918 lines
26 KiB
Cython
918 lines
26 KiB
Cython
|
"""
|
||
|
Binding for libsvm_skl
|
||
|
----------------------
|
||
|
|
||
|
These are the bindings for libsvm_skl, which is a fork of libsvm[1]
|
||
|
that adds to libsvm some capabilities, like index of support vectors
|
||
|
and efficient representation of dense matrices.
|
||
|
|
||
|
These are low-level routines, but can be used for flexibility or
|
||
|
performance reasons. See sklearn.svm for a higher-level API.
|
||
|
|
||
|
Low-level memory management is done in libsvm_helper.c. If we happen
|
||
|
to run out of memory a MemoryError will be raised. In practice this is
|
||
|
not very helpful since high chances are malloc fails inside svm.cpp,
|
||
|
where no sort of memory checks are done.
|
||
|
|
||
|
[1] https://www.csie.ntu.edu.tw/~cjlin/libsvm/
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The signature mode='c' is somewhat superficial, since we already
|
||
|
check that arrays are C-contiguous in svm.py
|
||
|
|
||
|
Authors
|
||
|
-------
|
||
|
2010: Fabian Pedregosa <fabian.pedregosa@inria.fr>
|
||
|
Gael Varoquaux <gael.varoquaux@normalesup.org>
|
||
|
"""
|
||
|
|
||
|
import numpy as np
|
||
|
from libc.stdlib cimport free
|
||
|
from ..utils._cython_blas cimport _dot
|
||
|
from ..utils._typedefs cimport float64_t, int32_t, intp_t
|
||
|
|
||
|
include "_libsvm.pxi"
|
||
|
|
||
|
cdef extern from *:
|
||
|
ctypedef struct svm_parameter:
|
||
|
pass
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
# Internal variables
|
||
|
LIBSVM_KERNEL_TYPES = ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed']
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
# Wrapper functions
|
||
|
|
||
|
def fit(
|
||
|
const float64_t[:, ::1] X,
|
||
|
const float64_t[::1] Y,
|
||
|
int svm_type=0,
|
||
|
kernel='rbf',
|
||
|
int degree=3,
|
||
|
double gamma=0.1,
|
||
|
double coef0=0.0,
|
||
|
double tol=1e-3,
|
||
|
double C=1.0,
|
||
|
double nu=0.5,
|
||
|
double epsilon=0.1,
|
||
|
const float64_t[::1] class_weight=np.empty(0),
|
||
|
const float64_t[::1] sample_weight=np.empty(0),
|
||
|
int shrinking=1,
|
||
|
int probability=0,
|
||
|
double cache_size=100.,
|
||
|
int max_iter=-1,
|
||
|
int random_seed=0,
|
||
|
):
|
||
|
"""
|
||
|
Train the model using libsvm (low-level method)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, dtype=float64 of shape (n_samples, n_features)
|
||
|
|
||
|
Y : array, dtype=float64 of shape (n_samples,)
|
||
|
target vector
|
||
|
|
||
|
svm_type : {0, 1, 2, 3, 4}, default=0
|
||
|
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
|
||
|
respectively.
|
||
|
|
||
|
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default="rbf"
|
||
|
Kernel to use in the model: linear, polynomial, RBF, sigmoid
|
||
|
or precomputed.
|
||
|
|
||
|
degree : int32, default=3
|
||
|
Degree of the polynomial kernel (only relevant if kernel is
|
||
|
set to polynomial).
|
||
|
|
||
|
gamma : float64, default=0.1
|
||
|
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
|
||
|
kernels.
|
||
|
|
||
|
coef0 : float64, default=0
|
||
|
Independent parameter in poly/sigmoid kernel.
|
||
|
|
||
|
tol : float64, default=1e-3
|
||
|
Numeric stopping criterion (WRITEME).
|
||
|
|
||
|
C : float64, default=1
|
||
|
C parameter in C-Support Vector Classification.
|
||
|
|
||
|
nu : float64, default=0.5
|
||
|
An upper bound on the fraction of training errors and a lower bound of
|
||
|
the fraction of support vectors. Should be in the interval (0, 1].
|
||
|
|
||
|
epsilon : double, default=0.1
|
||
|
Epsilon parameter in the epsilon-insensitive loss function.
|
||
|
|
||
|
class_weight : array, dtype=float64, shape (n_classes,), \
|
||
|
default=np.empty(0)
|
||
|
Set the parameter C of class i to class_weight[i]*C for
|
||
|
SVC. If not given, all classes are supposed to have
|
||
|
weight one.
|
||
|
|
||
|
sample_weight : array, dtype=float64, shape (n_samples,), \
|
||
|
default=np.empty(0)
|
||
|
Weights assigned to each sample.
|
||
|
|
||
|
shrinking : int, default=1
|
||
|
Whether to use the shrinking heuristic.
|
||
|
|
||
|
probability : int, default=0
|
||
|
Whether to enable probability estimates.
|
||
|
|
||
|
cache_size : float64, default=100
|
||
|
Cache size for gram matrix columns (in megabytes).
|
||
|
|
||
|
max_iter : int (-1 for no limit), default=-1
|
||
|
Stop solver after this many iterations regardless of accuracy
|
||
|
(XXX Currently there is no API to know whether this kicked in.)
|
||
|
|
||
|
random_seed : int, default=0
|
||
|
Seed for the random number generator used for probability estimates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
support : array of shape (n_support,)
|
||
|
Index of support vectors.
|
||
|
|
||
|
support_vectors : array of shape (n_support, n_features)
|
||
|
Support vectors (equivalent to X[support]). Will return an
|
||
|
empty array in the case of precomputed kernel.
|
||
|
|
||
|
n_class_SV : array of shape (n_class,)
|
||
|
Number of support vectors in each class.
|
||
|
|
||
|
sv_coef : array of shape (n_class-1, n_support)
|
||
|
Coefficients of support vectors in decision function.
|
||
|
|
||
|
intercept : array of shape (n_class*(n_class-1)/2,)
|
||
|
Intercept in decision function.
|
||
|
|
||
|
probA, probB : array of shape (n_class*(n_class-1)/2,)
|
||
|
Probability estimates, empty array for probability=False.
|
||
|
|
||
|
n_iter : ndarray of shape (max(1, (n_class * (n_class - 1) // 2)),)
|
||
|
Number of iterations run by the optimization routine to fit the model.
|
||
|
"""
|
||
|
|
||
|
cdef svm_parameter param
|
||
|
cdef svm_problem problem
|
||
|
cdef svm_model *model
|
||
|
cdef const char *error_msg
|
||
|
cdef intp_t SV_len
|
||
|
|
||
|
if len(sample_weight) == 0:
|
||
|
sample_weight = np.ones(X.shape[0], dtype=np.float64)
|
||
|
else:
|
||
|
assert sample_weight.shape[0] == X.shape[0], (
|
||
|
f"sample_weight and X have incompatible shapes: sample_weight has "
|
||
|
f"{sample_weight.shape[0]} samples while X has {X.shape[0]}"
|
||
|
)
|
||
|
|
||
|
kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
|
||
|
set_problem(
|
||
|
&problem,
|
||
|
<char*> &X[0, 0],
|
||
|
<char*> &Y[0],
|
||
|
<char*> &sample_weight[0],
|
||
|
<intp_t*> X.shape,
|
||
|
kernel_index,
|
||
|
)
|
||
|
if problem.x == NULL:
|
||
|
raise MemoryError("Seems we've run out of memory")
|
||
|
cdef int32_t[::1] class_weight_label = np.arange(
|
||
|
class_weight.shape[0], dtype=np.int32
|
||
|
)
|
||
|
set_parameter(
|
||
|
¶m,
|
||
|
svm_type,
|
||
|
kernel_index,
|
||
|
degree,
|
||
|
gamma,
|
||
|
coef0,
|
||
|
nu,
|
||
|
cache_size,
|
||
|
C,
|
||
|
tol,
|
||
|
epsilon,
|
||
|
shrinking,
|
||
|
probability,
|
||
|
<int> class_weight.shape[0],
|
||
|
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
|
||
|
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
|
||
|
max_iter,
|
||
|
random_seed,
|
||
|
)
|
||
|
|
||
|
error_msg = svm_check_parameter(&problem, ¶m)
|
||
|
if error_msg:
|
||
|
# for SVR: epsilon is called p in libsvm
|
||
|
error_repl = error_msg.decode('utf-8').replace("p < 0", "epsilon < 0")
|
||
|
raise ValueError(error_repl)
|
||
|
cdef BlasFunctions blas_functions
|
||
|
blas_functions.dot = _dot[double]
|
||
|
# this does the real work
|
||
|
cdef int fit_status = 0
|
||
|
with nogil:
|
||
|
model = svm_train(&problem, ¶m, &fit_status, &blas_functions)
|
||
|
|
||
|
# from here until the end, we just copy the data returned by
|
||
|
# svm_train
|
||
|
SV_len = get_l(model)
|
||
|
n_class = get_nr(model)
|
||
|
|
||
|
cdef int[::1] n_iter = np.empty(max(1, n_class * (n_class - 1) // 2), dtype=np.intc)
|
||
|
copy_n_iter(<char*> &n_iter[0], model)
|
||
|
|
||
|
cdef float64_t[:, ::1] sv_coef = np.empty((n_class-1, SV_len), dtype=np.float64)
|
||
|
copy_sv_coef(<char*> &sv_coef[0, 0] if sv_coef.size > 0 else NULL, model)
|
||
|
|
||
|
# the intercept is just model.rho but with sign changed
|
||
|
cdef float64_t[::1] intercept = np.empty(
|
||
|
int((n_class*(n_class-1))/2), dtype=np.float64
|
||
|
)
|
||
|
copy_intercept(<char*> &intercept[0], model, <intp_t*> intercept.shape)
|
||
|
|
||
|
cdef int32_t[::1] support = np.empty(SV_len, dtype=np.int32)
|
||
|
copy_support(<char*> &support[0] if support.size > 0 else NULL, model)
|
||
|
|
||
|
# copy model.SV
|
||
|
cdef float64_t[:, ::1] support_vectors
|
||
|
if kernel_index == 4:
|
||
|
# precomputed kernel
|
||
|
support_vectors = np.empty((0, 0), dtype=np.float64)
|
||
|
else:
|
||
|
support_vectors = np.empty((SV_len, X.shape[1]), dtype=np.float64)
|
||
|
copy_SV(
|
||
|
<char*> &support_vectors[0, 0] if support_vectors.size > 0 else NULL,
|
||
|
model,
|
||
|
<intp_t*> support_vectors.shape,
|
||
|
)
|
||
|
|
||
|
cdef int32_t[::1] n_class_SV
|
||
|
if svm_type == 0 or svm_type == 1:
|
||
|
n_class_SV = np.empty(n_class, dtype=np.int32)
|
||
|
copy_nSV(<char*> &n_class_SV[0] if n_class_SV.size > 0 else NULL, model)
|
||
|
else:
|
||
|
# OneClass and SVR are considered to have 2 classes
|
||
|
n_class_SV = np.array([SV_len, SV_len], dtype=np.int32)
|
||
|
|
||
|
cdef float64_t[::1] probA
|
||
|
cdef float64_t[::1] probB
|
||
|
if probability != 0:
|
||
|
if svm_type < 2: # SVC and NuSVC
|
||
|
probA = np.empty(int(n_class*(n_class-1)/2), dtype=np.float64)
|
||
|
probB = np.empty(int(n_class*(n_class-1)/2), dtype=np.float64)
|
||
|
copy_probB(<char*> &probB[0], model, <intp_t*> probB.shape)
|
||
|
else:
|
||
|
probA = np.empty(1, dtype=np.float64)
|
||
|
probB = np.empty(0, dtype=np.float64)
|
||
|
copy_probA(<char*> &probA[0], model, <intp_t*> probA.shape)
|
||
|
else:
|
||
|
probA = np.empty(0, dtype=np.float64)
|
||
|
probB = np.empty(0, dtype=np.float64)
|
||
|
|
||
|
svm_free_and_destroy_model(&model)
|
||
|
free(problem.x)
|
||
|
|
||
|
return (
|
||
|
support.base,
|
||
|
support_vectors.base,
|
||
|
n_class_SV.base,
|
||
|
sv_coef.base,
|
||
|
intercept.base,
|
||
|
probA.base,
|
||
|
probB.base,
|
||
|
fit_status,
|
||
|
n_iter.base,
|
||
|
)
|
||
|
|
||
|
|
||
|
cdef void set_predict_params(
|
||
|
svm_parameter *param,
|
||
|
int svm_type,
|
||
|
kernel,
|
||
|
int degree,
|
||
|
double gamma,
|
||
|
double coef0,
|
||
|
double cache_size,
|
||
|
int probability,
|
||
|
int nr_weight,
|
||
|
char *weight_label,
|
||
|
char *weight,
|
||
|
) except *:
|
||
|
"""Fill param with prediction time-only parameters."""
|
||
|
|
||
|
# training-time only parameters
|
||
|
cdef double C = 0.0
|
||
|
cdef double epsilon = 0.1
|
||
|
cdef int max_iter = 0
|
||
|
cdef double nu = 0.5
|
||
|
cdef int shrinking = 0
|
||
|
cdef double tol = 0.1
|
||
|
cdef int random_seed = -1
|
||
|
|
||
|
kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
|
||
|
|
||
|
set_parameter(
|
||
|
param,
|
||
|
svm_type,
|
||
|
kernel_index,
|
||
|
degree,
|
||
|
gamma,
|
||
|
coef0,
|
||
|
nu,
|
||
|
cache_size,
|
||
|
C,
|
||
|
tol,
|
||
|
epsilon,
|
||
|
shrinking,
|
||
|
probability,
|
||
|
nr_weight,
|
||
|
weight_label,
|
||
|
weight,
|
||
|
max_iter,
|
||
|
random_seed,
|
||
|
)
|
||
|
|
||
|
|
||
|
def predict(
|
||
|
const float64_t[:, ::1] X,
|
||
|
const int32_t[::1] support,
|
||
|
const float64_t[:, ::1] SV,
|
||
|
const int32_t[::1] nSV,
|
||
|
const float64_t[:, ::1] sv_coef,
|
||
|
const float64_t[::1] intercept,
|
||
|
const float64_t[::1] probA=np.empty(0),
|
||
|
const float64_t[::1] probB=np.empty(0),
|
||
|
int svm_type=0,
|
||
|
kernel='rbf',
|
||
|
int degree=3,
|
||
|
double gamma=0.1,
|
||
|
double coef0=0.0,
|
||
|
const float64_t[::1] class_weight=np.empty(0),
|
||
|
const float64_t[::1] sample_weight=np.empty(0),
|
||
|
double cache_size=100.0,
|
||
|
):
|
||
|
"""
|
||
|
Predict target values of X given a model (low-level method)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, dtype=float of shape (n_samples, n_features)
|
||
|
|
||
|
support : array of shape (n_support,)
|
||
|
Index of support vectors in training set.
|
||
|
|
||
|
SV : array of shape (n_support, n_features)
|
||
|
Support vectors.
|
||
|
|
||
|
nSV : array of shape (n_class,)
|
||
|
Number of support vectors in each class.
|
||
|
|
||
|
sv_coef : array of shape (n_class-1, n_support)
|
||
|
Coefficients of support vectors in decision function.
|
||
|
|
||
|
intercept : array of shape (n_class*(n_class-1)/2)
|
||
|
Intercept in decision function.
|
||
|
|
||
|
probA, probB : array of shape (n_class*(n_class-1)/2,)
|
||
|
Probability estimates.
|
||
|
|
||
|
svm_type : {0, 1, 2, 3, 4}, default=0
|
||
|
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
|
||
|
respectively.
|
||
|
|
||
|
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default="rbf"
|
||
|
Kernel to use in the model: linear, polynomial, RBF, sigmoid
|
||
|
or precomputed.
|
||
|
|
||
|
degree : int32, default=3
|
||
|
Degree of the polynomial kernel (only relevant if kernel is
|
||
|
set to polynomial).
|
||
|
|
||
|
gamma : float64, default=0.1
|
||
|
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
|
||
|
kernels.
|
||
|
|
||
|
coef0 : float64, default=0.0
|
||
|
Independent parameter in poly/sigmoid kernel.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dec_values : array
|
||
|
Predicted values.
|
||
|
"""
|
||
|
cdef float64_t[::1] dec_values
|
||
|
cdef svm_parameter param
|
||
|
cdef svm_model *model
|
||
|
cdef int rv
|
||
|
|
||
|
cdef int32_t[::1] class_weight_label = np.arange(
|
||
|
class_weight.shape[0], dtype=np.int32
|
||
|
)
|
||
|
|
||
|
set_predict_params(
|
||
|
¶m,
|
||
|
svm_type,
|
||
|
kernel,
|
||
|
degree,
|
||
|
gamma,
|
||
|
coef0,
|
||
|
cache_size,
|
||
|
0,
|
||
|
<int>class_weight.shape[0],
|
||
|
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
|
||
|
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
|
||
|
)
|
||
|
model = set_model(
|
||
|
¶m,
|
||
|
<int> nSV.shape[0],
|
||
|
<char*> &SV[0, 0] if SV.size > 0 else NULL,
|
||
|
<intp_t*> SV.shape,
|
||
|
<char*> &support[0] if support.size > 0 else NULL,
|
||
|
<intp_t*> support.shape,
|
||
|
<intp_t*> sv_coef.strides,
|
||
|
<char*> &sv_coef[0, 0] if sv_coef.size > 0 else NULL,
|
||
|
<char*> &intercept[0],
|
||
|
<char*> &nSV[0],
|
||
|
<char*> &probA[0] if probA.size > 0 else NULL,
|
||
|
<char*> &probB[0] if probB.size > 0 else NULL,
|
||
|
)
|
||
|
cdef BlasFunctions blas_functions
|
||
|
blas_functions.dot = _dot[double]
|
||
|
# TODO: use check_model
|
||
|
try:
|
||
|
dec_values = np.empty(X.shape[0])
|
||
|
with nogil:
|
||
|
rv = copy_predict(
|
||
|
<char*> &X[0, 0],
|
||
|
model,
|
||
|
<intp_t*> X.shape,
|
||
|
<char*> &dec_values[0],
|
||
|
&blas_functions,
|
||
|
)
|
||
|
if rv < 0:
|
||
|
raise MemoryError("We've run out of memory")
|
||
|
finally:
|
||
|
free_model(model)
|
||
|
|
||
|
return dec_values.base
|
||
|
|
||
|
|
||
|
def predict_proba(
|
||
|
const float64_t[:, ::1] X,
|
||
|
const int32_t[::1] support,
|
||
|
const float64_t[:, ::1] SV,
|
||
|
const int32_t[::1] nSV,
|
||
|
float64_t[:, ::1] sv_coef,
|
||
|
float64_t[::1] intercept,
|
||
|
float64_t[::1] probA=np.empty(0),
|
||
|
float64_t[::1] probB=np.empty(0),
|
||
|
int svm_type=0,
|
||
|
kernel='rbf',
|
||
|
int degree=3,
|
||
|
double gamma=0.1,
|
||
|
double coef0=0.0,
|
||
|
float64_t[::1] class_weight=np.empty(0),
|
||
|
float64_t[::1] sample_weight=np.empty(0),
|
||
|
double cache_size=100.0,
|
||
|
):
|
||
|
"""
|
||
|
Predict probabilities
|
||
|
|
||
|
svm_model stores all parameters needed to predict a given value.
|
||
|
|
||
|
For speed, all real work is done at the C level in function
|
||
|
copy_predict (libsvm_helper.c).
|
||
|
|
||
|
We have to reconstruct model and parameters to make sure we stay
|
||
|
in sync with the python object.
|
||
|
|
||
|
See sklearn.svm.predict for a complete list of parameters.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, dtype=float of shape (n_samples, n_features)
|
||
|
|
||
|
support : array of shape (n_support,)
|
||
|
Index of support vectors in training set.
|
||
|
|
||
|
SV : array of shape (n_support, n_features)
|
||
|
Support vectors.
|
||
|
|
||
|
nSV : array of shape (n_class,)
|
||
|
Number of support vectors in each class.
|
||
|
|
||
|
sv_coef : array of shape (n_class-1, n_support)
|
||
|
Coefficients of support vectors in decision function.
|
||
|
|
||
|
intercept : array of shape (n_class*(n_class-1)/2,)
|
||
|
Intercept in decision function.
|
||
|
|
||
|
probA, probB : array of shape (n_class*(n_class-1)/2,)
|
||
|
Probability estimates.
|
||
|
|
||
|
svm_type : {0, 1, 2, 3, 4}, default=0
|
||
|
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
|
||
|
respectively.
|
||
|
|
||
|
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default="rbf"
|
||
|
Kernel to use in the model: linear, polynomial, RBF, sigmoid
|
||
|
or precomputed.
|
||
|
|
||
|
degree : int32, default=3
|
||
|
Degree of the polynomial kernel (only relevant if kernel is
|
||
|
set to polynomial).
|
||
|
|
||
|
gamma : float64, default=0.1
|
||
|
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
|
||
|
kernels.
|
||
|
|
||
|
coef0 : float64, default=0.0
|
||
|
Independent parameter in poly/sigmoid kernel.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dec_values : array
|
||
|
Predicted values.
|
||
|
"""
|
||
|
cdef float64_t[:, ::1] dec_values
|
||
|
cdef svm_parameter param
|
||
|
cdef svm_model *model
|
||
|
cdef int32_t[::1] class_weight_label = np.arange(
|
||
|
class_weight.shape[0], dtype=np.int32
|
||
|
)
|
||
|
cdef int rv
|
||
|
|
||
|
set_predict_params(
|
||
|
¶m,
|
||
|
svm_type,
|
||
|
kernel,
|
||
|
degree,
|
||
|
gamma,
|
||
|
coef0,
|
||
|
cache_size,
|
||
|
1,
|
||
|
<int> class_weight.shape[0],
|
||
|
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
|
||
|
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
|
||
|
)
|
||
|
model = set_model(
|
||
|
¶m,
|
||
|
<int> nSV.shape[0],
|
||
|
<char*> &SV[0, 0] if SV.size > 0 else NULL,
|
||
|
<intp_t*> SV.shape,
|
||
|
<char*> &support[0],
|
||
|
<intp_t*> support.shape,
|
||
|
<intp_t*> sv_coef.strides,
|
||
|
<char*> &sv_coef[0, 0],
|
||
|
<char*> &intercept[0],
|
||
|
<char*> &nSV[0],
|
||
|
<char*> &probA[0] if probA.size > 0 else NULL,
|
||
|
<char*> &probB[0] if probB.size > 0 else NULL,
|
||
|
)
|
||
|
|
||
|
cdef intp_t n_class = get_nr(model)
|
||
|
cdef BlasFunctions blas_functions
|
||
|
blas_functions.dot = _dot[double]
|
||
|
try:
|
||
|
dec_values = np.empty((X.shape[0], n_class), dtype=np.float64)
|
||
|
with nogil:
|
||
|
rv = copy_predict_proba(
|
||
|
<char*> &X[0, 0],
|
||
|
model,
|
||
|
<intp_t*> X.shape,
|
||
|
<char*> &dec_values[0, 0],
|
||
|
&blas_functions,
|
||
|
)
|
||
|
if rv < 0:
|
||
|
raise MemoryError("We've run out of memory")
|
||
|
finally:
|
||
|
free_model(model)
|
||
|
|
||
|
return dec_values.base
|
||
|
|
||
|
|
||
|
def decision_function(
|
||
|
const float64_t[:, ::1] X,
|
||
|
const int32_t[::1] support,
|
||
|
const float64_t[:, ::1] SV,
|
||
|
const int32_t[::1] nSV,
|
||
|
const float64_t[:, ::1] sv_coef,
|
||
|
const float64_t[::1] intercept,
|
||
|
const float64_t[::1] probA=np.empty(0),
|
||
|
const float64_t[::1] probB=np.empty(0),
|
||
|
int svm_type=0,
|
||
|
kernel='rbf',
|
||
|
int degree=3,
|
||
|
double gamma=0.1,
|
||
|
double coef0=0.0,
|
||
|
const float64_t[::1] class_weight=np.empty(0),
|
||
|
const float64_t[::1] sample_weight=np.empty(0),
|
||
|
double cache_size=100.0,
|
||
|
):
|
||
|
"""
|
||
|
Predict margin (libsvm name for this is predict_values)
|
||
|
|
||
|
We have to reconstruct model and parameters to make sure we stay
|
||
|
in sync with the python object.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
X : array-like, dtype=float, size=[n_samples, n_features]
|
||
|
|
||
|
support : array, shape=[n_support]
|
||
|
Index of support vectors in training set.
|
||
|
|
||
|
SV : array, shape=[n_support, n_features]
|
||
|
Support vectors.
|
||
|
|
||
|
nSV : array, shape=[n_class]
|
||
|
Number of support vectors in each class.
|
||
|
|
||
|
sv_coef : array, shape=[n_class-1, n_support]
|
||
|
Coefficients of support vectors in decision function.
|
||
|
|
||
|
intercept : array, shape=[n_class*(n_class-1)/2]
|
||
|
Intercept in decision function.
|
||
|
|
||
|
probA, probB : array, shape=[n_class*(n_class-1)/2]
|
||
|
Probability estimates.
|
||
|
|
||
|
svm_type : {0, 1, 2, 3, 4}, optional
|
||
|
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
|
||
|
respectively. 0 by default.
|
||
|
|
||
|
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, optional
|
||
|
Kernel to use in the model: linear, polynomial, RBF, sigmoid
|
||
|
or precomputed. 'rbf' by default.
|
||
|
|
||
|
degree : int32, optional
|
||
|
Degree of the polynomial kernel (only relevant if kernel is
|
||
|
set to polynomial), 3 by default.
|
||
|
|
||
|
gamma : float64, optional
|
||
|
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
|
||
|
kernels. 0.1 by default.
|
||
|
|
||
|
coef0 : float64, optional
|
||
|
Independent parameter in poly/sigmoid kernel. 0 by default.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
dec_values : array
|
||
|
Predicted values.
|
||
|
"""
|
||
|
cdef float64_t[:, ::1] dec_values
|
||
|
cdef svm_parameter param
|
||
|
cdef svm_model *model
|
||
|
cdef intp_t n_class
|
||
|
|
||
|
cdef int32_t[::1] class_weight_label = np.arange(
|
||
|
class_weight.shape[0], dtype=np.int32
|
||
|
)
|
||
|
|
||
|
cdef int rv
|
||
|
|
||
|
set_predict_params(
|
||
|
¶m,
|
||
|
svm_type,
|
||
|
kernel,
|
||
|
degree,
|
||
|
gamma,
|
||
|
coef0,
|
||
|
cache_size,
|
||
|
0,
|
||
|
<int> class_weight.shape[0],
|
||
|
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
|
||
|
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
|
||
|
)
|
||
|
|
||
|
model = set_model(
|
||
|
¶m,
|
||
|
<int> nSV.shape[0],
|
||
|
<char*> &SV[0, 0] if SV.size > 0 else NULL,
|
||
|
<intp_t*> SV.shape,
|
||
|
<char*> &support[0],
|
||
|
<intp_t*> support.shape,
|
||
|
<intp_t*> sv_coef.strides,
|
||
|
<char*> &sv_coef[0, 0],
|
||
|
<char*> &intercept[0],
|
||
|
<char*> &nSV[0],
|
||
|
<char*> &probA[0] if probA.size > 0 else NULL,
|
||
|
<char*> &probB[0] if probB.size > 0 else NULL,
|
||
|
)
|
||
|
|
||
|
if svm_type > 1:
|
||
|
n_class = 1
|
||
|
else:
|
||
|
n_class = get_nr(model)
|
||
|
n_class = n_class * (n_class - 1) // 2
|
||
|
cdef BlasFunctions blas_functions
|
||
|
blas_functions.dot = _dot[double]
|
||
|
try:
|
||
|
dec_values = np.empty((X.shape[0], n_class), dtype=np.float64)
|
||
|
with nogil:
|
||
|
rv = copy_predict_values(
|
||
|
<char*> &X[0, 0],
|
||
|
model,
|
||
|
<intp_t*> X.shape,
|
||
|
<char*> &dec_values[0, 0],
|
||
|
n_class,
|
||
|
&blas_functions,
|
||
|
)
|
||
|
if rv < 0:
|
||
|
raise MemoryError("We've run out of memory")
|
||
|
finally:
|
||
|
free_model(model)
|
||
|
|
||
|
return dec_values.base
|
||
|
|
||
|
|
||
|
def cross_validation(
|
||
|
const float64_t[:, ::1] X,
|
||
|
const float64_t[::1] Y,
|
||
|
int n_fold,
|
||
|
int svm_type=0,
|
||
|
kernel='rbf',
|
||
|
int degree=3,
|
||
|
double gamma=0.1,
|
||
|
double coef0=0.0,
|
||
|
double tol=1e-3,
|
||
|
double C=1.0,
|
||
|
double nu=0.5,
|
||
|
double epsilon=0.1,
|
||
|
float64_t[::1] class_weight=np.empty(0),
|
||
|
float64_t[::1] sample_weight=np.empty(0),
|
||
|
int shrinking=0,
|
||
|
int probability=0,
|
||
|
double cache_size=100.0,
|
||
|
int max_iter=-1,
|
||
|
int random_seed=0,
|
||
|
):
|
||
|
"""
|
||
|
Binding of the cross-validation routine (low-level routine)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
|
||
|
X : array-like, dtype=float of shape (n_samples, n_features)
|
||
|
|
||
|
Y : array, dtype=float of shape (n_samples,)
|
||
|
target vector
|
||
|
|
||
|
n_fold : int32
|
||
|
Number of folds for cross validation.
|
||
|
|
||
|
svm_type : {0, 1, 2, 3, 4}, default=0
|
||
|
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
|
||
|
respectively.
|
||
|
|
||
|
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default='rbf'
|
||
|
Kernel to use in the model: linear, polynomial, RBF, sigmoid
|
||
|
or precomputed.
|
||
|
|
||
|
degree : int32, default=3
|
||
|
Degree of the polynomial kernel (only relevant if kernel is
|
||
|
set to polynomial).
|
||
|
|
||
|
gamma : float64, default=0.1
|
||
|
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
|
||
|
kernels.
|
||
|
|
||
|
coef0 : float64, default=0.0
|
||
|
Independent parameter in poly/sigmoid kernel.
|
||
|
|
||
|
tol : float64, default=1e-3
|
||
|
Numeric stopping criterion (WRITEME).
|
||
|
|
||
|
C : float64, default=1
|
||
|
C parameter in C-Support Vector Classification.
|
||
|
|
||
|
nu : float64, default=0.5
|
||
|
An upper bound on the fraction of training errors and a lower bound of
|
||
|
the fraction of support vectors. Should be in the interval (0, 1].
|
||
|
|
||
|
epsilon : double, default=0.1
|
||
|
Epsilon parameter in the epsilon-insensitive loss function.
|
||
|
|
||
|
class_weight : array, dtype=float64, shape (n_classes,), \
|
||
|
default=np.empty(0)
|
||
|
Set the parameter C of class i to class_weight[i]*C for
|
||
|
SVC. If not given, all classes are supposed to have
|
||
|
weight one.
|
||
|
|
||
|
sample_weight : array, dtype=float64, shape (n_samples,), \
|
||
|
default=np.empty(0)
|
||
|
Weights assigned to each sample.
|
||
|
|
||
|
shrinking : int, default=1
|
||
|
Whether to use the shrinking heuristic.
|
||
|
|
||
|
probability : int, default=0
|
||
|
Whether to enable probability estimates.
|
||
|
|
||
|
cache_size : float64, default=100
|
||
|
Cache size for gram matrix columns (in megabytes).
|
||
|
|
||
|
max_iter : int (-1 for no limit), default=-1
|
||
|
Stop solver after this many iterations regardless of accuracy
|
||
|
(XXX Currently there is no API to know whether this kicked in.)
|
||
|
|
||
|
random_seed : int, default=0
|
||
|
Seed for the random number generator used for probability estimates.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
target : array, float
|
||
|
|
||
|
"""
|
||
|
|
||
|
cdef svm_parameter param
|
||
|
cdef svm_problem problem
|
||
|
cdef const char *error_msg
|
||
|
|
||
|
if len(sample_weight) == 0:
|
||
|
sample_weight = np.ones(X.shape[0], dtype=np.float64)
|
||
|
else:
|
||
|
assert sample_weight.shape[0] == X.shape[0], (
|
||
|
f"sample_weight and X have incompatible shapes: sample_weight has "
|
||
|
f"{sample_weight.shape[0]} samples while X has {X.shape[0]}"
|
||
|
)
|
||
|
|
||
|
if X.shape[0] < n_fold:
|
||
|
raise ValueError("Number of samples is less than number of folds")
|
||
|
|
||
|
# set problem
|
||
|
kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
|
||
|
set_problem(
|
||
|
&problem,
|
||
|
<char*> &X[0, 0],
|
||
|
<char*> &Y[0],
|
||
|
<char*> &sample_weight[0] if sample_weight.size > 0 else NULL,
|
||
|
<intp_t*> X.shape,
|
||
|
kernel_index,
|
||
|
)
|
||
|
if problem.x == NULL:
|
||
|
raise MemoryError("Seems we've run out of memory")
|
||
|
cdef int32_t[::1] class_weight_label = np.arange(
|
||
|
class_weight.shape[0], dtype=np.int32
|
||
|
)
|
||
|
|
||
|
# set parameters
|
||
|
set_parameter(
|
||
|
¶m,
|
||
|
svm_type,
|
||
|
kernel_index,
|
||
|
degree,
|
||
|
gamma,
|
||
|
coef0,
|
||
|
nu,
|
||
|
cache_size,
|
||
|
C,
|
||
|
tol,
|
||
|
tol,
|
||
|
shrinking,
|
||
|
probability,
|
||
|
<int> class_weight.shape[0],
|
||
|
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
|
||
|
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
|
||
|
max_iter,
|
||
|
random_seed,
|
||
|
)
|
||
|
|
||
|
error_msg = svm_check_parameter(&problem, ¶m)
|
||
|
if error_msg:
|
||
|
raise ValueError(error_msg)
|
||
|
|
||
|
cdef float64_t[::1] target
|
||
|
cdef BlasFunctions blas_functions
|
||
|
blas_functions.dot = _dot[double]
|
||
|
try:
|
||
|
target = np.empty((X.shape[0]), dtype=np.float64)
|
||
|
with nogil:
|
||
|
svm_cross_validation(
|
||
|
&problem,
|
||
|
¶m,
|
||
|
n_fold,
|
||
|
<double *> &target[0],
|
||
|
&blas_functions,
|
||
|
)
|
||
|
finally:
|
||
|
free(problem.x)
|
||
|
|
||
|
return target.base
|
||
|
|
||
|
|
||
|
def set_verbosity_wrap(int verbosity):
|
||
|
"""
|
||
|
Control verbosity of libsvm library
|
||
|
"""
|
||
|
set_verbosity(verbosity)
|