit.fit(X)
|
||
|
transformed_X = pca_fit_transform.fit_transform(X)
|
||
|
|
||
|
_check_fitted_pca_close(pca_fit, pca_fit_transform)
|
||
|
assert_allclose(transformed_X, pca_fit_transform.transform(X))
|
||
|
assert_allclose(transformed_X, pca_fit.transform(X))
|
||
|
assert_allclose(pca_fit.transform(X2), pca_fit_transform.transform(X2))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", ["randomized", "full"])
|
||
|
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
||
|
def test_sparse_pca_solver_error(global_random_seed, svd_solver, sparse_container):
|
||
|
random_state = np.random.RandomState(global_random_seed)
|
||
|
X = sparse_container(
|
||
|
sp.sparse.random(
|
||
|
SPARSE_M,
|
||
|
SPARSE_N,
|
||
|
random_state=random_state,
|
||
|
)
|
||
|
)
|
||
|
pca = PCA(n_components=30, svd_solver=svd_solver)
|
||
|
error_msg_pattern = (
|
||
|
'PCA only support sparse inputs with the "arpack" and "covariance_eigh"'
|
||
|
f' solvers, while "{svd_solver}" was passed'
|
||
|
)
|
||
|
with pytest.raises(TypeError, match=error_msg_pattern):
|
||
|
pca.fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("sparse_container", CSR_CONTAINERS + CSC_CONTAINERS)
|
||
|
def test_sparse_pca_auto_arpack_singluar_values_consistency(
|
||
|
global_random_seed, sparse_container
|
||
|
):
|
||
|
"""Check that "auto" and "arpack" solvers are equivalent for sparse inputs."""
|
||
|
random_state = np.random.RandomState(global_random_seed)
|
||
|
X = sparse_container(
|
||
|
sp.sparse.random(
|
||
|
SPARSE_M,
|
||
|
SPARSE_N,
|
||
|
random_state=random_state,
|
||
|
)
|
||
|
)
|
||
|
pca_arpack = PCA(n_components=10, svd_solver="arpack").fit(X)
|
||
|
pca_auto = PCA(n_components=10, svd_solver="auto").fit(X)
|
||
|
assert_allclose(pca_arpack.singular_values_, pca_auto.singular_values_, rtol=5e-3)
|
||
|
|
||
|
|
||
|
def test_no_empty_slice_warning():
|
||
|
# test if we avoid numpy warnings for computing over empty arrays
|
||
|
n_components = 10
|
||
|
n_features = n_components + 2 # anything > n_comps triggered it in 0.16
|
||
|
X = np.random.uniform(-1, 1, size=(n_components, n_features))
|
||
|
pca = PCA(n_components=n_components)
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.simplefilter("error", RuntimeWarning)
|
||
|
pca.fit(X)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("copy", [True, False])
|
||
|
@pytest.mark.parametrize("solver", PCA_SOLVERS)
|
||
|
def test_whitening(solver, copy):
|
||
|
# Check that PCA output has unit-variance
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_samples = 100
|
||
|
n_features = 80
|
||
|
n_components = 30
|
||
|
rank = 50
|
||
|
|
||
|
# some low rank data with correlated features
|
||
|
X = np.dot(
|
||
|
rng.randn(n_samples, rank),
|
||
|
np.dot(np.diag(np.linspace(10.0, 1.0, rank)), rng.randn(rank, n_features)),
|
||
|
)
|
||
|
# the component-wise variance of the first 50 features is 3 times the
|
||
|
# mean component-wise variance of the remaining 30 features
|
||
|
X[:, :50] *= 3
|
||
|
|
||
|
assert X.shape == (n_samples, n_features)
|
||
|
|
||
|
# the component-wise variance is thus highly varying:
|
||
|
assert X.std(axis=0).std() > 43.8
|
||
|
|
||
|
# whiten the data while projecting to the lower dim subspace
|
||
|
X_ = X.copy() # make sure we keep an original across iterations.
|
||
|
pca = PCA(
|
||
|
n_components=n_components,
|
||
|
whiten=True,
|
||
|
copy=copy,
|
||
|
svd_solver=solver,
|
||
|
random_state=0,
|
||
|
iterated_power=7,
|
||
|
)
|
||
|
# test fit_transform
|
||
|
X_whitened = pca.fit_transform(X_.copy())
|
||
|
assert X_whitened.shape == (n_samples, n_components)
|
||
|
X_whitened2 = pca.transform(X_)
|
||
|
assert_allclose(X_whitened, X_whitened2, rtol=5e-4)
|
||
|
|
||
|
assert_allclose(X_whitened.std(ddof=1, axis=0), np.ones(n_components))
|
||
|
assert_allclose(X_whitened.mean(axis=0), np.zeros(n_components), atol=1e-12)
|
||
|
|
||
|
X_ = X.copy()
|
||
|
pca = PCA(
|
||
|
n_components=n_components, whiten=False, copy=copy, svd_solver=solver
|
||
|
).fit(X_.copy())
|
||
|
X_unwhitened = pca.transform(X_)
|
||
|
assert X_unwhitened.shape == (n_samples, n_components)
|
||
|
|
||
|
# in that case the output components still have varying variances
|
||
|
assert X_unwhitened.std(axis=0).std() == pytest.approx(74.1, rel=1e-1)
|
||
|
# we always center, so no test for non-centering.
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"other_svd_solver", sorted(list(set(PCA_SOLVERS) - {"full", "auto"}))
|
||
|
)
|
||
|
@pytest.mark.parametrize("data_shape", ["tall", "wide"])
|
||
|
@pytest.mark.parametrize("rank_deficient", [False, True])
|
||
|
@pytest.mark.parametrize("whiten", [False, True])
|
||
|
def test_pca_solver_equivalence(
|
||
|
other_svd_solver,
|
||
|
data_shape,
|
||
|
rank_deficient,
|
||
|
whiten,
|
||
|
global_random_seed,
|
||
|
global_dtype,
|
||
|
):
|
||
|
if data_shape == "tall":
|
||
|
n_samples, n_features = 100, 30
|
||
|
else:
|
||
|
n_samples, n_features = 30, 100
|
||
|
n_samples_test = 10
|
||
|
|
||
|
if rank_deficient:
|
||
|
rng = np.random.default_rng(global_random_seed)
|
||
|
rank = min(n_samples, n_features) // 2
|
||
|
X = rng.standard_normal(
|
||
|
size=(n_samples + n_samples_test, rank)
|
||
|
) @ rng.standard_normal(size=(rank, n_features))
|
||
|
else:
|
||
|
X = make_low_rank_matrix(
|
||
|
n_samples=n_samples + n_samples_test,
|
||
|
n_features=n_features,
|
||
|
tail_strength=0.5,
|
||
|
random_state=global_random_seed,
|
||
|
)
|
||
|
# With a non-zero tail strength, the data is actually full-rank.
|
||
|
rank = min(n_samples, n_features)
|
||
|
|
||
|
X = X.astype(global_dtype, copy=False)
|
||
|
X_train, X_test = X[:n_samples], X[n_samples:]
|
||
|
|
||
|
if global_dtype == np.float32:
|
||
|
tols = dict(atol=3e-2, rtol=1e-5)
|
||
|
variance_threshold = 1e-5
|
||
|
else:
|
||
|
tols = dict(atol=1e-10, rtol=1e-12)
|
||
|
variance_threshold = 1e-12
|
||
|
|
||
|
extra_other_kwargs = {}
|
||
|
if other_svd_solver == "randomized":
|
||
|
# Only check for a truncated result with a large number of iterations
|
||
|
# to make sure that we can recover precise results.
|
||
|
n_components = 10
|
||
|
extra_other_kwargs = {"iterated_power": 50}
|
||
|
elif other_svd_solver == "arpack":
|
||
|
# Test all components except the last one which cannot be estimated by
|
||
|
# arpack.
|
||
|
n_components = np.minimum(n_samples, n_features) - 1
|
||
|
else:
|
||
|
# Test all components to high precision.
|
||
|
n_components = None
|
||
|
|
||
|
pca_full = PCA(n_components=n_components, svd_solver="full", whiten=whiten)
|
||
|
pca_other = PCA(
|
||
|
n_components=n_components,
|
||
|
svd_solver=other_svd_solver,
|
||
|
whiten=whiten,
|
||
|
random_state=global_random_seed,
|
||
|
**extra_other_kwargs,
|
||
|
)
|
||
|
X_trans_full_train = pca_full.fit_transform(X_train)
|
||
|
assert np.isfinite(X_trans_full_train).all()
|
||
|
assert X_trans_full_train.dtype == global_dtype
|
||
|
X_trans_other_train = pca_other.fit_transform(X_train)
|
||
|
assert np.isfinite(X_trans_other_train).all()
|
||
|
assert X_trans_other_train.dtype == global_dtype
|
||
|
|
||
|
assert (pca_full.explained_variance_ >= 0).all()
|
||
|
assert_allclose(pca_full.explained_variance_, pca_other.explained_variance_, **tols)
|
||
|
assert_allclose(
|
||
|
pca_full.explained_variance_ratio_,
|
||
|
pca_other.explained_variance_ratio_,
|
||
|
**tols,
|
||
|
)
|
||
|
reference_components = pca_full.components_
|
||
|
assert np.isfinite(reference_components).all()
|
||
|
other_components = pca_other.components_
|
||
|
assert np.isfinite(other_components).all()
|
||
|
|
||
|
# For some choice of n_components and data distribution, some components
|
||
|
# might be pure noise, let's ignore them in the comparison:
|
||
|
stable = pca_full.explained_variance_ > variance_threshold
|
||
|
assert stable.sum() > 1
|
||
|
assert_allclose(reference_components[stable], other_components[stable], **tols)
|
||
|
|
||
|
# As a result the output of fit_transform should be the same:
|
||
|
assert_allclose(
|
||
|
X_trans_other_train[:, stable], X_trans_full_train[:, stable], **tols
|
||
|
)
|
||
|
|
||
|
# And similarly for the output of transform on new data (except for the
|
||
|
# last component that can be underdetermined):
|
||
|
X_trans_full_test = pca_full.transform(X_test)
|
||
|
assert np.isfinite(X_trans_full_test).all()
|
||
|
assert X_trans_full_test.dtype == global_dtype
|
||
|
X_trans_other_test = pca_other.transform(X_test)
|
||
|
assert np.isfinite(X_trans_other_test).all()
|
||
|
assert X_trans_other_test.dtype == global_dtype
|
||
|
assert_allclose(X_trans_other_test[:, stable], X_trans_full_test[:, stable], **tols)
|
||
|
|
||
|
# Check that inverse transform reconstructions for both solvers are
|
||
|
# compatible.
|
||
|
X_recons_full_test = pca_full.inverse_transform(X_trans_full_test)
|
||
|
assert np.isfinite(X_recons_full_test).all()
|
||
|
assert X_recons_full_test.dtype == global_dtype
|
||
|
X_recons_other_test = pca_other.inverse_transform(X_trans_other_test)
|
||
|
assert np.isfinite(X_recons_other_test).all()
|
||
|
assert X_recons_other_test.dtype == global_dtype
|
||
|
|
||
|
if pca_full.components_.shape[0] == pca_full.components_.shape[1]:
|
||
|
# In this case, the models should have learned the same invertible
|
||
|
# transform. They should therefore both be able to reconstruct the test
|
||
|
# data.
|
||
|
assert_allclose(X_recons_full_test, X_test, **tols)
|
||
|
assert_allclose(X_recons_other_test, X_test, **tols)
|
||
|
elif pca_full.components_.shape[0] < rank:
|
||
|
# In the absence of noisy components, both models should be able to
|
||
|
# reconstruct the same low-rank approximation of the original data.
|
||
|
assert pca_full.explained_variance_.min() > variance_threshold
|
||
|
assert_allclose(X_recons_full_test, X_recons_other_test, **tols)
|
||
|
else:
|
||
|
# When n_features > n_samples and n_components is larger than the rank
|
||
|
# of the training set, the output of the `inverse_transform` function
|
||
|
# is ill-defined. We can only check that we reach the same fixed point
|
||
|
# after another round of transform:
|
||
|
assert_allclose(
|
||
|
pca_full.transform(X_recons_full_test)[:, stable],
|
||
|
pca_other.transform(X_recons_other_test)[:, stable],
|
||
|
**tols,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X",
|
||
|
[
|
||
|
np.random.RandomState(0).randn(100, 80),
|
||
|
datasets.make_classification(100, 80, n_informative=78, random_state=0)[0],
|
||
|
np.random.RandomState(0).randn(10, 100),
|
||
|
],
|
||
|
ids=["random-tall", "correlated-tall", "random-wide"],
|
||
|
)
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_explained_variance_empirical(X, svd_solver):
|
||
|
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=0)
|
||
|
X_pca = pca.fit_transform(X)
|
||
|
assert_allclose(pca.explained_variance_, np.var(X_pca, ddof=1, axis=0))
|
||
|
|
||
|
expected_result = np.linalg.eig(np.cov(X, rowvar=False))[0]
|
||
|
expected_result = sorted(expected_result, reverse=True)[:2]
|
||
|
assert_allclose(pca.explained_variance_, expected_result, rtol=5e-3)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
||
|
def test_pca_singular_values_consistency(svd_solver):
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_samples, n_features = 100, 80
|
||
|
X = rng.randn(n_samples, n_features)
|
||
|
|
||
|
pca_full = PCA(n_components=2, svd_solver="full", random_state=rng)
|
||
|
pca_other = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
||
|
|
||
|
pca_full.fit(X)
|
||
|
pca_other.fit(X)
|
||
|
|
||
|
assert_allclose(pca_full.singular_values_, pca_other.singular_values_, rtol=5e-3)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_singular_values(svd_solver):
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_samples, n_features = 100, 80
|
||
|
X = rng.randn(n_samples, n_features)
|
||
|
|
||
|
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
||
|
X_trans = pca.fit_transform(X)
|
||
|
|
||
|
# compare to the Frobenius norm
|
||
|
assert_allclose(
|
||
|
np.sum(pca.singular_values_**2), np.linalg.norm(X_trans, "fro") ** 2
|
||
|
)
|
||
|
# Compare to the 2-norms of the score vectors
|
||
|
assert_allclose(pca.singular_values_, np.sqrt(np.sum(X_trans**2, axis=0)))
|
||
|
|
||
|
# set the singular values and see what er get back
|
||
|
n_samples, n_features = 100, 110
|
||
|
X = rng.randn(n_samples, n_features)
|
||
|
|
||
|
pca = PCA(n_components=3, svd_solver=svd_solver, random_state=rng)
|
||
|
X_trans = pca.fit_transform(X)
|
||
|
X_trans /= np.sqrt(np.sum(X_trans**2, axis=0))
|
||
|
X_trans[:, 0] *= 3.142
|
||
|
X_trans[:, 1] *= 2.718
|
||
|
X_hat = np.dot(X_trans, pca.components_)
|
||
|
pca.fit(X_hat)
|
||
|
assert_allclose(pca.singular_values_, [3.142, 2.718, 1.0])
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_check_projection(svd_solver):
|
||
|
# Test that the projection of data is correct
|
||
|
rng = np.random.RandomState(0)
|
||
|
n, p = 100, 3
|
||
|
X = rng.randn(n, p) * 0.1
|
||
|
X[:10] += np.array([3, 4, 5])
|
||
|
Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5])
|
||
|
|
||
|
Yt = PCA(n_components=2, svd_solver=svd_solver).fit(X).transform(Xt)
|
||
|
Yt /= np.sqrt((Yt**2).sum())
|
||
|
|
||
|
assert_allclose(np.abs(Yt[0][0]), 1.0, rtol=5e-3)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_check_projection_list(svd_solver):
|
||
|
# Test that the projection of data is correct
|
||
|
X = [[1.0, 0.0], [0.0, 1.0]]
|
||
|
pca = PCA(n_components=1, svd_solver=svd_solver, random_state=0)
|
||
|
X_trans = pca.fit_transform(X)
|
||
|
assert X_trans.shape, (2, 1)
|
||
|
assert_allclose(X_trans.mean(), 0.00, atol=1e-12)
|
||
|
assert_allclose(X_trans.std(), 0.71, rtol=5e-3)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", ["full", "arpack", "randomized"])
|
||
|
@pytest.mark.parametrize("whiten", [False, True])
|
||
|
def test_pca_inverse(svd_solver, whiten):
|
||
|
# Test that the projection of data can be inverted
|
||
|
rng = np.random.RandomState(0)
|
||
|
n, p = 50, 3
|
||
|
X = rng.randn(n, p) # spherical data
|
||
|
X[:, 1] *= 0.00001 # make middle component relatively small
|
||
|
X += [5, 4, 3] # make a large mean
|
||
|
|
||
|
# same check that we can find the original data from the transformed
|
||
|
# signal (since the data is almost of rank n_components)
|
||
|
pca = PCA(n_components=2, svd_solver=svd_solver, whiten=whiten).fit(X)
|
||
|
Y = pca.transform(X)
|
||
|
Y_inverse = pca.inverse_transform(Y)
|
||
|
assert_allclose(X, Y_inverse, rtol=5e-6)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"data", [np.array([[0, 1, 0], [1, 0, 0]]), np.array([[0, 1, 0], [1, 0, 0]]).T]
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"svd_solver, n_components, err_msg",
|
||
|
[
|
||
|
("arpack", 0, r"must be between 1 and min\(n_samples, n_features\)"),
|
||
|
("randomized", 0, r"must be between 1 and min\(n_samples, n_features\)"),
|
||
|
("arpack", 2, r"must be strictly less than min"),
|
||
|
(
|
||
|
"auto",
|
||
|
3,
|
||
|
(
|
||
|
r"n_components=3 must be between 0 and min\(n_samples, "
|
||
|
r"n_features\)=2 with svd_solver='full'"
|
||
|
),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_pca_validation(svd_solver, data, n_components, err_msg):
|
||
|
# Ensures that solver-specific extreme inputs for the n_components
|
||
|
# parameter raise errors
|
||
|
smallest_d = 2 # The smallest dimension
|
||
|
pca_fitted = PCA(n_components, svd_solver=svd_solver)
|
||
|
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
pca_fitted.fit(data)
|
||
|
|
||
|
# Additional case for arpack
|
||
|
if svd_solver == "arpack":
|
||
|
n_components = smallest_d
|
||
|
|
||
|
err_msg = (
|
||
|
"n_components={}L? must be strictly less than "
|
||
|
r"min\(n_samples, n_features\)={}L? with "
|
||
|
"svd_solver='arpack'".format(n_components, smallest_d)
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
PCA(n_components, svd_solver=svd_solver).fit(data)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"solver, n_components_",
|
||
|
[
|
||
|
("full", min(iris.data.shape)),
|
||
|
("arpack", min(iris.data.shape) - 1),
|
||
|
("randomized", min(iris.data.shape)),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("data", [iris.data, iris.data.T])
|
||
|
def test_n_components_none(data, solver, n_components_):
|
||
|
pca = PCA(svd_solver=solver)
|
||
|
pca.fit(data)
|
||
|
assert pca.n_components_ == n_components_
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", ["auto", "full"])
|
||
|
def test_n_components_mle(svd_solver):
|
||
|
# Ensure that n_components == 'mle' doesn't raise error for auto/full
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_samples, n_features = 600, 10
|
||
|
X = rng.randn(n_samples, n_features)
|
||
|
pca = PCA(n_components="mle", svd_solver=svd_solver)
|
||
|
pca.fit(X)
|
||
|
assert pca.n_components_ == 1
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
||
|
def test_n_components_mle_error(svd_solver):
|
||
|
# Ensure that n_components == 'mle' will raise an error for unsupported
|
||
|
# solvers
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_samples, n_features = 600, 10
|
||
|
X = rng.randn(n_samples, n_features)
|
||
|
pca = PCA(n_components="mle", svd_solver=svd_solver)
|
||
|
err_msg = "n_components='mle' cannot be a string with svd_solver='{}'".format(
|
||
|
svd_solver
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=err_msg):
|
||
|
pca.fit(X)
|
||
|
|
||
|
|
||
|
def test_pca_dim():
|
||
|
# Check automated dimensionality setting
|
||
|
rng = np.random.RandomState(0)
|
||
|
n, p = 100, 5
|
||
|
X = rng.randn(n, p) * 0.1
|
||
|
X[:10] += np.array([3, 4, 5, 1, 2])
|
||
|
pca = PCA(n_components="mle", svd_solver="full").fit(X)
|
||
|
assert pca.n_components == "mle"
|
||
|
assert pca.n_components_ == 1
|
||
|
|
||
|
|
||
|
def test_infer_dim_1():
|
||
|
# TODO: explain what this is testing
|
||
|
# Or at least use explicit variable names...
|
||
|
n, p = 1000, 5
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = (
|
||
|
rng.randn(n, p) * 0.1
|
||
|
+ rng.randn(n, 1) * np.array([3, 4, 5, 1, 2])
|
||
|
+ np.array([1, 0, 7, 4, 6])
|
||
|
)
|
||
|
pca = PCA(n_components=p, svd_solver="full")
|
||
|
pca.fit(X)
|
||
|
spect = pca.explained_variance_
|
||
|
ll = np.array([_assess_dimension(spect, k, n) for k in range(1, p)])
|
||
|
assert ll[1] > ll.max() - 0.01 * n
|
||
|
|
||
|
|
||
|
def test_infer_dim_2():
|
||
|
# TODO: explain what this is testing
|
||
|
# Or at least use explicit variable names...
|
||
|
n, p = 1000, 5
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(n, p) * 0.1
|
||
|
X[:10] += np.array([3, 4, 5, 1, 2])
|
||
|
X[10:20] += np.array([6, 0, 7, 2, -1])
|
||
|
pca = PCA(n_components=p, svd_solver="full")
|
||
|
pca.fit(X)
|
||
|
spect = pca.explained_variance_
|
||
|
assert _infer_dimension(spect, n) > 1
|
||
|
|
||
|
|
||
|
def test_infer_dim_3():
|
||
|
n, p = 100, 5
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(n, p) * 0.1
|
||
|
X[:10] += np.array([3, 4, 5, 1, 2])
|
||
|
X[10:20] += np.array([6, 0, 7, 2, -1])
|
||
|
X[30:40] += 2 * np.array([-1, 1, -1, 1, -1])
|
||
|
pca = PCA(n_components=p, svd_solver="full")
|
||
|
pca.fit(X)
|
||
|
spect = pca.explained_variance_
|
||
|
assert _infer_dimension(spect, n) > 2
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"X, n_components, n_components_validated",
|
||
|
[
|
||
|
(iris.data, 0.95, 2), # row > col
|
||
|
(iris.data, 0.01, 1), # row > col
|
||
|
(np.random.RandomState(0).rand(5, 20), 0.5, 2),
|
||
|
], # row < col
|
||
|
)
|
||
|
def test_infer_dim_by_explained_variance(X, n_components, n_components_validated):
|
||
|
pca = PCA(n_components=n_components, svd_solver="full")
|
||
|
pca.fit(X)
|
||
|
assert pca.n_components == pytest.approx(n_components)
|
||
|
assert pca.n_components_ == n_components_validated
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_score(svd_solver):
|
||
|
# Test that probabilistic PCA scoring yields a reasonable score
|
||
|
n, p = 1000, 3
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
|
||
|
pca = PCA(n_components=2, svd_solver=svd_solver)
|
||
|
pca.fit(X)
|
||
|
|
||
|
ll1 = pca.score(X)
|
||
|
h = -0.5 * np.log(2 * np.pi * np.exp(1) * 0.1**2) * p
|
||
|
assert_allclose(ll1 / h, 1, rtol=5e-2)
|
||
|
|
||
|
ll2 = pca.score(rng.randn(n, p) * 0.2 + np.array([3, 4, 5]))
|
||
|
assert ll1 > ll2
|
||
|
|
||
|
pca = PCA(n_components=2, whiten=True, svd_solver=svd_solver)
|
||
|
pca.fit(X)
|
||
|
ll2 = pca.score(X)
|
||
|
assert ll1 > ll2
|
||
|
|
||
|
|
||
|
def test_pca_score3():
|
||
|
# Check that probabilistic PCA selects the right model
|
||
|
n, p = 200, 3
|
||
|
rng = np.random.RandomState(0)
|
||
|
Xl = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
|
||
|
Xt = rng.randn(n, p) + rng.randn(n, 1) * np.array([3, 4, 5]) + np.array([1, 0, 7])
|
||
|
ll = np.zeros(p)
|
||
|
for k in range(p):
|
||
|
pca = PCA(n_components=k, svd_solver="full")
|
||
|
pca.fit(Xl)
|
||
|
ll[k] = pca.score(Xt)
|
||
|
|
||
|
assert ll.argmax() == 1
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_sanity_noise_variance(svd_solver):
|
||
|
# Sanity check for the noise_variance_. For more details see
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/7568
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/8541
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/8544
|
||
|
X, _ = datasets.load_digits(return_X_y=True)
|
||
|
pca = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
|
||
|
pca.fit(X)
|
||
|
assert np.all((pca.explained_variance_ - pca.noise_variance_) >= 0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", ["arpack", "randomized"])
|
||
|
def test_pca_score_consistency_solvers(svd_solver):
|
||
|
# Check the consistency of score between solvers
|
||
|
X, _ = datasets.load_digits(return_X_y=True)
|
||
|
pca_full = PCA(n_components=30, svd_solver="full", random_state=0)
|
||
|
pca_other = PCA(n_components=30, svd_solver=svd_solver, random_state=0)
|
||
|
pca_full.fit(X)
|
||
|
pca_other.fit(X)
|
||
|
assert_allclose(pca_full.score(X), pca_other.score(X), rtol=5e-6)
|
||
|
|
||
|
|
||
|
# arpack raises ValueError for n_components == min(n_samples, n_features)
|
||
|
@pytest.mark.parametrize("svd_solver", ["full", "randomized"])
|
||
|
def test_pca_zero_noise_variance_edge_cases(svd_solver):
|
||
|
# ensure that noise_variance_ is 0 in edge cases
|
||
|
# when n_components == min(n_samples, n_features)
|
||
|
n, p = 100, 3
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(n, p) * 0.1 + np.array([3, 4, 5])
|
||
|
|
||
|
pca = PCA(n_components=p, svd_solver=svd_solver)
|
||
|
pca.fit(X)
|
||
|
assert pca.noise_variance_ == 0
|
||
|
# Non-regression test for gh-12489
|
||
|
# ensure no divide-by-zero error for n_components == n_features < n_samples
|
||
|
pca.score(X)
|
||
|
|
||
|
pca.fit(X.T)
|
||
|
assert pca.noise_variance_ == 0
|
||
|
# Non-regression test for gh-12489
|
||
|
# ensure no divide-by-zero error for n_components == n_samples < n_features
|
||
|
pca.score(X.T)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"n_samples, n_features, n_components, expected_solver",
|
||
|
[
|
||
|
# case: n_samples < 10 * n_features and max(X.shape) <= 500 => 'full'
|
||
|
(10, 50, 5, "full"),
|
||
|
# case: n_samples > 10 * n_features and n_features < 500 => 'covariance_eigh'
|
||
|
(1000, 50, 50, "covariance_eigh"),
|
||
|
# case: n_components >= .8 * min(X.shape) => 'full'
|
||
|
(1000, 500, 400, "full"),
|
||
|
# n_components >= 1 and n_components < .8*min(X.shape) => 'randomized'
|
||
|
(1000, 500, 10, "randomized"),
|
||
|
# case: n_components in (0,1) => 'full'
|
||
|
(1000, 500, 0.5, "full"),
|
||
|
],
|
||
|
)
|
||
|
def test_pca_svd_solver_auto(n_samples, n_features, n_components, expected_solver):
|
||
|
data = np.random.RandomState(0).uniform(size=(n_samples, n_features))
|
||
|
pca_auto = PCA(n_components=n_components, random_state=0)
|
||
|
pca_test = PCA(
|
||
|
n_components=n_components, svd_solver=expected_solver, random_state=0
|
||
|
)
|
||
|
pca_auto.fit(data)
|
||
|
assert pca_auto._fit_svd_solver == expected_solver
|
||
|
pca_test.fit(data)
|
||
|
assert_allclose(pca_auto.components_, pca_test.components_)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_deterministic_output(svd_solver):
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.rand(10, 10)
|
||
|
|
||
|
transformed_X = np.zeros((20, 2))
|
||
|
for i in range(20):
|
||
|
pca = PCA(n_components=2, svd_solver=svd_solver, random_state=rng)
|
||
|
transformed_X[i, :] = pca.fit_transform(X)[0]
|
||
|
assert_allclose(transformed_X, np.tile(transformed_X[0, :], 20).reshape(20, 2))
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("svd_solver", PCA_SOLVERS)
|
||
|
def test_pca_dtype_preservation(svd_solver, global_random_seed):
|
||
|
check_pca_float_dtype_preservation(svd_solver, global_random_seed)
|
||
|
check_pca_int_dtype_upcast_to_double(svd_solver)
|
||
|
|
||
|
|
||
|
def check_pca_float_dtype_preservation(svd_solver, seed):
|
||
|
# Ensure that PCA does not upscale the dtype when input is float32
|
||
|
X = np.random.RandomState(seed).rand(1000, 4)
|
||
|
X_float64 = X.astype(np.float64, copy=False)
|
||
|
X_float32 = X.astype(np.float32)
|
||
|
|
||
|
pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=seed).fit(
|
||
|
X_float64
|
||
|
)
|
||
|
pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=seed).fit(
|
||
|
X_float32
|
||
|
)
|
||
|
|
||
|
assert pca_64.components_.dtype == np.float64
|
||
|
assert pca_32.components_.dtype == np.float32
|
||
|
assert pca_64.transform(X_float64).dtype == np.float64
|
||
|
assert pca_32.transform(X_float32).dtype == np.float32
|
||
|
|
||
|
# The atol and rtol are set such that the test passes for all random seeds
|
||
|
# on all supported platforms on our CI and conda-forge with the default
|
||
|
# random seed.
|
||
|
assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-3, atol=1e-3)
|
||
|
|
||
|
|
||
|
def check_pca_int_dtype_upcast_to_double(svd_solver):
|
||
|
# Ensure that all int types will be upcast to float64
|
||
|
X_i64 = np.random.RandomState(0).randint(0, 1000, (1000, 4))
|
||
|
X_i64 = X_i64.astype(np.int64, copy=False)
|
||
|
X_i32 = X_i64.astype(np.int32, copy=False)
|
||
|
|
||
|
pca_64 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i64)
|
||
|
pca_32 = PCA(n_components=3, svd_solver=svd_solver, random_state=0).fit(X_i32)
|
||
|
|
||
|
assert pca_64.components_.dtype == np.float64
|
||
|
assert pca_32.components_.dtype == np.float64
|
||
|
assert pca_64.transform(X_i64).dtype == np.float64
|
||
|
assert pca_32.transform(X_i32).dtype == np.float64
|
||
|
|
||
|
assert_allclose(pca_64.components_, pca_32.components_, rtol=1e-4)
|
||
|
|
||
|
|
||
|
def test_pca_n_components_mostly_explained_variance_ratio():
|
||
|
# when n_components is the second highest cumulative sum of the
|
||
|
# explained_variance_ratio_, then n_components_ should equal the
|
||
|
# number of features in the dataset #15669
|
||
|
X, y = load_iris(return_X_y=True)
|
||
|
pca1 = PCA().fit(X, y)
|
||
|
|
||
|
n_components = pca1.explained_variance_ratio_.cumsum()[-2]
|
||
|
pca2 = PCA(n_components=n_components).fit(X, y)
|
||
|
assert pca2.n_components_ == X.shape[1]
|
||
|
|
||
|
|
||
|
def test_assess_dimension_bad_rank():
|
||
|
# Test error when tested rank not in [1, n_features - 1]
|
||
|
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
|
||
|
n_samples = 10
|
||
|
for rank in (0, 5):
|
||
|
with pytest.raises(ValueError, match=r"should be in \[1, n_features - 1\]"):
|
||
|
_assess_dimension(spectrum, rank, n_samples)
|
||
|
|
||
|
|
||
|
def test_small_eigenvalues_mle():
|
||
|
# Test rank associated with tiny eigenvalues are given a log-likelihood of
|
||
|
# -inf. The inferred rank will be 1
|
||
|
spectrum = np.array([1, 1e-30, 1e-30, 1e-30])
|
||
|
|
||
|
assert _assess_dimension(spectrum, rank=1, n_samples=10) > -np.inf
|
||
|
|
||
|
for rank in (2, 3):
|
||
|
assert _assess_dimension(spectrum, rank, 10) == -np.inf
|
||
|
|
||
|
assert _infer_dimension(spectrum, 10) == 1
|
||
|
|
||
|
|
||
|
def test_mle_redundant_data():
|
||
|
# Test 'mle' with pathological X: only one relevant feature should give a
|
||
|
# rank of 1
|
||
|
X, _ = datasets.make_classification(
|
||
|
n_features=20,
|
||
|
n_informative=1,
|
||
|
n_repeated=18,
|
||
|
n_redundant=1,
|
||
|
n_clusters_per_class=1,
|
||
|
random_state=42,
|
||
|
)
|
||
|
pca = PCA(n_components="mle").fit(X)
|
||
|
assert pca.n_components_ == 1
|
||
|
|
||
|
|
||
|
def test_fit_mle_too_few_samples():
|
||
|
# Tests that an error is raised when the number of samples is smaller
|
||
|
# than the number of features during an mle fit
|
||
|
X, _ = datasets.make_classification(n_samples=20, n_features=21, random_state=42)
|
||
|
|
||
|
pca = PCA(n_components="mle", svd_solver="full")
|
||
|
with pytest.raises(
|
||
|
ValueError,
|
||
|
match="n_components='mle' is only supported if n_samples >= n_features",
|
||
|
):
|
||
|
pca.fit(X)
|
||
|
|
||
|
|
||
|
def test_mle_simple_case():
|
||
|
# non-regression test for issue
|
||
|
# https://github.com/scikit-learn/scikit-learn/issues/16730
|
||
|
n_samples, n_dim = 1000, 10
|
||
|
X = np.random.RandomState(0).randn(n_samples, n_dim)
|
||
|
X[:, -1] = np.mean(X[:, :-1], axis=-1) # true X dim is ndim - 1
|
||
|
pca_skl = PCA("mle", svd_solver="full")
|
||
|
pca_skl.fit(X)
|
||
|
assert pca_skl.n_components_ == n_dim - 1
|
||
|
|
||
|
|
||
|
def test_assess_dimesion_rank_one():
|
||
|
# Make sure assess_dimension works properly on a matrix of rank 1
|
||
|
n_samples, n_features = 9, 6
|
||
|
X = np.ones((n_samples, n_features)) # rank 1 matrix
|
||
|
_, s, _ = np.linalg.svd(X, full_matrices=True)
|
||
|
# except for rank 1, all eigenvalues are 0 resp. close to 0 (FP)
|
||
|
assert_allclose(s[1:], np.zeros(n_features - 1), atol=1e-12)
|
||
|
|
||
|
assert np.isfinite(_assess_dimension(s, rank=1, n_samples=n_samples))
|
||
|
for rank in range(2, n_features):
|
||
|
assert _assess_dimension(s, rank, n_samples) == -np.inf
|
||
|
|
||
|
|
||
|
def test_pca_randomized_svd_n_oversamples():
|
||
|
"""Check that exposing and setting `n_oversamples` will provide accurate results
|
||
|
even when `X` as a large number of features.
|
||
|
|
||
|
Non-regression test for:
|
||
|
https://github.com/scikit-learn/scikit-learn/issues/20589
|
||
|
"""
|
||
|
rng = np.random.RandomState(0)
|
||
|
n_features = 100
|
||
|
X = rng.randn(1_000, n_features)
|
||
|
|
||
|
# The default value of `n_oversamples` will lead to inaccurate results
|
||
|
# We force it to the number of features.
|
||
|
pca_randomized = PCA(
|
||
|
n_components=1,
|
||
|
svd_solver="randomized",
|
||
|
n_oversamples=n_features,
|
||
|
random_state=0,
|
||
|
).fit(X)
|
||
|
pca_full = PCA(n_components=1, svd_solver="full").fit(X)
|
||
|
pca_arpack = PCA(n_components=1, svd_solver="arpack", random_state=0).fit(X)
|
||
|
|
||
|
assert_allclose(np.abs(pca_full.components_), np.abs(pca_arpack.components_))
|
||
|
assert_allclose(np.abs(pca_randomized.components_), np.abs(pca_arpack.components_))
|
||
|
|
||
|
|
||
|
def test_feature_names_out():
|
||
|
"""Check feature names out for PCA."""
|
||
|
pca = PCA(n_components=2).fit(iris.data)
|
||
|
|
||
|
names = pca.get_feature_names_out()
|
||
|
assert_array_equal([f"pca{i}" for i in range(2)], names)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("copy", [True, False])
|
||
|
def test_variance_correctness(copy):
|
||
|
"""Check the accuracy of PCA's internal variance calculation"""
|
||
|
rng = np.random.RandomState(0)
|
||
|
X = rng.randn(1000, 200)
|
||
|
pca = PCA().fit(X)
|
||
|
pca_var = pca.explained_variance_ / pca.explained_variance_ratio_
|
||
|
true_var = np.var(X, ddof=1, axis=0).sum()
|
||
|
np.testing.assert_allclose(pca_var, true_var)
|
||
|
|
||
|
|
||
|
def check_array_api_get_precision(name, estimator, array_namespace, device, dtype_name):
|
||
|
xp = _array_api_for_tests(array_namespace, device)
|
||
|
iris_np = iris.data.astype(dtype_name)
|
||
|
iris_xp = xp.asarray(iris_np, device=device)
|
||
|
|
||
|
estimator.fit(iris_np)
|
||
|
precision_np = estimator.get_precision()
|
||
|
covariance_np = estimator.get_covariance()
|
||
|
|
||
|
rtol = 2e-4 if iris_np.dtype == "float32" else 2e-7
|
||
|
with config_context(array_api_dispatch=True):
|
||
|
estimator_xp = clone(estimator).fit(iris_xp)
|
||
|
precision_xp = estimator_xp.get_precision()
|
||
|
assert precision_xp.shape == (4, 4)
|
||
|
assert precision_xp.dtype == iris_xp.dtype
|
||
|
|
||
|
assert_allclose(
|
||
|
_convert_to_numpy(precision_xp, xp=xp),
|
||
|
precision_np,
|
||
|
rtol=rtol,
|
||
|
atol=_atol_for_type(dtype_name),
|
||
|
)
|
||
|
covariance_xp = estimator_xp.get_covariance()
|
||
|
assert covariance_xp.shape == (4, 4)
|
||
|
assert covariance_xp.dtype == iris_xp.dtype
|
||
|
|
||
|
assert_allclose(
|
||
|
_convert_to_numpy(covariance_xp, xp=xp),
|
||
|
covariance_np,
|
||
|
rtol=rtol,
|
||
|
atol=_atol_for_type(dtype_name),
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"check",
|
||
|
[check_array_api_input_and_values, check_array_api_get_precision],
|
||
|
ids=_get_check_estimator_ids,
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator",
|
||
|
[
|
||
|
PCA(n_components=2, svd_solver="full"),
|
||
|
PCA(n_components=2, svd_solver="full", whiten=True),
|
||
|
PCA(n_components=0.1, svd_solver="full", whiten=True),
|
||
|
PCA(n_components=2, svd_solver="covariance_eigh"),
|
||
|
PCA(n_components=2, svd_solver="covariance_eigh", whiten=True),
|
||
|
PCA(
|
||
|
n_components=2,
|
||
|
svd_solver="randomized",
|
||
|
power_iteration_normalizer="QR",
|
||
|
random_state=0, # how to use global_random_seed here?
|
||
|
),
|
||
|
],
|
||
|
ids=_get_check_estimator_ids,
|
||
|
)
|
||
|
def test_pca_array_api_compliance(
|
||
|
estimator, check, array_namespace, device, dtype_name
|
||
|
):
|
||
|
name = estimator.__class__.__name__
|
||
|
check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"check",
|
||
|
[check_array_api_get_precision],
|
||
|
ids=_get_check_estimator_ids,
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"estimator",
|
||
|
[
|
||
|
# PCA with mle cannot use check_array_api_input_and_values because of
|
||
|
# rounding errors in the noisy (low variance) components. Even checking
|
||
|
# the shape of the `components_` is problematic because the number of
|
||
|
# components depends on trimming threshold of the mle algorithm which
|
||
|
# can depend on device-specific rounding errors.
|
||
|
PCA(n_components="mle", svd_solver="full"),
|
||
|
],
|
||
|
ids=_get_check_estimator_ids,
|
||
|
)
|
||
|
def test_pca_mle_array_api_compliance(
|
||
|
estimator, check, array_namespace, device, dtype_name
|
||
|
):
|
||
|
name = estimator.__class__.__name__
|
||
|
check(name, estimator, array_namespace, device=device, dtype_name=dtype_name)
|
||
|
|
||
|
# Simpler variant of the generic check_array_api_input checker tailored for
|
||
|
# the specific case of PCA with mle-trimmed components.
|
||
|
xp = _array_api_for_tests(array_namespace, device)
|
||
|
|
||
|
X, y = make_classification(random_state=42)
|
||
|
X = X.astype(dtype_name, copy=False)
|
||
|
atol = _atol_for_type(X.dtype)
|
||
|
|
||
|
est = clone(estimator)
|
||
|
|
||
|
X_xp = xp.asarray(X, device=device)
|
||
|
y_xp = xp.asarray(y, device=device)
|
||
|
|
||
|
est.fit(X, y)
|
||
|
|
||
|
components_np = est.components_
|
||
|
explained_variance_np = est.explained_variance_
|
||
|
|
||
|
est_xp = clone(est)
|
||
|
with config_context(array_api_dispatch=True):
|
||
|
est_xp.fit(X_xp, y_xp)
|
||
|
components_xp = est_xp.components_
|
||
|
assert array_device(components_xp) == array_device(X_xp)
|
||
|
components_xp_np = _convert_to_numpy(components_xp, xp=xp)
|
||
|
|
||
|
explained_variance_xp = est_xp.explained_variance_
|
||
|
assert array_device(explained_variance_xp) == array_device(X_xp)
|
||
|
explained_variance_xp_np = _convert_to_numpy(explained_variance_xp, xp=xp)
|
||
|
|
||
|
assert components_xp_np.dtype == components_np.dtype
|
||
|
assert components_xp_np.shape[1] == components_np.shape[1]
|
||
|
assert explained_variance_xp_np.dtype == explained_variance_np.dtype
|
||
|
|
||
|
# Check that the explained variance values match for the
|
||
|
# common components:
|
||
|
min_components = min(components_xp_np.shape[0], components_np.shape[0])
|
||
|
assert_allclose(
|
||
|
explained_variance_xp_np[:min_components],
|
||
|
explained_variance_np[:min_components],
|
||
|
atol=atol,
|
||
|
)
|
||
|
|
||
|
# If the number of components differ, check that the explained variance of
|
||
|
# the trimmed components is very small.
|
||
|
if components_xp_np.shape[0] != components_np.shape[0]:
|
||
|
reference_variance = explained_variance_np[-1]
|
||
|
extra_variance_np = explained_variance_np[min_components:]
|
||
|
extra_variance_xp_np = explained_variance_xp_np[min_components:]
|
||
|
assert all(np.abs(extra_variance_np - reference_variance) < atol)
|
||
|
assert all(np.abs(extra_variance_xp_np - reference_variance) < atol)
|
||
|
|
||
|
|
||
|
def test_array_api_error_and_warnings_on_unsupported_params():
|
||
|
pytest.importorskip("array_api_compat")
|
||
|
xp = pytest.importorskip("array_api_strict")
|
||
|
iris_xp = xp.asarray(iris.data)
|
||
|
|
||
|
pca = PCA(n_components=2, svd_solver="arpack", random_state=0)
|
||
|
expected_msg = re.escape(
|
||
|
"PCA with svd_solver='arpack' is not supported for Array API inputs."
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=expected_msg):
|
||
|
with config_context(array_api_dispatch=True):
|
||
|
pca.fit(iris_xp)
|
||
|
|
||
|
pca.set_params(svd_solver="randomized", power_iteration_normalizer="LU")
|
||
|
expected_msg = re.escape(
|
||
|
"Array API does not support LU factorization. Set"
|
||
|
" `power_iteration_normalizer='QR'` instead."
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=expected_msg):
|
||
|
with config_context(array_api_dispatch=True):
|
||
|
pca.fit(iris_xp)
|
||
|
|
||
|
pca.set_params(svd_solver="randomized", power_iteration_normalizer="auto")
|
||
|
expected_msg = re.escape(
|
||
|
"Array API does not support LU factorization, falling back to QR instead. Set"
|
||
|
" `power_iteration_normalizer='QR'` explicitly to silence this warning."
|
||
|
)
|
||
|
with pytest.warns(UserWarning, match=expected_msg):
|
||
|
with config_context(array_api_dispatch=True):
|
||
|
pca.fit(iris_xp)
|