Traktor/myenv/Lib/site-packages/sklearn/svm/_libsvm.pyx

918 lines
26 KiB
Cython
Raw Normal View History

2024-05-26 05:12:46 +02:00
"""
Binding for libsvm_skl
----------------------
These are the bindings for libsvm_skl, which is a fork of libsvm[1]
that adds to libsvm some capabilities, like index of support vectors
and efficient representation of dense matrices.
These are low-level routines, but can be used for flexibility or
performance reasons. See sklearn.svm for a higher-level API.
Low-level memory management is done in libsvm_helper.c. If we happen
to run out of memory a MemoryError will be raised. In practice this is
not very helpful since high chances are malloc fails inside svm.cpp,
where no sort of memory checks are done.
[1] https://www.csie.ntu.edu.tw/~cjlin/libsvm/
Notes
-----
The signature mode='c' is somewhat superficial, since we already
check that arrays are C-contiguous in svm.py
Authors
-------
2010: Fabian Pedregosa <fabian.pedregosa@inria.fr>
Gael Varoquaux <gael.varoquaux@normalesup.org>
"""
import numpy as np
from libc.stdlib cimport free
from ..utils._cython_blas cimport _dot
from ..utils._typedefs cimport float64_t, int32_t, intp_t
include "_libsvm.pxi"
cdef extern from *:
ctypedef struct svm_parameter:
pass
################################################################################
# Internal variables
LIBSVM_KERNEL_TYPES = ['linear', 'poly', 'rbf', 'sigmoid', 'precomputed']
################################################################################
# Wrapper functions
def fit(
const float64_t[:, ::1] X,
const float64_t[::1] Y,
int svm_type=0,
kernel='rbf',
int degree=3,
double gamma=0.1,
double coef0=0.0,
double tol=1e-3,
double C=1.0,
double nu=0.5,
double epsilon=0.1,
const float64_t[::1] class_weight=np.empty(0),
const float64_t[::1] sample_weight=np.empty(0),
int shrinking=1,
int probability=0,
double cache_size=100.,
int max_iter=-1,
int random_seed=0,
):
"""
Train the model using libsvm (low-level method)
Parameters
----------
X : array-like, dtype=float64 of shape (n_samples, n_features)
Y : array, dtype=float64 of shape (n_samples,)
target vector
svm_type : {0, 1, 2, 3, 4}, default=0
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
respectively.
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default="rbf"
Kernel to use in the model: linear, polynomial, RBF, sigmoid
or precomputed.
degree : int32, default=3
Degree of the polynomial kernel (only relevant if kernel is
set to polynomial).
gamma : float64, default=0.1
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
kernels.
coef0 : float64, default=0
Independent parameter in poly/sigmoid kernel.
tol : float64, default=1e-3
Numeric stopping criterion (WRITEME).
C : float64, default=1
C parameter in C-Support Vector Classification.
nu : float64, default=0.5
An upper bound on the fraction of training errors and a lower bound of
the fraction of support vectors. Should be in the interval (0, 1].
epsilon : double, default=0.1
Epsilon parameter in the epsilon-insensitive loss function.
class_weight : array, dtype=float64, shape (n_classes,), \
default=np.empty(0)
Set the parameter C of class i to class_weight[i]*C for
SVC. If not given, all classes are supposed to have
weight one.
sample_weight : array, dtype=float64, shape (n_samples,), \
default=np.empty(0)
Weights assigned to each sample.
shrinking : int, default=1
Whether to use the shrinking heuristic.
probability : int, default=0
Whether to enable probability estimates.
cache_size : float64, default=100
Cache size for gram matrix columns (in megabytes).
max_iter : int (-1 for no limit), default=-1
Stop solver after this many iterations regardless of accuracy
(XXX Currently there is no API to know whether this kicked in.)
random_seed : int, default=0
Seed for the random number generator used for probability estimates.
Returns
-------
support : array of shape (n_support,)
Index of support vectors.
support_vectors : array of shape (n_support, n_features)
Support vectors (equivalent to X[support]). Will return an
empty array in the case of precomputed kernel.
n_class_SV : array of shape (n_class,)
Number of support vectors in each class.
sv_coef : array of shape (n_class-1, n_support)
Coefficients of support vectors in decision function.
intercept : array of shape (n_class*(n_class-1)/2,)
Intercept in decision function.
probA, probB : array of shape (n_class*(n_class-1)/2,)
Probability estimates, empty array for probability=False.
n_iter : ndarray of shape (max(1, (n_class * (n_class - 1) // 2)),)
Number of iterations run by the optimization routine to fit the model.
"""
cdef svm_parameter param
cdef svm_problem problem
cdef svm_model *model
cdef const char *error_msg
cdef intp_t SV_len
if len(sample_weight) == 0:
sample_weight = np.ones(X.shape[0], dtype=np.float64)
else:
assert sample_weight.shape[0] == X.shape[0], (
f"sample_weight and X have incompatible shapes: sample_weight has "
f"{sample_weight.shape[0]} samples while X has {X.shape[0]}"
)
kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
set_problem(
&problem,
<char*> &X[0, 0],
<char*> &Y[0],
<char*> &sample_weight[0],
<intp_t*> X.shape,
kernel_index,
)
if problem.x == NULL:
raise MemoryError("Seems we've run out of memory")
cdef int32_t[::1] class_weight_label = np.arange(
class_weight.shape[0], dtype=np.int32
)
set_parameter(
&param,
svm_type,
kernel_index,
degree,
gamma,
coef0,
nu,
cache_size,
C,
tol,
epsilon,
shrinking,
probability,
<int> class_weight.shape[0],
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
max_iter,
random_seed,
)
error_msg = svm_check_parameter(&problem, &param)
if error_msg:
# for SVR: epsilon is called p in libsvm
error_repl = error_msg.decode('utf-8').replace("p < 0", "epsilon < 0")
raise ValueError(error_repl)
cdef BlasFunctions blas_functions
blas_functions.dot = _dot[double]
# this does the real work
cdef int fit_status = 0
with nogil:
model = svm_train(&problem, &param, &fit_status, &blas_functions)
# from here until the end, we just copy the data returned by
# svm_train
SV_len = get_l(model)
n_class = get_nr(model)
cdef int[::1] n_iter = np.empty(max(1, n_class * (n_class - 1) // 2), dtype=np.intc)
copy_n_iter(<char*> &n_iter[0], model)
cdef float64_t[:, ::1] sv_coef = np.empty((n_class-1, SV_len), dtype=np.float64)
copy_sv_coef(<char*> &sv_coef[0, 0] if sv_coef.size > 0 else NULL, model)
# the intercept is just model.rho but with sign changed
cdef float64_t[::1] intercept = np.empty(
int((n_class*(n_class-1))/2), dtype=np.float64
)
copy_intercept(<char*> &intercept[0], model, <intp_t*> intercept.shape)
cdef int32_t[::1] support = np.empty(SV_len, dtype=np.int32)
copy_support(<char*> &support[0] if support.size > 0 else NULL, model)
# copy model.SV
cdef float64_t[:, ::1] support_vectors
if kernel_index == 4:
# precomputed kernel
support_vectors = np.empty((0, 0), dtype=np.float64)
else:
support_vectors = np.empty((SV_len, X.shape[1]), dtype=np.float64)
copy_SV(
<char*> &support_vectors[0, 0] if support_vectors.size > 0 else NULL,
model,
<intp_t*> support_vectors.shape,
)
cdef int32_t[::1] n_class_SV
if svm_type == 0 or svm_type == 1:
n_class_SV = np.empty(n_class, dtype=np.int32)
copy_nSV(<char*> &n_class_SV[0] if n_class_SV.size > 0 else NULL, model)
else:
# OneClass and SVR are considered to have 2 classes
n_class_SV = np.array([SV_len, SV_len], dtype=np.int32)
cdef float64_t[::1] probA
cdef float64_t[::1] probB
if probability != 0:
if svm_type < 2: # SVC and NuSVC
probA = np.empty(int(n_class*(n_class-1)/2), dtype=np.float64)
probB = np.empty(int(n_class*(n_class-1)/2), dtype=np.float64)
copy_probB(<char*> &probB[0], model, <intp_t*> probB.shape)
else:
probA = np.empty(1, dtype=np.float64)
probB = np.empty(0, dtype=np.float64)
copy_probA(<char*> &probA[0], model, <intp_t*> probA.shape)
else:
probA = np.empty(0, dtype=np.float64)
probB = np.empty(0, dtype=np.float64)
svm_free_and_destroy_model(&model)
free(problem.x)
return (
support.base,
support_vectors.base,
n_class_SV.base,
sv_coef.base,
intercept.base,
probA.base,
probB.base,
fit_status,
n_iter.base,
)
cdef void set_predict_params(
svm_parameter *param,
int svm_type,
kernel,
int degree,
double gamma,
double coef0,
double cache_size,
int probability,
int nr_weight,
char *weight_label,
char *weight,
) except *:
"""Fill param with prediction time-only parameters."""
# training-time only parameters
cdef double C = 0.0
cdef double epsilon = 0.1
cdef int max_iter = 0
cdef double nu = 0.5
cdef int shrinking = 0
cdef double tol = 0.1
cdef int random_seed = -1
kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
set_parameter(
param,
svm_type,
kernel_index,
degree,
gamma,
coef0,
nu,
cache_size,
C,
tol,
epsilon,
shrinking,
probability,
nr_weight,
weight_label,
weight,
max_iter,
random_seed,
)
def predict(
const float64_t[:, ::1] X,
const int32_t[::1] support,
const float64_t[:, ::1] SV,
const int32_t[::1] nSV,
const float64_t[:, ::1] sv_coef,
const float64_t[::1] intercept,
const float64_t[::1] probA=np.empty(0),
const float64_t[::1] probB=np.empty(0),
int svm_type=0,
kernel='rbf',
int degree=3,
double gamma=0.1,
double coef0=0.0,
const float64_t[::1] class_weight=np.empty(0),
const float64_t[::1] sample_weight=np.empty(0),
double cache_size=100.0,
):
"""
Predict target values of X given a model (low-level method)
Parameters
----------
X : array-like, dtype=float of shape (n_samples, n_features)
support : array of shape (n_support,)
Index of support vectors in training set.
SV : array of shape (n_support, n_features)
Support vectors.
nSV : array of shape (n_class,)
Number of support vectors in each class.
sv_coef : array of shape (n_class-1, n_support)
Coefficients of support vectors in decision function.
intercept : array of shape (n_class*(n_class-1)/2)
Intercept in decision function.
probA, probB : array of shape (n_class*(n_class-1)/2,)
Probability estimates.
svm_type : {0, 1, 2, 3, 4}, default=0
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
respectively.
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default="rbf"
Kernel to use in the model: linear, polynomial, RBF, sigmoid
or precomputed.
degree : int32, default=3
Degree of the polynomial kernel (only relevant if kernel is
set to polynomial).
gamma : float64, default=0.1
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
kernels.
coef0 : float64, default=0.0
Independent parameter in poly/sigmoid kernel.
Returns
-------
dec_values : array
Predicted values.
"""
cdef float64_t[::1] dec_values
cdef svm_parameter param
cdef svm_model *model
cdef int rv
cdef int32_t[::1] class_weight_label = np.arange(
class_weight.shape[0], dtype=np.int32
)
set_predict_params(
&param,
svm_type,
kernel,
degree,
gamma,
coef0,
cache_size,
0,
<int>class_weight.shape[0],
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
)
model = set_model(
&param,
<int> nSV.shape[0],
<char*> &SV[0, 0] if SV.size > 0 else NULL,
<intp_t*> SV.shape,
<char*> &support[0] if support.size > 0 else NULL,
<intp_t*> support.shape,
<intp_t*> sv_coef.strides,
<char*> &sv_coef[0, 0] if sv_coef.size > 0 else NULL,
<char*> &intercept[0],
<char*> &nSV[0],
<char*> &probA[0] if probA.size > 0 else NULL,
<char*> &probB[0] if probB.size > 0 else NULL,
)
cdef BlasFunctions blas_functions
blas_functions.dot = _dot[double]
# TODO: use check_model
try:
dec_values = np.empty(X.shape[0])
with nogil:
rv = copy_predict(
<char*> &X[0, 0],
model,
<intp_t*> X.shape,
<char*> &dec_values[0],
&blas_functions,
)
if rv < 0:
raise MemoryError("We've run out of memory")
finally:
free_model(model)
return dec_values.base
def predict_proba(
const float64_t[:, ::1] X,
const int32_t[::1] support,
const float64_t[:, ::1] SV,
const int32_t[::1] nSV,
float64_t[:, ::1] sv_coef,
float64_t[::1] intercept,
float64_t[::1] probA=np.empty(0),
float64_t[::1] probB=np.empty(0),
int svm_type=0,
kernel='rbf',
int degree=3,
double gamma=0.1,
double coef0=0.0,
float64_t[::1] class_weight=np.empty(0),
float64_t[::1] sample_weight=np.empty(0),
double cache_size=100.0,
):
"""
Predict probabilities
svm_model stores all parameters needed to predict a given value.
For speed, all real work is done at the C level in function
copy_predict (libsvm_helper.c).
We have to reconstruct model and parameters to make sure we stay
in sync with the python object.
See sklearn.svm.predict for a complete list of parameters.
Parameters
----------
X : array-like, dtype=float of shape (n_samples, n_features)
support : array of shape (n_support,)
Index of support vectors in training set.
SV : array of shape (n_support, n_features)
Support vectors.
nSV : array of shape (n_class,)
Number of support vectors in each class.
sv_coef : array of shape (n_class-1, n_support)
Coefficients of support vectors in decision function.
intercept : array of shape (n_class*(n_class-1)/2,)
Intercept in decision function.
probA, probB : array of shape (n_class*(n_class-1)/2,)
Probability estimates.
svm_type : {0, 1, 2, 3, 4}, default=0
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
respectively.
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default="rbf"
Kernel to use in the model: linear, polynomial, RBF, sigmoid
or precomputed.
degree : int32, default=3
Degree of the polynomial kernel (only relevant if kernel is
set to polynomial).
gamma : float64, default=0.1
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
kernels.
coef0 : float64, default=0.0
Independent parameter in poly/sigmoid kernel.
Returns
-------
dec_values : array
Predicted values.
"""
cdef float64_t[:, ::1] dec_values
cdef svm_parameter param
cdef svm_model *model
cdef int32_t[::1] class_weight_label = np.arange(
class_weight.shape[0], dtype=np.int32
)
cdef int rv
set_predict_params(
&param,
svm_type,
kernel,
degree,
gamma,
coef0,
cache_size,
1,
<int> class_weight.shape[0],
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
)
model = set_model(
&param,
<int> nSV.shape[0],
<char*> &SV[0, 0] if SV.size > 0 else NULL,
<intp_t*> SV.shape,
<char*> &support[0],
<intp_t*> support.shape,
<intp_t*> sv_coef.strides,
<char*> &sv_coef[0, 0],
<char*> &intercept[0],
<char*> &nSV[0],
<char*> &probA[0] if probA.size > 0 else NULL,
<char*> &probB[0] if probB.size > 0 else NULL,
)
cdef intp_t n_class = get_nr(model)
cdef BlasFunctions blas_functions
blas_functions.dot = _dot[double]
try:
dec_values = np.empty((X.shape[0], n_class), dtype=np.float64)
with nogil:
rv = copy_predict_proba(
<char*> &X[0, 0],
model,
<intp_t*> X.shape,
<char*> &dec_values[0, 0],
&blas_functions,
)
if rv < 0:
raise MemoryError("We've run out of memory")
finally:
free_model(model)
return dec_values.base
def decision_function(
const float64_t[:, ::1] X,
const int32_t[::1] support,
const float64_t[:, ::1] SV,
const int32_t[::1] nSV,
const float64_t[:, ::1] sv_coef,
const float64_t[::1] intercept,
const float64_t[::1] probA=np.empty(0),
const float64_t[::1] probB=np.empty(0),
int svm_type=0,
kernel='rbf',
int degree=3,
double gamma=0.1,
double coef0=0.0,
const float64_t[::1] class_weight=np.empty(0),
const float64_t[::1] sample_weight=np.empty(0),
double cache_size=100.0,
):
"""
Predict margin (libsvm name for this is predict_values)
We have to reconstruct model and parameters to make sure we stay
in sync with the python object.
Parameters
----------
X : array-like, dtype=float, size=[n_samples, n_features]
support : array, shape=[n_support]
Index of support vectors in training set.
SV : array, shape=[n_support, n_features]
Support vectors.
nSV : array, shape=[n_class]
Number of support vectors in each class.
sv_coef : array, shape=[n_class-1, n_support]
Coefficients of support vectors in decision function.
intercept : array, shape=[n_class*(n_class-1)/2]
Intercept in decision function.
probA, probB : array, shape=[n_class*(n_class-1)/2]
Probability estimates.
svm_type : {0, 1, 2, 3, 4}, optional
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
respectively. 0 by default.
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, optional
Kernel to use in the model: linear, polynomial, RBF, sigmoid
or precomputed. 'rbf' by default.
degree : int32, optional
Degree of the polynomial kernel (only relevant if kernel is
set to polynomial), 3 by default.
gamma : float64, optional
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
kernels. 0.1 by default.
coef0 : float64, optional
Independent parameter in poly/sigmoid kernel. 0 by default.
Returns
-------
dec_values : array
Predicted values.
"""
cdef float64_t[:, ::1] dec_values
cdef svm_parameter param
cdef svm_model *model
cdef intp_t n_class
cdef int32_t[::1] class_weight_label = np.arange(
class_weight.shape[0], dtype=np.int32
)
cdef int rv
set_predict_params(
&param,
svm_type,
kernel,
degree,
gamma,
coef0,
cache_size,
0,
<int> class_weight.shape[0],
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
)
model = set_model(
&param,
<int> nSV.shape[0],
<char*> &SV[0, 0] if SV.size > 0 else NULL,
<intp_t*> SV.shape,
<char*> &support[0],
<intp_t*> support.shape,
<intp_t*> sv_coef.strides,
<char*> &sv_coef[0, 0],
<char*> &intercept[0],
<char*> &nSV[0],
<char*> &probA[0] if probA.size > 0 else NULL,
<char*> &probB[0] if probB.size > 0 else NULL,
)
if svm_type > 1:
n_class = 1
else:
n_class = get_nr(model)
n_class = n_class * (n_class - 1) // 2
cdef BlasFunctions blas_functions
blas_functions.dot = _dot[double]
try:
dec_values = np.empty((X.shape[0], n_class), dtype=np.float64)
with nogil:
rv = copy_predict_values(
<char*> &X[0, 0],
model,
<intp_t*> X.shape,
<char*> &dec_values[0, 0],
n_class,
&blas_functions,
)
if rv < 0:
raise MemoryError("We've run out of memory")
finally:
free_model(model)
return dec_values.base
def cross_validation(
const float64_t[:, ::1] X,
const float64_t[::1] Y,
int n_fold,
int svm_type=0,
kernel='rbf',
int degree=3,
double gamma=0.1,
double coef0=0.0,
double tol=1e-3,
double C=1.0,
double nu=0.5,
double epsilon=0.1,
float64_t[::1] class_weight=np.empty(0),
float64_t[::1] sample_weight=np.empty(0),
int shrinking=0,
int probability=0,
double cache_size=100.0,
int max_iter=-1,
int random_seed=0,
):
"""
Binding of the cross-validation routine (low-level routine)
Parameters
----------
X : array-like, dtype=float of shape (n_samples, n_features)
Y : array, dtype=float of shape (n_samples,)
target vector
n_fold : int32
Number of folds for cross validation.
svm_type : {0, 1, 2, 3, 4}, default=0
Type of SVM: C_SVC, NuSVC, OneClassSVM, EpsilonSVR or NuSVR
respectively.
kernel : {'linear', 'rbf', 'poly', 'sigmoid', 'precomputed'}, default='rbf'
Kernel to use in the model: linear, polynomial, RBF, sigmoid
or precomputed.
degree : int32, default=3
Degree of the polynomial kernel (only relevant if kernel is
set to polynomial).
gamma : float64, default=0.1
Gamma parameter in rbf, poly and sigmoid kernels. Ignored by other
kernels.
coef0 : float64, default=0.0
Independent parameter in poly/sigmoid kernel.
tol : float64, default=1e-3
Numeric stopping criterion (WRITEME).
C : float64, default=1
C parameter in C-Support Vector Classification.
nu : float64, default=0.5
An upper bound on the fraction of training errors and a lower bound of
the fraction of support vectors. Should be in the interval (0, 1].
epsilon : double, default=0.1
Epsilon parameter in the epsilon-insensitive loss function.
class_weight : array, dtype=float64, shape (n_classes,), \
default=np.empty(0)
Set the parameter C of class i to class_weight[i]*C for
SVC. If not given, all classes are supposed to have
weight one.
sample_weight : array, dtype=float64, shape (n_samples,), \
default=np.empty(0)
Weights assigned to each sample.
shrinking : int, default=1
Whether to use the shrinking heuristic.
probability : int, default=0
Whether to enable probability estimates.
cache_size : float64, default=100
Cache size for gram matrix columns (in megabytes).
max_iter : int (-1 for no limit), default=-1
Stop solver after this many iterations regardless of accuracy
(XXX Currently there is no API to know whether this kicked in.)
random_seed : int, default=0
Seed for the random number generator used for probability estimates.
Returns
-------
target : array, float
"""
cdef svm_parameter param
cdef svm_problem problem
cdef const char *error_msg
if len(sample_weight) == 0:
sample_weight = np.ones(X.shape[0], dtype=np.float64)
else:
assert sample_weight.shape[0] == X.shape[0], (
f"sample_weight and X have incompatible shapes: sample_weight has "
f"{sample_weight.shape[0]} samples while X has {X.shape[0]}"
)
if X.shape[0] < n_fold:
raise ValueError("Number of samples is less than number of folds")
# set problem
kernel_index = LIBSVM_KERNEL_TYPES.index(kernel)
set_problem(
&problem,
<char*> &X[0, 0],
<char*> &Y[0],
<char*> &sample_weight[0] if sample_weight.size > 0 else NULL,
<intp_t*> X.shape,
kernel_index,
)
if problem.x == NULL:
raise MemoryError("Seems we've run out of memory")
cdef int32_t[::1] class_weight_label = np.arange(
class_weight.shape[0], dtype=np.int32
)
# set parameters
set_parameter(
&param,
svm_type,
kernel_index,
degree,
gamma,
coef0,
nu,
cache_size,
C,
tol,
tol,
shrinking,
probability,
<int> class_weight.shape[0],
<char*> &class_weight_label[0] if class_weight_label.size > 0 else NULL,
<char*> &class_weight[0] if class_weight.size > 0 else NULL,
max_iter,
random_seed,
)
error_msg = svm_check_parameter(&problem, &param)
if error_msg:
raise ValueError(error_msg)
cdef float64_t[::1] target
cdef BlasFunctions blas_functions
blas_functions.dot = _dot[double]
try:
target = np.empty((X.shape[0]), dtype=np.float64)
with nogil:
svm_cross_validation(
&problem,
&param,
n_fold,
<double *> &target[0],
&blas_functions,
)
finally:
free(problem.x)
return target.base
def set_verbosity_wrap(int verbosity):
"""
Control verbosity of libsvm library
"""
set_verbosity(verbosity)