5473 lines
181 KiB
Python
5473 lines
181 KiB
Python
|
from math import factorial as _factorial, log, prod
|
||
|
from itertools import chain, islice, product
|
||
|
|
||
|
|
||
|
from sympy.combinatorics import Permutation
|
||
|
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
|
||
|
_af_rmul, _af_rmuln, _af_pow, Cycle)
|
||
|
from sympy.combinatorics.util import (_check_cycles_alt_sym,
|
||
|
_distribute_gens_by_base, _orbits_transversals_from_bsgs,
|
||
|
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr,
|
||
|
_strip, _strip_af)
|
||
|
from sympy.core import Basic
|
||
|
from sympy.core.random import _randrange, randrange, choice
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.core.sympify import _sympify
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
from sympy.ntheory import primefactors, sieve
|
||
|
from sympy.ntheory.factor_ import (factorint, multiplicity)
|
||
|
from sympy.ntheory.primetest import isprime
|
||
|
from sympy.utilities.iterables import has_variety, is_sequence, uniq
|
||
|
|
||
|
rmul = Permutation.rmul_with_af
|
||
|
_af_new = Permutation._af_new
|
||
|
|
||
|
|
||
|
class PermutationGroup(Basic):
|
||
|
r"""The class defining a Permutation group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group
|
||
|
generated by the list of permutations. This group can be supplied
|
||
|
to Polyhedron if one desires to decorate the elements to which the
|
||
|
indices of the permutation refer.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> from sympy.combinatorics import Polyhedron
|
||
|
|
||
|
The permutations corresponding to motion of the front, right and
|
||
|
bottom face of a $2 \times 2$ Rubik's cube are defined:
|
||
|
|
||
|
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
|
||
|
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
|
||
|
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
|
||
|
|
||
|
These are passed as permutations to PermutationGroup:
|
||
|
|
||
|
>>> G = PermutationGroup(F, R, D)
|
||
|
>>> G.order()
|
||
|
3674160
|
||
|
|
||
|
The group can be supplied to a Polyhedron in order to track the
|
||
|
objects being moved. An example involving the $2 \times 2$ Rubik's cube is
|
||
|
given there, but here is a simple demonstration:
|
||
|
|
||
|
>>> a = Permutation(2, 1)
|
||
|
>>> b = Permutation(1, 0)
|
||
|
>>> G = PermutationGroup(a, b)
|
||
|
>>> P = Polyhedron(list('ABC'), pgroup=G)
|
||
|
>>> P.corners
|
||
|
(A, B, C)
|
||
|
>>> P.rotate(0) # apply permutation 0
|
||
|
>>> P.corners
|
||
|
(A, C, B)
|
||
|
>>> P.reset()
|
||
|
>>> P.corners
|
||
|
(A, B, C)
|
||
|
|
||
|
Or one can make a permutation as a product of selected permutations
|
||
|
and apply them to an iterable directly:
|
||
|
|
||
|
>>> P10 = G.make_perm([0, 1])
|
||
|
>>> P10('ABC')
|
||
|
['C', 'A', 'B']
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.combinatorics.polyhedron.Polyhedron,
|
||
|
sympy.combinatorics.permutations.Permutation
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Holt, D., Eick, B., O'Brien, E.
|
||
|
"Handbook of Computational Group Theory"
|
||
|
|
||
|
.. [2] Seress, A.
|
||
|
"Permutation Group Algorithms"
|
||
|
|
||
|
.. [3] https://en.wikipedia.org/wiki/Schreier_vector
|
||
|
|
||
|
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm
|
||
|
|
||
|
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray,
|
||
|
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random
|
||
|
Elements of a Finite Group"
|
||
|
|
||
|
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29
|
||
|
|
||
|
.. [7] https://algorithmist.com/wiki/Union_find
|
||
|
|
||
|
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups
|
||
|
|
||
|
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29
|
||
|
|
||
|
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer
|
||
|
|
||
|
.. [11] https://groupprops.subwiki.org/wiki/Derived_subgroup
|
||
|
|
||
|
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group
|
||
|
|
||
|
.. [13] https://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf
|
||
|
|
||
|
.. [14] https://docs.gap-system.org/doc/ref/manual.pdf
|
||
|
|
||
|
"""
|
||
|
is_group = True
|
||
|
|
||
|
def __new__(cls, *args, dups=True, **kwargs):
|
||
|
"""The default constructor. Accepts Cycle and Permutation forms.
|
||
|
Removes duplicates unless ``dups`` keyword is ``False``.
|
||
|
"""
|
||
|
if not args:
|
||
|
args = [Permutation()]
|
||
|
else:
|
||
|
args = list(args[0] if is_sequence(args[0]) else args)
|
||
|
if not args:
|
||
|
args = [Permutation()]
|
||
|
if any(isinstance(a, Cycle) for a in args):
|
||
|
args = [Permutation(a) for a in args]
|
||
|
if has_variety(a.size for a in args):
|
||
|
degree = kwargs.pop('degree', None)
|
||
|
if degree is None:
|
||
|
degree = max(a.size for a in args)
|
||
|
for i in range(len(args)):
|
||
|
if args[i].size != degree:
|
||
|
args[i] = Permutation(args[i], size=degree)
|
||
|
if dups:
|
||
|
args = list(uniq([_af_new(list(a)) for a in args]))
|
||
|
if len(args) > 1:
|
||
|
args = [g for g in args if not g.is_identity]
|
||
|
return Basic.__new__(cls, *args, **kwargs)
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
self._generators = list(self.args)
|
||
|
self._order = None
|
||
|
self._center = []
|
||
|
self._is_abelian = None
|
||
|
self._is_transitive = None
|
||
|
self._is_sym = None
|
||
|
self._is_alt = None
|
||
|
self._is_primitive = None
|
||
|
self._is_nilpotent = None
|
||
|
self._is_solvable = None
|
||
|
self._is_trivial = None
|
||
|
self._transitivity_degree = None
|
||
|
self._max_div = None
|
||
|
self._is_perfect = None
|
||
|
self._is_cyclic = None
|
||
|
self._is_dihedral = None
|
||
|
self._r = len(self._generators)
|
||
|
self._degree = self._generators[0].size
|
||
|
|
||
|
# these attributes are assigned after running schreier_sims
|
||
|
self._base = []
|
||
|
self._strong_gens = []
|
||
|
self._strong_gens_slp = []
|
||
|
self._basic_orbits = []
|
||
|
self._transversals = []
|
||
|
self._transversal_slp = []
|
||
|
|
||
|
# these attributes are assigned after running _random_pr_init
|
||
|
self._random_gens = []
|
||
|
|
||
|
# finite presentation of the group as an instance of `FpGroup`
|
||
|
self._fp_presentation = None
|
||
|
|
||
|
def __getitem__(self, i):
|
||
|
return self._generators[i]
|
||
|
|
||
|
def __contains__(self, i):
|
||
|
"""Return ``True`` if *i* is contained in PermutationGroup.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> p = Permutation(1, 2, 3)
|
||
|
>>> Permutation(3) in PermutationGroup(p)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if not isinstance(i, Permutation):
|
||
|
raise TypeError("A PermutationGroup contains only Permutations as "
|
||
|
"elements, not elements of type %s" % type(i))
|
||
|
return self.contains(i)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self._generators)
|
||
|
|
||
|
def equals(self, other):
|
||
|
"""Return ``True`` if PermutationGroup generated by elements in the
|
||
|
group are same i.e they represent the same PermutationGroup.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> p = Permutation(0, 1, 2, 3, 4, 5)
|
||
|
>>> G = PermutationGroup([p, p**2])
|
||
|
>>> H = PermutationGroup([p**2, p])
|
||
|
>>> G.generators == H.generators
|
||
|
False
|
||
|
>>> G.equals(H)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if not isinstance(other, PermutationGroup):
|
||
|
return False
|
||
|
|
||
|
set_self_gens = set(self.generators)
|
||
|
set_other_gens = set(other.generators)
|
||
|
|
||
|
# before reaching the general case there are also certain
|
||
|
# optimisation and obvious cases requiring less or no actual
|
||
|
# computation.
|
||
|
if set_self_gens == set_other_gens:
|
||
|
return True
|
||
|
|
||
|
# in the most general case it will check that each generator of
|
||
|
# one group belongs to the other PermutationGroup and vice-versa
|
||
|
for gen1 in set_self_gens:
|
||
|
if not other.contains(gen1):
|
||
|
return False
|
||
|
for gen2 in set_other_gens:
|
||
|
if not self.contains(gen2):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
"""
|
||
|
Return the direct product of two permutation groups as a permutation
|
||
|
group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This implementation realizes the direct product by shifting the index
|
||
|
set for the generators of the second group: so if we have ``G`` acting
|
||
|
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on
|
||
|
``n1 + n2`` points.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import CyclicGroup
|
||
|
>>> G = CyclicGroup(5)
|
||
|
>>> H = G*G
|
||
|
>>> H
|
||
|
PermutationGroup([
|
||
|
(9)(0 1 2 3 4),
|
||
|
(5 6 7 8 9)])
|
||
|
>>> H.order()
|
||
|
25
|
||
|
|
||
|
"""
|
||
|
if isinstance(other, Permutation):
|
||
|
return Coset(other, self, dir='+')
|
||
|
gens1 = [perm._array_form for perm in self.generators]
|
||
|
gens2 = [perm._array_form for perm in other.generators]
|
||
|
n1 = self._degree
|
||
|
n2 = other._degree
|
||
|
start = list(range(n1))
|
||
|
end = list(range(n1, n1 + n2))
|
||
|
for i in range(len(gens2)):
|
||
|
gens2[i] = [x + n1 for x in gens2[i]]
|
||
|
gens2 = [start + gen for gen in gens2]
|
||
|
gens1 = [gen + end for gen in gens1]
|
||
|
together = gens1 + gens2
|
||
|
gens = [_af_new(x) for x in together]
|
||
|
return PermutationGroup(gens)
|
||
|
|
||
|
def _random_pr_init(self, r, n, _random_prec_n=None):
|
||
|
r"""Initialize random generators for the product replacement algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The implementation uses a modification of the original product
|
||
|
replacement algorithm due to Leedham-Green, as described in [1],
|
||
|
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical
|
||
|
analysis of the original product replacement algorithm, and [4].
|
||
|
|
||
|
The product replacement algorithm is used for producing random,
|
||
|
uniformly distributed elements of a group `G` with a set of generators
|
||
|
`S`. For the initialization ``_random_pr_init``, a list ``R`` of
|
||
|
`\max\{r, |S|\}` group generators is created as the attribute
|
||
|
``G._random_gens``, repeating elements of `S` if necessary, and the
|
||
|
identity element of `G` is appended to ``R`` - we shall refer to this
|
||
|
last element as the accumulator. Then the function ``random_pr()``
|
||
|
is called ``n`` times, randomizing the list ``R`` while preserving
|
||
|
the generation of `G` by ``R``. The function ``random_pr()`` itself
|
||
|
takes two random elements ``g, h`` among all elements of ``R`` but
|
||
|
the accumulator and replaces ``g`` with a randomly chosen element
|
||
|
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied
|
||
|
by whatever ``g`` was replaced by. The new value of the accumulator is
|
||
|
then returned by ``random_pr()``.
|
||
|
|
||
|
The elements returned will eventually (for ``n`` large enough) become
|
||
|
uniformly distributed across `G` ([5]). For practical purposes however,
|
||
|
the values ``n = 50, r = 11`` are suggested in [1].
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute
|
||
|
self._random_gens
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
random_pr
|
||
|
|
||
|
"""
|
||
|
deg = self.degree
|
||
|
random_gens = [x._array_form for x in self.generators]
|
||
|
k = len(random_gens)
|
||
|
if k < r:
|
||
|
for i in range(k, r):
|
||
|
random_gens.append(random_gens[i - k])
|
||
|
acc = list(range(deg))
|
||
|
random_gens.append(acc)
|
||
|
self._random_gens = random_gens
|
||
|
|
||
|
# handle randomized input for testing purposes
|
||
|
if _random_prec_n is None:
|
||
|
for i in range(n):
|
||
|
self.random_pr()
|
||
|
else:
|
||
|
for i in range(n):
|
||
|
self.random_pr(_random_prec=_random_prec_n[i])
|
||
|
|
||
|
def _union_find_merge(self, first, second, ranks, parents, not_rep):
|
||
|
"""Merges two classes in a union-find data structure.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Used in the implementation of Atkinson's algorithm as suggested in [1],
|
||
|
pp. 83-87. The class merging process uses union by rank as an
|
||
|
optimization. ([7])
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
|
||
|
``parents``, the list of class sizes, ``ranks``, and the list of
|
||
|
elements that are not representatives, ``not_rep``, are changed due to
|
||
|
class merging.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
minimal_block, _union_find_rep
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Holt, D., Eick, B., O'Brien, E.
|
||
|
"Handbook of computational group theory"
|
||
|
|
||
|
.. [7] https://algorithmist.com/wiki/Union_find
|
||
|
|
||
|
"""
|
||
|
rep_first = self._union_find_rep(first, parents)
|
||
|
rep_second = self._union_find_rep(second, parents)
|
||
|
if rep_first != rep_second:
|
||
|
# union by rank
|
||
|
if ranks[rep_first] >= ranks[rep_second]:
|
||
|
new_1, new_2 = rep_first, rep_second
|
||
|
else:
|
||
|
new_1, new_2 = rep_second, rep_first
|
||
|
total_rank = ranks[new_1] + ranks[new_2]
|
||
|
if total_rank > self.max_div:
|
||
|
return -1
|
||
|
parents[new_2] = new_1
|
||
|
ranks[new_1] = total_rank
|
||
|
not_rep.append(new_2)
|
||
|
return 1
|
||
|
return 0
|
||
|
|
||
|
def _union_find_rep(self, num, parents):
|
||
|
"""Find representative of a class in a union-find data structure.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Used in the implementation of Atkinson's algorithm as suggested in [1],
|
||
|
pp. 83-87. After the representative of the class to which ``num``
|
||
|
belongs is found, path compression is performed as an optimization
|
||
|
([7]).
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
|
||
|
``parents``, is altered due to path compression.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
minimal_block, _union_find_merge
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Holt, D., Eick, B., O'Brien, E.
|
||
|
"Handbook of computational group theory"
|
||
|
|
||
|
.. [7] https://algorithmist.com/wiki/Union_find
|
||
|
|
||
|
"""
|
||
|
rep, parent = num, parents[num]
|
||
|
while parent != rep:
|
||
|
rep = parent
|
||
|
parent = parents[rep]
|
||
|
# path compression
|
||
|
temp, parent = num, parents[num]
|
||
|
while parent != rep:
|
||
|
parents[temp] = rep
|
||
|
temp = parent
|
||
|
parent = parents[temp]
|
||
|
return rep
|
||
|
|
||
|
@property
|
||
|
def base(self):
|
||
|
r"""Return a base from the Schreier-Sims algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For a permutation group `G`, a base is a sequence of points
|
||
|
`B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart
|
||
|
from the identity fixes all the points in `B`. The concepts of
|
||
|
a base and strong generating set and their applications are
|
||
|
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.
|
||
|
|
||
|
An alternative way to think of `B` is that it gives the
|
||
|
indices of the stabilizer cosets that contain more than the
|
||
|
identity permutation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)])
|
||
|
>>> G.base
|
||
|
[0, 2]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
strong_gens, basic_transversals, basic_orbits, basic_stabilizers
|
||
|
|
||
|
"""
|
||
|
if self._base == []:
|
||
|
self.schreier_sims()
|
||
|
return self._base
|
||
|
|
||
|
def baseswap(self, base, strong_gens, pos, randomized=False,
|
||
|
transversals=None, basic_orbits=None, strong_gens_distr=None):
|
||
|
r"""Swap two consecutive base points in base and strong generating set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this
|
||
|
function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`,
|
||
|
where `i` is given by ``pos``, and a strong generating set relative
|
||
|
to that base. The original base and strong generating set are not
|
||
|
modified.
|
||
|
|
||
|
The randomized version (default) is of Las Vegas type.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
base, strong_gens
|
||
|
The base and strong generating set.
|
||
|
pos
|
||
|
The position at which swapping is performed.
|
||
|
randomized
|
||
|
A switch between randomized and deterministic version.
|
||
|
transversals
|
||
|
The transversals for the basic orbits, if known.
|
||
|
basic_orbits
|
||
|
The basic orbits, if known.
|
||
|
strong_gens_distr
|
||
|
The strong generators distributed by basic stabilizers, if known.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(base, strong_gens)
|
||
|
``base`` is the new base, and ``strong_gens`` is a generating set
|
||
|
relative to it.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
||
|
>>> from sympy.combinatorics.testutil import _verify_bsgs
|
||
|
>>> from sympy.combinatorics.perm_groups import PermutationGroup
|
||
|
>>> S = SymmetricGroup(4)
|
||
|
>>> S.schreier_sims()
|
||
|
>>> S.base
|
||
|
[0, 1, 2]
|
||
|
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
|
||
|
>>> base, gens
|
||
|
([0, 2, 1],
|
||
|
[(0 1 2 3), (3)(0 1), (1 3 2),
|
||
|
(2 3), (1 3)])
|
||
|
|
||
|
check that base, gens is a BSGS
|
||
|
|
||
|
>>> S1 = PermutationGroup(gens)
|
||
|
>>> _verify_bsgs(S1, base, gens)
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
schreier_sims
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The deterministic version of the algorithm is discussed in
|
||
|
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and
|
||
|
[2], p.98. It is of Las Vegas type.
|
||
|
Notice that [1] contains a mistake in the pseudocode and
|
||
|
discussion of BASESWAP: on line 3 of the pseudocode,
|
||
|
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by
|
||
|
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the
|
||
|
discussion of the algorithm.
|
||
|
|
||
|
"""
|
||
|
# construct the basic orbits, generators for the stabilizer chain
|
||
|
# and transversal elements from whatever was provided
|
||
|
transversals, basic_orbits, strong_gens_distr = \
|
||
|
_handle_precomputed_bsgs(base, strong_gens, transversals,
|
||
|
basic_orbits, strong_gens_distr)
|
||
|
base_len = len(base)
|
||
|
degree = self.degree
|
||
|
# size of orbit of base[pos] under the stabilizer we seek to insert
|
||
|
# in the stabilizer chain at position pos + 1
|
||
|
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \
|
||
|
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1]))
|
||
|
# initialize the wanted stabilizer by a subgroup
|
||
|
if pos + 2 > base_len - 1:
|
||
|
T = []
|
||
|
else:
|
||
|
T = strong_gens_distr[pos + 2][:]
|
||
|
# randomized version
|
||
|
if randomized is True:
|
||
|
stab_pos = PermutationGroup(strong_gens_distr[pos])
|
||
|
schreier_vector = stab_pos.schreier_vector(base[pos + 1])
|
||
|
# add random elements of the stabilizer until they generate it
|
||
|
while len(_orbit(degree, T, base[pos])) != size:
|
||
|
new = stab_pos.random_stab(base[pos + 1],
|
||
|
schreier_vector=schreier_vector)
|
||
|
T.append(new)
|
||
|
# deterministic version
|
||
|
else:
|
||
|
Gamma = set(basic_orbits[pos])
|
||
|
Gamma.remove(base[pos])
|
||
|
if base[pos + 1] in Gamma:
|
||
|
Gamma.remove(base[pos + 1])
|
||
|
# add elements of the stabilizer until they generate it by
|
||
|
# ruling out member of the basic orbit of base[pos] along the way
|
||
|
while len(_orbit(degree, T, base[pos])) != size:
|
||
|
gamma = next(iter(Gamma))
|
||
|
x = transversals[pos][gamma]
|
||
|
temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1])
|
||
|
if temp not in basic_orbits[pos + 1]:
|
||
|
Gamma = Gamma - _orbit(degree, T, gamma)
|
||
|
else:
|
||
|
y = transversals[pos + 1][temp]
|
||
|
el = rmul(x, y)
|
||
|
if el(base[pos]) not in _orbit(degree, T, base[pos]):
|
||
|
T.append(el)
|
||
|
Gamma = Gamma - _orbit(degree, T, base[pos])
|
||
|
# build the new base and strong generating set
|
||
|
strong_gens_new_distr = strong_gens_distr[:]
|
||
|
strong_gens_new_distr[pos + 1] = T
|
||
|
base_new = base[:]
|
||
|
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos]
|
||
|
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr)
|
||
|
for gen in T:
|
||
|
if gen not in strong_gens_new:
|
||
|
strong_gens_new.append(gen)
|
||
|
return base_new, strong_gens_new
|
||
|
|
||
|
@property
|
||
|
def basic_orbits(self):
|
||
|
r"""
|
||
|
Return the basic orbits relative to a base and strong generating set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and
|
||
|
`G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer
|
||
|
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base
|
||
|
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more
|
||
|
information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
||
|
>>> S = SymmetricGroup(4)
|
||
|
>>> S.basic_orbits
|
||
|
[[0, 1, 2, 3], [1, 2, 3], [2, 3]]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
base, strong_gens, basic_transversals, basic_stabilizers
|
||
|
|
||
|
"""
|
||
|
if self._basic_orbits == []:
|
||
|
self.schreier_sims()
|
||
|
return self._basic_orbits
|
||
|
|
||
|
@property
|
||
|
def basic_stabilizers(self):
|
||
|
r"""
|
||
|
Return a chain of stabilizers relative to a base and strong generating
|
||
|
set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The ``i``-th basic stabilizer `G^{(i)}` relative to a base
|
||
|
`(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more
|
||
|
information, see [1], pp. 87-89.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup
|
||
|
>>> A = AlternatingGroup(4)
|
||
|
>>> A.schreier_sims()
|
||
|
>>> A.base
|
||
|
[0, 1]
|
||
|
>>> for g in A.basic_stabilizers:
|
||
|
... print(g)
|
||
|
...
|
||
|
PermutationGroup([
|
||
|
(3)(0 1 2),
|
||
|
(1 2 3)])
|
||
|
PermutationGroup([
|
||
|
(1 2 3)])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
base, strong_gens, basic_orbits, basic_transversals
|
||
|
|
||
|
"""
|
||
|
|
||
|
if self._transversals == []:
|
||
|
self.schreier_sims()
|
||
|
strong_gens = self._strong_gens
|
||
|
base = self._base
|
||
|
if not base: # e.g. if self is trivial
|
||
|
return []
|
||
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
|
||
|
basic_stabilizers = []
|
||
|
for gens in strong_gens_distr:
|
||
|
basic_stabilizers.append(PermutationGroup(gens))
|
||
|
return basic_stabilizers
|
||
|
|
||
|
@property
|
||
|
def basic_transversals(self):
|
||
|
"""
|
||
|
Return basic transversals relative to a base and strong generating set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The basic transversals are transversals of the basic orbits. They
|
||
|
are provided as a list of dictionaries, each dictionary having
|
||
|
keys - the elements of one of the basic orbits, and values - the
|
||
|
corresponding transversal elements. See [1], pp. 87-89 for more
|
||
|
information.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup
|
||
|
>>> A = AlternatingGroup(4)
|
||
|
>>> A.basic_transversals
|
||
|
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
strong_gens, base, basic_orbits, basic_stabilizers
|
||
|
|
||
|
"""
|
||
|
|
||
|
if self._transversals == []:
|
||
|
self.schreier_sims()
|
||
|
return self._transversals
|
||
|
|
||
|
def composition_series(self):
|
||
|
r"""
|
||
|
Return the composition series for a group as a list
|
||
|
of permutation groups.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The composition series for a group `G` is defined as a
|
||
|
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition
|
||
|
series is a subnormal series such that each factor group
|
||
|
`H(i+1) / H(i)` is simple.
|
||
|
A subnormal series is a composition series only if it is of
|
||
|
maximum length.
|
||
|
|
||
|
The algorithm works as follows:
|
||
|
Starting with the derived series the idea is to fill
|
||
|
the gap between `G = der[i]` and `H = der[i+1]` for each
|
||
|
`i` independently. Since, all subgroups of the abelian group
|
||
|
`G/H` are normal so, first step is to take the generators
|
||
|
`g` of `G` and add them to generators of `H` one by one.
|
||
|
|
||
|
The factor groups formed are not simple in general. Each
|
||
|
group is obtained from the previous one by adding one
|
||
|
generator `g`, if the previous group is denoted by `H`
|
||
|
then the next group `K` is generated by `g` and `H`.
|
||
|
The factor group `K/H` is cyclic and it's order is
|
||
|
`K.order()//G.order()`. The series is then extended between
|
||
|
`K` and `H` by groups generated by powers of `g` and `H`.
|
||
|
The series formed is then prepended to the already existing
|
||
|
series.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
||
|
>>> from sympy.combinatorics.named_groups import CyclicGroup
|
||
|
>>> S = SymmetricGroup(12)
|
||
|
>>> G = S.sylow_subgroup(2)
|
||
|
>>> C = G.composition_series()
|
||
|
>>> [H.order() for H in C]
|
||
|
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
|
||
|
>>> G = S.sylow_subgroup(3)
|
||
|
>>> C = G.composition_series()
|
||
|
>>> [H.order() for H in C]
|
||
|
[243, 81, 27, 9, 3, 1]
|
||
|
>>> G = CyclicGroup(12)
|
||
|
>>> C = G.composition_series()
|
||
|
>>> [H.order() for H in C]
|
||
|
[12, 6, 3, 1]
|
||
|
|
||
|
"""
|
||
|
der = self.derived_series()
|
||
|
if not all(g.is_identity for g in der[-1].generators):
|
||
|
raise NotImplementedError('Group should be solvable')
|
||
|
series = []
|
||
|
|
||
|
for i in range(len(der)-1):
|
||
|
H = der[i+1]
|
||
|
up_seg = []
|
||
|
for g in der[i].generators:
|
||
|
K = PermutationGroup([g] + H.generators)
|
||
|
order = K.order() // H.order()
|
||
|
down_seg = []
|
||
|
for p, e in factorint(order).items():
|
||
|
for _ in range(e):
|
||
|
down_seg.append(PermutationGroup([g] + H.generators))
|
||
|
g = g**p
|
||
|
up_seg = down_seg + up_seg
|
||
|
H = K
|
||
|
up_seg[0] = der[i]
|
||
|
series.extend(up_seg)
|
||
|
series.append(der[-1])
|
||
|
return series
|
||
|
|
||
|
def coset_transversal(self, H):
|
||
|
"""Return a transversal of the right cosets of self by its subgroup H
|
||
|
using the second method described in [1], Subsection 4.6.7
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not H.is_subgroup(self):
|
||
|
raise ValueError("The argument must be a subgroup")
|
||
|
|
||
|
if H.order() == 1:
|
||
|
return self._elements
|
||
|
|
||
|
self._schreier_sims(base=H.base) # make G.base an extension of H.base
|
||
|
|
||
|
base = self.base
|
||
|
base_ordering = _base_ordering(base, self.degree)
|
||
|
identity = Permutation(self.degree - 1)
|
||
|
|
||
|
transversals = self.basic_transversals[:]
|
||
|
# transversals is a list of dictionaries. Get rid of the keys
|
||
|
# so that it is a list of lists and sort each list in
|
||
|
# the increasing order of base[l]^x
|
||
|
for l, t in enumerate(transversals):
|
||
|
transversals[l] = sorted(t.values(),
|
||
|
key = lambda x: base_ordering[base[l]^x])
|
||
|
|
||
|
orbits = H.basic_orbits
|
||
|
h_stabs = H.basic_stabilizers
|
||
|
g_stabs = self.basic_stabilizers
|
||
|
|
||
|
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)]
|
||
|
|
||
|
# T^(l) should be a right transversal of H^(l) in G^(l) for
|
||
|
# 1<=l<=len(base). While H^(l) is the trivial group, T^(l)
|
||
|
# contains all the elements of G^(l) so we might just as well
|
||
|
# start with l = len(h_stabs)-1
|
||
|
if len(g_stabs) > len(h_stabs):
|
||
|
T = g_stabs[len(h_stabs)]._elements
|
||
|
else:
|
||
|
T = [identity]
|
||
|
l = len(h_stabs)-1
|
||
|
t_len = len(T)
|
||
|
while l > -1:
|
||
|
T_next = []
|
||
|
for u in transversals[l]:
|
||
|
if u == identity:
|
||
|
continue
|
||
|
b = base_ordering[base[l]^u]
|
||
|
for t in T:
|
||
|
p = t*u
|
||
|
if all(base_ordering[h^p] >= b for h in orbits[l]):
|
||
|
T_next.append(p)
|
||
|
if t_len + len(T_next) == indices[l]:
|
||
|
break
|
||
|
if t_len + len(T_next) == indices[l]:
|
||
|
break
|
||
|
T += T_next
|
||
|
t_len += len(T_next)
|
||
|
l -= 1
|
||
|
T.remove(identity)
|
||
|
T = [identity] + T
|
||
|
return T
|
||
|
|
||
|
def _coset_representative(self, g, H):
|
||
|
"""Return the representative of Hg from the transversal that
|
||
|
would be computed by ``self.coset_transversal(H)``.
|
||
|
|
||
|
"""
|
||
|
if H.order() == 1:
|
||
|
return g
|
||
|
# The base of self must be an extension of H.base.
|
||
|
if not(self.base[:len(H.base)] == H.base):
|
||
|
self._schreier_sims(base=H.base)
|
||
|
orbits = H.basic_orbits[:]
|
||
|
h_transversals = [list(_.values()) for _ in H.basic_transversals]
|
||
|
transversals = [list(_.values()) for _ in self.basic_transversals]
|
||
|
base = self.base
|
||
|
base_ordering = _base_ordering(base, self.degree)
|
||
|
def step(l, x):
|
||
|
gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0]
|
||
|
i = [base[l]^h for h in h_transversals[l]].index(gamma)
|
||
|
x = h_transversals[l][i]*x
|
||
|
if l < len(orbits)-1:
|
||
|
for u in transversals[l]:
|
||
|
if base[l]^u == base[l]^x:
|
||
|
break
|
||
|
x = step(l+1, x*u**-1)*u
|
||
|
return x
|
||
|
return step(0, g)
|
||
|
|
||
|
def coset_table(self, H):
|
||
|
"""Return the standardised (right) coset table of self in H as
|
||
|
a list of lists.
|
||
|
"""
|
||
|
# Maybe this should be made to return an instance of CosetTable
|
||
|
# from fp_groups.py but the class would need to be changed first
|
||
|
# to be compatible with PermutationGroups
|
||
|
|
||
|
if not H.is_subgroup(self):
|
||
|
raise ValueError("The argument must be a subgroup")
|
||
|
T = self.coset_transversal(H)
|
||
|
n = len(T)
|
||
|
|
||
|
A = list(chain.from_iterable((gen, gen**-1)
|
||
|
for gen in self.generators))
|
||
|
|
||
|
table = []
|
||
|
for i in range(n):
|
||
|
row = [self._coset_representative(T[i]*x, H) for x in A]
|
||
|
row = [T.index(r) for r in row]
|
||
|
table.append(row)
|
||
|
|
||
|
# standardize (this is the same as the algorithm used in coset_table)
|
||
|
# If CosetTable is made compatible with PermutationGroups, this
|
||
|
# should be replaced by table.standardize()
|
||
|
A = range(len(A))
|
||
|
gamma = 1
|
||
|
for alpha, a in product(range(n), A):
|
||
|
beta = table[alpha][a]
|
||
|
if beta >= gamma:
|
||
|
if beta > gamma:
|
||
|
for x in A:
|
||
|
z = table[gamma][x]
|
||
|
table[gamma][x] = table[beta][x]
|
||
|
table[beta][x] = z
|
||
|
for i in range(n):
|
||
|
if table[i][x] == beta:
|
||
|
table[i][x] = gamma
|
||
|
elif table[i][x] == gamma:
|
||
|
table[i][x] = beta
|
||
|
gamma += 1
|
||
|
if gamma >= n-1:
|
||
|
return table
|
||
|
|
||
|
def center(self):
|
||
|
r"""
|
||
|
Return the center of a permutation group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The center for a group `G` is defined as
|
||
|
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`,
|
||
|
the set of elements of `G` that commute with all elements of `G`.
|
||
|
It is equal to the centralizer of `G` inside `G`, and is naturally a
|
||
|
subgroup of `G` ([9]).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> D = DihedralGroup(4)
|
||
|
>>> G = D.center()
|
||
|
>>> G.order()
|
||
|
2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
centralizer
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This is a naive implementation that is a straightforward application
|
||
|
of ``.centralizer()``
|
||
|
|
||
|
"""
|
||
|
return self.centralizer(self)
|
||
|
|
||
|
def centralizer(self, other):
|
||
|
r"""
|
||
|
Return the centralizer of a group/set/element.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The centralizer of a set of permutations ``S`` inside
|
||
|
a group ``G`` is the set of elements of ``G`` that commute with all
|
||
|
elements of ``S``::
|
||
|
|
||
|
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10])
|
||
|
|
||
|
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of
|
||
|
the full symmetric group, we allow for ``S`` to have elements outside
|
||
|
``G``.
|
||
|
|
||
|
It is naturally a subgroup of ``G``; the centralizer of a permutation
|
||
|
group is equal to the centralizer of any set of generators for that
|
||
|
group, since any element commuting with the generators commutes with
|
||
|
any product of the generators.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other
|
||
|
a permutation group/list of permutations/single permutation
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
||
|
... CyclicGroup)
|
||
|
>>> S = SymmetricGroup(6)
|
||
|
>>> C = CyclicGroup(6)
|
||
|
>>> H = S.centralizer(C)
|
||
|
>>> H.is_subgroup(C)
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
subgroup_search
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The implementation is an application of ``.subgroup_search()`` with
|
||
|
tests using a specific base for the group ``G``.
|
||
|
|
||
|
"""
|
||
|
if hasattr(other, 'generators'):
|
||
|
if other.is_trivial or self.is_trivial:
|
||
|
return self
|
||
|
degree = self.degree
|
||
|
identity = _af_new(list(range(degree)))
|
||
|
orbits = other.orbits()
|
||
|
num_orbits = len(orbits)
|
||
|
orbits.sort(key=lambda x: -len(x))
|
||
|
long_base = []
|
||
|
orbit_reps = [None]*num_orbits
|
||
|
orbit_reps_indices = [None]*num_orbits
|
||
|
orbit_descr = [None]*degree
|
||
|
for i in range(num_orbits):
|
||
|
orbit = list(orbits[i])
|
||
|
orbit_reps[i] = orbit[0]
|
||
|
orbit_reps_indices[i] = len(long_base)
|
||
|
for point in orbit:
|
||
|
orbit_descr[point] = i
|
||
|
long_base = long_base + orbit
|
||
|
base, strong_gens = self.schreier_sims_incremental(base=long_base)
|
||
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
|
||
|
i = 0
|
||
|
for i in range(len(base)):
|
||
|
if strong_gens_distr[i] == [identity]:
|
||
|
break
|
||
|
base = base[:i]
|
||
|
base_len = i
|
||
|
for j in range(num_orbits):
|
||
|
if base[base_len - 1] in orbits[j]:
|
||
|
break
|
||
|
rel_orbits = orbits[: j + 1]
|
||
|
num_rel_orbits = len(rel_orbits)
|
||
|
transversals = [None]*num_rel_orbits
|
||
|
for j in range(num_rel_orbits):
|
||
|
rep = orbit_reps[j]
|
||
|
transversals[j] = dict(
|
||
|
other.orbit_transversal(rep, pairs=True))
|
||
|
trivial_test = lambda x: True
|
||
|
tests = [None]*base_len
|
||
|
for l in range(base_len):
|
||
|
if base[l] in orbit_reps:
|
||
|
tests[l] = trivial_test
|
||
|
else:
|
||
|
def test(computed_words, l=l):
|
||
|
g = computed_words[l]
|
||
|
rep_orb_index = orbit_descr[base[l]]
|
||
|
rep = orbit_reps[rep_orb_index]
|
||
|
im = g._array_form[base[l]]
|
||
|
im_rep = g._array_form[rep]
|
||
|
tr_el = transversals[rep_orb_index][base[l]]
|
||
|
# using the definition of transversal,
|
||
|
# base[l]^g = rep^(tr_el*g);
|
||
|
# if g belongs to the centralizer, then
|
||
|
# base[l]^g = (rep^g)^tr_el
|
||
|
return im == tr_el._array_form[im_rep]
|
||
|
tests[l] = test
|
||
|
|
||
|
def prop(g):
|
||
|
return [rmul(g, gen) for gen in other.generators] == \
|
||
|
[rmul(gen, g) for gen in other.generators]
|
||
|
return self.subgroup_search(prop, base=base,
|
||
|
strong_gens=strong_gens, tests=tests)
|
||
|
elif hasattr(other, '__getitem__'):
|
||
|
gens = list(other)
|
||
|
return self.centralizer(PermutationGroup(gens))
|
||
|
elif hasattr(other, 'array_form'):
|
||
|
return self.centralizer(PermutationGroup([other]))
|
||
|
|
||
|
def commutator(self, G, H):
|
||
|
"""
|
||
|
Return the commutator of two subgroups.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For a permutation group ``K`` and subgroups ``G``, ``H``, the
|
||
|
commutator of ``G`` and ``H`` is defined as the group generated
|
||
|
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and
|
||
|
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
||
|
... AlternatingGroup)
|
||
|
>>> S = SymmetricGroup(5)
|
||
|
>>> A = AlternatingGroup(5)
|
||
|
>>> G = S.commutator(S, A)
|
||
|
>>> G.is_subgroup(A)
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
derived_subgroup
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The commutator of two subgroups `H, G` is equal to the normal closure
|
||
|
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h`
|
||
|
a generator of `H` and `g` a generator of `G` ([1], p.28)
|
||
|
|
||
|
"""
|
||
|
ggens = G.generators
|
||
|
hgens = H.generators
|
||
|
commutators = []
|
||
|
for ggen in ggens:
|
||
|
for hgen in hgens:
|
||
|
commutator = rmul(hgen, ggen, ~hgen, ~ggen)
|
||
|
if commutator not in commutators:
|
||
|
commutators.append(commutator)
|
||
|
res = self.normal_closure(commutators)
|
||
|
return res
|
||
|
|
||
|
def coset_factor(self, g, factor_index=False):
|
||
|
"""Return ``G``'s (self's) coset factorization of ``g``
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If ``g`` is an element of ``G`` then it can be written as the product
|
||
|
of permutations drawn from the Schreier-Sims coset decomposition,
|
||
|
|
||
|
The permutations returned in ``f`` are those for which
|
||
|
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)``
|
||
|
and ``B = G.base``. f[i] is one of the permutations in
|
||
|
``self._basic_orbits[i]``.
|
||
|
|
||
|
If factor_index==True,
|
||
|
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]``
|
||
|
belongs to ``self._basic_orbits[i]``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
|
||
|
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
|
||
|
Define g:
|
||
|
|
||
|
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
|
||
|
|
||
|
Confirm that it is an element of G:
|
||
|
|
||
|
>>> G.contains(g)
|
||
|
True
|
||
|
|
||
|
Thus, it can be written as a product of factors (up to
|
||
|
3) drawn from u. See below that a factor from u1 and u2
|
||
|
and the Identity permutation have been used:
|
||
|
|
||
|
>>> f = G.coset_factor(g)
|
||
|
>>> f[2]*f[1]*f[0] == g
|
||
|
True
|
||
|
>>> f1 = G.coset_factor(g, True); f1
|
||
|
[0, 4, 4]
|
||
|
>>> tr = G.basic_transversals
|
||
|
>>> f[0] == tr[0][f1[0]]
|
||
|
True
|
||
|
|
||
|
If g is not an element of G then [] is returned:
|
||
|
|
||
|
>>> c = Permutation(5, 6, 7)
|
||
|
>>> G.coset_factor(c)
|
||
|
[]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.combinatorics.util._strip
|
||
|
|
||
|
"""
|
||
|
if isinstance(g, (Cycle, Permutation)):
|
||
|
g = g.list()
|
||
|
if len(g) != self._degree:
|
||
|
# this could either adjust the size or return [] immediately
|
||
|
# but we don't choose between the two and just signal a possible
|
||
|
# error
|
||
|
raise ValueError('g should be the same size as permutations of G')
|
||
|
I = list(range(self._degree))
|
||
|
basic_orbits = self.basic_orbits
|
||
|
transversals = self._transversals
|
||
|
factors = []
|
||
|
base = self.base
|
||
|
h = g
|
||
|
for i in range(len(base)):
|
||
|
beta = h[base[i]]
|
||
|
if beta == base[i]:
|
||
|
factors.append(beta)
|
||
|
continue
|
||
|
if beta not in basic_orbits[i]:
|
||
|
return []
|
||
|
u = transversals[i][beta]._array_form
|
||
|
h = _af_rmul(_af_invert(u), h)
|
||
|
factors.append(beta)
|
||
|
if h != I:
|
||
|
return []
|
||
|
if factor_index:
|
||
|
return factors
|
||
|
tr = self.basic_transversals
|
||
|
factors = [tr[i][factors[i]] for i in range(len(base))]
|
||
|
return factors
|
||
|
|
||
|
def generator_product(self, g, original=False):
|
||
|
r'''
|
||
|
Return a list of strong generators `[s1, \dots, sn]`
|
||
|
s.t `g = sn \times \dots \times s1`. If ``original=True``, make the
|
||
|
list contain only the original group generators
|
||
|
|
||
|
'''
|
||
|
product = []
|
||
|
if g.is_identity:
|
||
|
return []
|
||
|
if g in self.strong_gens:
|
||
|
if not original or g in self.generators:
|
||
|
return [g]
|
||
|
else:
|
||
|
slp = self._strong_gens_slp[g]
|
||
|
for s in slp:
|
||
|
product.extend(self.generator_product(s, original=True))
|
||
|
return product
|
||
|
elif g**-1 in self.strong_gens:
|
||
|
g = g**-1
|
||
|
if not original or g in self.generators:
|
||
|
return [g**-1]
|
||
|
else:
|
||
|
slp = self._strong_gens_slp[g]
|
||
|
for s in slp:
|
||
|
product.extend(self.generator_product(s, original=True))
|
||
|
l = len(product)
|
||
|
product = [product[l-i-1]**-1 for i in range(l)]
|
||
|
return product
|
||
|
|
||
|
f = self.coset_factor(g, True)
|
||
|
for i, j in enumerate(f):
|
||
|
slp = self._transversal_slp[i][j]
|
||
|
for s in slp:
|
||
|
if not original:
|
||
|
product.append(self.strong_gens[s])
|
||
|
else:
|
||
|
s = self.strong_gens[s]
|
||
|
product.extend(self.generator_product(s, original=True))
|
||
|
return product
|
||
|
|
||
|
def coset_rank(self, g):
|
||
|
"""rank using Schreier-Sims representation.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The coset rank of ``g`` is the ordering number in which
|
||
|
it appears in the lexicographic listing according to the
|
||
|
coset decomposition
|
||
|
|
||
|
The ordering is the same as in G.generate(method='coset').
|
||
|
If ``g`` does not belong to the group it returns None.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
|
||
|
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> c = Permutation(7)(2, 4)(3, 5)
|
||
|
>>> G.coset_rank(c)
|
||
|
16
|
||
|
>>> G.coset_unrank(16)
|
||
|
(7)(2 4)(3 5)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
coset_factor
|
||
|
|
||
|
"""
|
||
|
factors = self.coset_factor(g, True)
|
||
|
if not factors:
|
||
|
return None
|
||
|
rank = 0
|
||
|
b = 1
|
||
|
transversals = self._transversals
|
||
|
base = self._base
|
||
|
basic_orbits = self._basic_orbits
|
||
|
for i in range(len(base)):
|
||
|
k = factors[i]
|
||
|
j = basic_orbits[i].index(k)
|
||
|
rank += b*j
|
||
|
b = b*len(transversals[i])
|
||
|
return rank
|
||
|
|
||
|
def coset_unrank(self, rank, af=False):
|
||
|
"""unrank using Schreier-Sims representation
|
||
|
|
||
|
coset_unrank is the inverse operation of coset_rank
|
||
|
if 0 <= rank < order; otherwise it returns None.
|
||
|
|
||
|
"""
|
||
|
if rank < 0 or rank >= self.order():
|
||
|
return None
|
||
|
base = self.base
|
||
|
transversals = self.basic_transversals
|
||
|
basic_orbits = self.basic_orbits
|
||
|
m = len(base)
|
||
|
v = [0]*m
|
||
|
for i in range(m):
|
||
|
rank, c = divmod(rank, len(transversals[i]))
|
||
|
v[i] = basic_orbits[i][c]
|
||
|
a = [transversals[i][v[i]]._array_form for i in range(m)]
|
||
|
h = _af_rmuln(*a)
|
||
|
if af:
|
||
|
return h
|
||
|
else:
|
||
|
return _af_new(h)
|
||
|
|
||
|
@property
|
||
|
def degree(self):
|
||
|
"""Returns the size of the permutations in the group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The number of permutations comprising the group is given by
|
||
|
``len(group)``; the number of permutations that can be generated
|
||
|
by the group is given by ``group.order()``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a])
|
||
|
>>> G.degree
|
||
|
3
|
||
|
>>> len(G)
|
||
|
1
|
||
|
>>> G.order()
|
||
|
2
|
||
|
>>> list(G.generate())
|
||
|
[(2), (2)(0 1)]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
order
|
||
|
"""
|
||
|
return self._degree
|
||
|
|
||
|
@property
|
||
|
def identity(self):
|
||
|
'''
|
||
|
Return the identity element of the permutation group.
|
||
|
|
||
|
'''
|
||
|
return _af_new(list(range(self.degree)))
|
||
|
|
||
|
@property
|
||
|
def elements(self):
|
||
|
"""Returns all the elements of the permutation group as a set
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
|
||
|
>>> p.elements
|
||
|
{(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)}
|
||
|
|
||
|
"""
|
||
|
return set(self._elements)
|
||
|
|
||
|
@property
|
||
|
def _elements(self):
|
||
|
"""Returns all the elements of the permutation group as a list
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
|
||
|
>>> p._elements
|
||
|
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)]
|
||
|
|
||
|
"""
|
||
|
return list(islice(self.generate(), None))
|
||
|
|
||
|
def derived_series(self):
|
||
|
r"""Return the derived series for the group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The derived series for a group `G` is defined as
|
||
|
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`,
|
||
|
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for
|
||
|
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some
|
||
|
`k\in\mathbb{N}`, the series terminates.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
A list of permutation groups containing the members of the derived
|
||
|
series in the order `G = G_0, G_1, G_2, \ldots`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
||
|
... AlternatingGroup, DihedralGroup)
|
||
|
>>> A = AlternatingGroup(5)
|
||
|
>>> len(A.derived_series())
|
||
|
1
|
||
|
>>> S = SymmetricGroup(4)
|
||
|
>>> len(S.derived_series())
|
||
|
4
|
||
|
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
|
||
|
True
|
||
|
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
derived_subgroup
|
||
|
|
||
|
"""
|
||
|
res = [self]
|
||
|
current = self
|
||
|
nxt = self.derived_subgroup()
|
||
|
while not current.is_subgroup(nxt):
|
||
|
res.append(nxt)
|
||
|
current = nxt
|
||
|
nxt = nxt.derived_subgroup()
|
||
|
return res
|
||
|
|
||
|
def derived_subgroup(self):
|
||
|
r"""Compute the derived subgroup.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The derived subgroup, or commutator subgroup is the subgroup generated
|
||
|
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is
|
||
|
equal to the normal closure of the set of commutators of the generators
|
||
|
([1], p.28, [11]).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([1, 0, 2, 4, 3])
|
||
|
>>> b = Permutation([0, 1, 3, 2, 4])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> C = G.derived_subgroup()
|
||
|
>>> list(C.generate(af=True))
|
||
|
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
derived_series
|
||
|
|
||
|
"""
|
||
|
r = self._r
|
||
|
gens = [p._array_form for p in self.generators]
|
||
|
set_commutators = set()
|
||
|
degree = self._degree
|
||
|
rng = list(range(degree))
|
||
|
for i in range(r):
|
||
|
for j in range(r):
|
||
|
p1 = gens[i]
|
||
|
p2 = gens[j]
|
||
|
c = list(range(degree))
|
||
|
for k in rng:
|
||
|
c[p2[p1[k]]] = p1[p2[k]]
|
||
|
ct = tuple(c)
|
||
|
if ct not in set_commutators:
|
||
|
set_commutators.add(ct)
|
||
|
cms = [_af_new(p) for p in set_commutators]
|
||
|
G2 = self.normal_closure(cms)
|
||
|
return G2
|
||
|
|
||
|
def generate(self, method="coset", af=False):
|
||
|
"""Return iterator to generate the elements of the group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Iteration is done with one of these methods::
|
||
|
|
||
|
method='coset' using the Schreier-Sims coset representation
|
||
|
method='dimino' using the Dimino method
|
||
|
|
||
|
If ``af = True`` it yields the array form of the permutations
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import PermutationGroup
|
||
|
>>> from sympy.combinatorics.polyhedron import tetrahedron
|
||
|
|
||
|
The permutation group given in the tetrahedron object is also
|
||
|
true groups:
|
||
|
|
||
|
>>> G = tetrahedron.pgroup
|
||
|
>>> G.is_group
|
||
|
True
|
||
|
|
||
|
Also the group generated by the permutations in the tetrahedron
|
||
|
pgroup -- even the first two -- is a proper group:
|
||
|
|
||
|
>>> H = PermutationGroup(G[0], G[1])
|
||
|
>>> J = PermutationGroup(list(H.generate())); J
|
||
|
PermutationGroup([
|
||
|
(0 1)(2 3),
|
||
|
(1 2 3),
|
||
|
(1 3 2),
|
||
|
(0 3 1),
|
||
|
(0 2 3),
|
||
|
(0 3)(1 2),
|
||
|
(0 1 3),
|
||
|
(3)(0 2 1),
|
||
|
(0 3 2),
|
||
|
(3)(0 1 2),
|
||
|
(0 2)(1 3)])
|
||
|
>>> _.is_group
|
||
|
True
|
||
|
"""
|
||
|
if method == "coset":
|
||
|
return self.generate_schreier_sims(af)
|
||
|
elif method == "dimino":
|
||
|
return self.generate_dimino(af)
|
||
|
else:
|
||
|
raise NotImplementedError('No generation defined for %s' % method)
|
||
|
|
||
|
def generate_dimino(self, af=False):
|
||
|
"""Yield group elements using Dimino's algorithm.
|
||
|
|
||
|
If ``af == True`` it yields the array form of the permutations.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1, 3])
|
||
|
>>> b = Permutation([0, 2, 3, 1])
|
||
|
>>> g = PermutationGroup([a, b])
|
||
|
>>> list(g.generate_dimino(af=True))
|
||
|
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
|
||
|
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] The Implementation of Various Algorithms for Permutation Groups in
|
||
|
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis
|
||
|
|
||
|
"""
|
||
|
idn = list(range(self.degree))
|
||
|
order = 0
|
||
|
element_list = [idn]
|
||
|
set_element_list = {tuple(idn)}
|
||
|
if af:
|
||
|
yield idn
|
||
|
else:
|
||
|
yield _af_new(idn)
|
||
|
gens = [p._array_form for p in self.generators]
|
||
|
|
||
|
for i in range(len(gens)):
|
||
|
# D elements of the subgroup G_i generated by gens[:i]
|
||
|
D = element_list[:]
|
||
|
N = [idn]
|
||
|
while N:
|
||
|
A = N
|
||
|
N = []
|
||
|
for a in A:
|
||
|
for g in gens[:i + 1]:
|
||
|
ag = _af_rmul(a, g)
|
||
|
if tuple(ag) not in set_element_list:
|
||
|
# produce G_i*g
|
||
|
for d in D:
|
||
|
order += 1
|
||
|
ap = _af_rmul(d, ag)
|
||
|
if af:
|
||
|
yield ap
|
||
|
else:
|
||
|
p = _af_new(ap)
|
||
|
yield p
|
||
|
element_list.append(ap)
|
||
|
set_element_list.add(tuple(ap))
|
||
|
N.append(ap)
|
||
|
self._order = len(element_list)
|
||
|
|
||
|
def generate_schreier_sims(self, af=False):
|
||
|
"""Yield group elements using the Schreier-Sims representation
|
||
|
in coset_rank order
|
||
|
|
||
|
If ``af = True`` it yields the array form of the permutations
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1, 3])
|
||
|
>>> b = Permutation([0, 2, 3, 1])
|
||
|
>>> g = PermutationGroup([a, b])
|
||
|
>>> list(g.generate_schreier_sims(af=True))
|
||
|
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1],
|
||
|
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]]
|
||
|
"""
|
||
|
|
||
|
n = self._degree
|
||
|
u = self.basic_transversals
|
||
|
basic_orbits = self._basic_orbits
|
||
|
if len(u) == 0:
|
||
|
for x in self.generators:
|
||
|
if af:
|
||
|
yield x._array_form
|
||
|
else:
|
||
|
yield x
|
||
|
return
|
||
|
if len(u) == 1:
|
||
|
for i in basic_orbits[0]:
|
||
|
if af:
|
||
|
yield u[0][i]._array_form
|
||
|
else:
|
||
|
yield u[0][i]
|
||
|
return
|
||
|
|
||
|
u = list(reversed(u))
|
||
|
basic_orbits = basic_orbits[::-1]
|
||
|
# stg stack of group elements
|
||
|
stg = [list(range(n))]
|
||
|
posmax = [len(x) for x in u]
|
||
|
n1 = len(posmax) - 1
|
||
|
pos = [0]*n1
|
||
|
h = 0
|
||
|
while 1:
|
||
|
# backtrack when finished iterating over coset
|
||
|
if pos[h] >= posmax[h]:
|
||
|
if h == 0:
|
||
|
return
|
||
|
pos[h] = 0
|
||
|
h -= 1
|
||
|
stg.pop()
|
||
|
continue
|
||
|
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1])
|
||
|
pos[h] += 1
|
||
|
stg.append(p)
|
||
|
h += 1
|
||
|
if h == n1:
|
||
|
if af:
|
||
|
for i in basic_orbits[-1]:
|
||
|
p = _af_rmul(u[-1][i]._array_form, stg[-1])
|
||
|
yield p
|
||
|
else:
|
||
|
for i in basic_orbits[-1]:
|
||
|
p = _af_rmul(u[-1][i]._array_form, stg[-1])
|
||
|
p1 = _af_new(p)
|
||
|
yield p1
|
||
|
stg.pop()
|
||
|
h -= 1
|
||
|
|
||
|
@property
|
||
|
def generators(self):
|
||
|
"""Returns the generators of the group.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.generators
|
||
|
[(1 2), (2)(0 1)]
|
||
|
|
||
|
"""
|
||
|
return self._generators
|
||
|
|
||
|
def contains(self, g, strict=True):
|
||
|
"""Test if permutation ``g`` belong to self, ``G``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If ``g`` is an element of ``G`` it can be written as a product
|
||
|
of factors drawn from the cosets of ``G``'s stabilizers. To see
|
||
|
if ``g`` is one of the actual generators defining the group use
|
||
|
``G.has(g)``.
|
||
|
|
||
|
If ``strict`` is not ``True``, ``g`` will be resized, if necessary,
|
||
|
to match the size of permutations in ``self``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
|
||
|
>>> a = Permutation(1, 2)
|
||
|
>>> b = Permutation(2, 3, 1)
|
||
|
>>> G = PermutationGroup(a, b, degree=5)
|
||
|
>>> G.contains(G[0]) # trivial check
|
||
|
True
|
||
|
>>> elem = Permutation([[2, 3]], size=5)
|
||
|
>>> G.contains(elem)
|
||
|
True
|
||
|
>>> G.contains(Permutation(4)(0, 1, 2, 3))
|
||
|
False
|
||
|
|
||
|
If strict is False, a permutation will be resized, if
|
||
|
necessary:
|
||
|
|
||
|
>>> H = PermutationGroup(Permutation(5))
|
||
|
>>> H.contains(Permutation(3))
|
||
|
False
|
||
|
>>> H.contains(Permutation(3), strict=False)
|
||
|
True
|
||
|
|
||
|
To test if a given permutation is present in the group:
|
||
|
|
||
|
>>> elem in G.generators
|
||
|
False
|
||
|
>>> G.has(elem)
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
coset_factor, sympy.core.basic.Basic.has, __contains__
|
||
|
|
||
|
"""
|
||
|
if not isinstance(g, Permutation):
|
||
|
return False
|
||
|
if g.size != self.degree:
|
||
|
if strict:
|
||
|
return False
|
||
|
g = Permutation(g, size=self.degree)
|
||
|
if g in self.generators:
|
||
|
return True
|
||
|
return bool(self.coset_factor(g.array_form, True))
|
||
|
|
||
|
@property
|
||
|
def is_perfect(self):
|
||
|
"""Return ``True`` if the group is perfect.
|
||
|
A group is perfect if it equals to its derived subgroup.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation(1,2,3)(4,5)
|
||
|
>>> b = Permutation(1,2,3,4,5)
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.is_perfect
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
if self._is_perfect is None:
|
||
|
self._is_perfect = self.equals(self.derived_subgroup())
|
||
|
return self._is_perfect
|
||
|
|
||
|
@property
|
||
|
def is_abelian(self):
|
||
|
"""Test if the group is Abelian.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.is_abelian
|
||
|
False
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> G = PermutationGroup([a])
|
||
|
>>> G.is_abelian
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if self._is_abelian is not None:
|
||
|
return self._is_abelian
|
||
|
|
||
|
self._is_abelian = True
|
||
|
gens = [p._array_form for p in self.generators]
|
||
|
for x in gens:
|
||
|
for y in gens:
|
||
|
if y <= x:
|
||
|
continue
|
||
|
if not _af_commutes_with(x, y):
|
||
|
self._is_abelian = False
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
def abelian_invariants(self):
|
||
|
"""
|
||
|
Returns the abelian invariants for the given group.
|
||
|
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
|
||
|
the direct product of finitely many nontrivial cyclic groups of
|
||
|
prime-power order.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The prime-powers that occur as the orders of the factors are uniquely
|
||
|
determined by G. More precisely, the primes that occur in the orders of the
|
||
|
factors in any such decomposition of ``G`` are exactly the primes that divide
|
||
|
``|G|`` and for any such prime ``p``, if the orders of the factors that are
|
||
|
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
|
||
|
then the orders of the factors that are p-groups in any such decomposition of ``G``
|
||
|
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
|
||
|
|
||
|
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
|
||
|
for all primes that divide ``|G|`` are called the invariants of the nontrivial
|
||
|
group ``G`` as suggested in ([14], p. 542).
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
We adopt the convention that the invariants of a trivial group are [].
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.abelian_invariants()
|
||
|
[2]
|
||
|
>>> from sympy.combinatorics import CyclicGroup
|
||
|
>>> G = CyclicGroup(7)
|
||
|
>>> G.abelian_invariants()
|
||
|
[7]
|
||
|
|
||
|
"""
|
||
|
if self.is_trivial:
|
||
|
return []
|
||
|
gns = self.generators
|
||
|
inv = []
|
||
|
G = self
|
||
|
H = G.derived_subgroup()
|
||
|
Hgens = H.generators
|
||
|
for p in primefactors(G.order()):
|
||
|
ranks = []
|
||
|
while True:
|
||
|
pows = []
|
||
|
for g in gns:
|
||
|
elm = g**p
|
||
|
if not H.contains(elm):
|
||
|
pows.append(elm)
|
||
|
K = PermutationGroup(Hgens + pows) if pows else H
|
||
|
r = G.order()//K.order()
|
||
|
G = K
|
||
|
gns = pows
|
||
|
if r == 1:
|
||
|
break
|
||
|
ranks.append(multiplicity(p, r))
|
||
|
|
||
|
if ranks:
|
||
|
pows = [1]*ranks[0]
|
||
|
for i in ranks:
|
||
|
for j in range(i):
|
||
|
pows[j] = pows[j]*p
|
||
|
inv.extend(pows)
|
||
|
inv.sort()
|
||
|
return inv
|
||
|
|
||
|
def is_elementary(self, p):
|
||
|
"""Return ``True`` if the group is elementary abelian. An elementary
|
||
|
abelian group is a finite abelian group, where every nontrivial
|
||
|
element has order `p`, where `p` is a prime.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> G = PermutationGroup([a])
|
||
|
>>> G.is_elementary(2)
|
||
|
True
|
||
|
>>> a = Permutation([0, 2, 1, 3])
|
||
|
>>> b = Permutation([3, 1, 2, 0])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.is_elementary(2)
|
||
|
True
|
||
|
>>> G.is_elementary(3)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
return self.is_abelian and all(g.order() == p for g in self.generators)
|
||
|
|
||
|
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False):
|
||
|
"""A naive test using the group order."""
|
||
|
if only_sym and only_alt:
|
||
|
raise ValueError(
|
||
|
"Both {} and {} cannot be set to True"
|
||
|
.format(only_sym, only_alt))
|
||
|
|
||
|
n = self.degree
|
||
|
sym_order = _factorial(n)
|
||
|
order = self.order()
|
||
|
|
||
|
if order == sym_order:
|
||
|
self._is_sym = True
|
||
|
self._is_alt = False
|
||
|
if only_alt:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
elif 2*order == sym_order:
|
||
|
self._is_sym = False
|
||
|
self._is_alt = True
|
||
|
if only_sym:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
return False
|
||
|
|
||
|
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None):
|
||
|
"""A test using monte-carlo algorithm.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
eps : float, optional
|
||
|
The criterion for the incorrect ``False`` return.
|
||
|
|
||
|
perms : list[Permutation], optional
|
||
|
If explicitly given, it tests over the given candidates
|
||
|
for testing.
|
||
|
|
||
|
If ``None``, it randomly computes ``N_eps`` and chooses
|
||
|
``N_eps`` sample of the permutation from the group.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
_check_cycles_alt_sym
|
||
|
"""
|
||
|
if perms is None:
|
||
|
n = self.degree
|
||
|
if n < 17:
|
||
|
c_n = 0.34
|
||
|
else:
|
||
|
c_n = 0.57
|
||
|
d_n = (c_n*log(2))/log(n)
|
||
|
N_eps = int(-log(eps)/d_n)
|
||
|
|
||
|
perms = (self.random_pr() for i in range(N_eps))
|
||
|
return self._eval_is_alt_sym_monte_carlo(perms=perms)
|
||
|
|
||
|
for perm in perms:
|
||
|
if _check_cycles_alt_sym(perm):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
def is_alt_sym(self, eps=0.05, _random_prec=None):
|
||
|
r"""Monte Carlo test for the symmetric/alternating group for degrees
|
||
|
>= 8.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
More specifically, it is one-sided Monte Carlo with the
|
||
|
answer True (i.e., G is symmetric/alternating) guaranteed to be
|
||
|
correct, and the answer False being incorrect with probability eps.
|
||
|
|
||
|
For degree < 8, the order of the group is checked so the test
|
||
|
is deterministic.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The algorithm itself uses some nontrivial results from group theory and
|
||
|
number theory:
|
||
|
1) If a transitive group ``G`` of degree ``n`` contains an element
|
||
|
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the
|
||
|
symmetric or alternating group ([1], pp. 81-82)
|
||
|
2) The proportion of elements in the symmetric/alternating group having
|
||
|
the property described in 1) is approximately `\log(2)/\log(n)`
|
||
|
([1], p.82; [2], pp. 226-227).
|
||
|
The helper function ``_check_cycles_alt_sym`` is used to
|
||
|
go over the cycles in a permutation and look for ones satisfying 1).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> D = DihedralGroup(10)
|
||
|
>>> D.is_alt_sym()
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
_check_cycles_alt_sym
|
||
|
|
||
|
"""
|
||
|
if _random_prec is not None:
|
||
|
N_eps = _random_prec['N_eps']
|
||
|
perms= (_random_prec[i] for i in range(N_eps))
|
||
|
return self._eval_is_alt_sym_monte_carlo(perms=perms)
|
||
|
|
||
|
if self._is_sym or self._is_alt:
|
||
|
return True
|
||
|
if self._is_sym is False and self._is_alt is False:
|
||
|
return False
|
||
|
|
||
|
n = self.degree
|
||
|
if n < 8:
|
||
|
return self._eval_is_alt_sym_naive()
|
||
|
elif self.is_transitive():
|
||
|
return self._eval_is_alt_sym_monte_carlo(eps=eps)
|
||
|
|
||
|
self._is_sym, self._is_alt = False, False
|
||
|
return False
|
||
|
|
||
|
@property
|
||
|
def is_nilpotent(self):
|
||
|
"""Test if the group is nilpotent.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A group `G` is nilpotent if it has a central series of finite length.
|
||
|
Alternatively, `G` is nilpotent if its lower central series terminates
|
||
|
with the trivial group. Every nilpotent group is also solvable
|
||
|
([1], p.29, [12]).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
||
|
... CyclicGroup)
|
||
|
>>> C = CyclicGroup(6)
|
||
|
>>> C.is_nilpotent
|
||
|
True
|
||
|
>>> S = SymmetricGroup(5)
|
||
|
>>> S.is_nilpotent
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
lower_central_series, is_solvable
|
||
|
|
||
|
"""
|
||
|
if self._is_nilpotent is None:
|
||
|
lcs = self.lower_central_series()
|
||
|
terminator = lcs[len(lcs) - 1]
|
||
|
gens = terminator.generators
|
||
|
degree = self.degree
|
||
|
identity = _af_new(list(range(degree)))
|
||
|
if all(g == identity for g in gens):
|
||
|
self._is_solvable = True
|
||
|
self._is_nilpotent = True
|
||
|
return True
|
||
|
else:
|
||
|
self._is_nilpotent = False
|
||
|
return False
|
||
|
else:
|
||
|
return self._is_nilpotent
|
||
|
|
||
|
def is_normal(self, gr, strict=True):
|
||
|
"""Test if ``G=self`` is a normal subgroup of ``gr``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
G is normal in gr if
|
||
|
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G
|
||
|
It is sufficient to check this for each g1 in gr.generators and
|
||
|
g2 in G.generators.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([1, 2, 0])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
|
||
|
>>> G1.is_normal(G)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if not self.is_subgroup(gr, strict=strict):
|
||
|
return False
|
||
|
d_self = self.degree
|
||
|
d_gr = gr.degree
|
||
|
if self.is_trivial and (d_self == d_gr or not strict):
|
||
|
return True
|
||
|
if self._is_abelian:
|
||
|
return True
|
||
|
new_self = self.copy()
|
||
|
if not strict and d_self != d_gr:
|
||
|
if d_self < d_gr:
|
||
|
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)])
|
||
|
else:
|
||
|
gr = PermGroup(gr.generators + [Permutation(d_self - 1)])
|
||
|
gens2 = [p._array_form for p in new_self.generators]
|
||
|
gens1 = [p._array_form for p in gr.generators]
|
||
|
for g1 in gens1:
|
||
|
for g2 in gens2:
|
||
|
p = _af_rmuln(g1, g2, _af_invert(g1))
|
||
|
if not new_self.coset_factor(p, True):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
def is_primitive(self, randomized=True):
|
||
|
r"""Test if a group is primitive.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A permutation group ``G`` acting on a set ``S`` is called primitive if
|
||
|
``S`` contains no nontrivial block under the action of ``G``
|
||
|
(a block is nontrivial if its cardinality is more than ``1``).
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The algorithm is described in [1], p.83, and uses the function
|
||
|
minimal_block to search for blocks of the form `\{0, k\}` for ``k``
|
||
|
ranging over representatives for the orbits of `G_0`, the stabilizer of
|
||
|
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree
|
||
|
of the group, and will perform badly if `G_0` is small.
|
||
|
|
||
|
There are two implementations offered: one finds `G_0`
|
||
|
deterministically using the function ``stabilizer``, and the other
|
||
|
(default) produces random elements of `G_0` using ``random_stab``,
|
||
|
hoping that they generate a subgroup of `G_0` with not too many more
|
||
|
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed
|
||
|
by the ``randomized`` flag.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> D = DihedralGroup(10)
|
||
|
>>> D.is_primitive()
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
minimal_block, random_stab
|
||
|
|
||
|
"""
|
||
|
if self._is_primitive is not None:
|
||
|
return self._is_primitive
|
||
|
|
||
|
if self.is_transitive() is False:
|
||
|
return False
|
||
|
|
||
|
if randomized:
|
||
|
random_stab_gens = []
|
||
|
v = self.schreier_vector(0)
|
||
|
for _ in range(len(self)):
|
||
|
random_stab_gens.append(self.random_stab(0, v))
|
||
|
stab = PermutationGroup(random_stab_gens)
|
||
|
else:
|
||
|
stab = self.stabilizer(0)
|
||
|
orbits = stab.orbits()
|
||
|
for orb in orbits:
|
||
|
x = orb.pop()
|
||
|
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])):
|
||
|
self._is_primitive = False
|
||
|
return False
|
||
|
self._is_primitive = True
|
||
|
return True
|
||
|
|
||
|
def minimal_blocks(self, randomized=True):
|
||
|
'''
|
||
|
For a transitive group, return the list of all minimal
|
||
|
block systems. If a group is intransitive, return `False`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> DihedralGroup(6).minimal_blocks()
|
||
|
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
|
||
|
>>> G = PermutationGroup(Permutation(1,2,5))
|
||
|
>>> G.minimal_blocks()
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
minimal_block, is_transitive, is_primitive
|
||
|
|
||
|
'''
|
||
|
def _number_blocks(blocks):
|
||
|
# number the blocks of a block system
|
||
|
# in order and return the number of
|
||
|
# blocks and the tuple with the
|
||
|
# reordering
|
||
|
n = len(blocks)
|
||
|
appeared = {}
|
||
|
m = 0
|
||
|
b = [None]*n
|
||
|
for i in range(n):
|
||
|
if blocks[i] not in appeared:
|
||
|
appeared[blocks[i]] = m
|
||
|
b[i] = m
|
||
|
m += 1
|
||
|
else:
|
||
|
b[i] = appeared[blocks[i]]
|
||
|
return tuple(b), m
|
||
|
|
||
|
if not self.is_transitive():
|
||
|
return False
|
||
|
blocks = []
|
||
|
num_blocks = []
|
||
|
rep_blocks = []
|
||
|
if randomized:
|
||
|
random_stab_gens = []
|
||
|
v = self.schreier_vector(0)
|
||
|
for i in range(len(self)):
|
||
|
random_stab_gens.append(self.random_stab(0, v))
|
||
|
stab = PermutationGroup(random_stab_gens)
|
||
|
else:
|
||
|
stab = self.stabilizer(0)
|
||
|
orbits = stab.orbits()
|
||
|
for orb in orbits:
|
||
|
x = orb.pop()
|
||
|
if x != 0:
|
||
|
block = self.minimal_block([0, x])
|
||
|
num_block, _ = _number_blocks(block)
|
||
|
# a representative block (containing 0)
|
||
|
rep = {j for j in range(self.degree) if num_block[j] == 0}
|
||
|
# check if the system is minimal with
|
||
|
# respect to the already discovere ones
|
||
|
minimal = True
|
||
|
blocks_remove_mask = [False] * len(blocks)
|
||
|
for i, r in enumerate(rep_blocks):
|
||
|
if len(r) > len(rep) and rep.issubset(r):
|
||
|
# i-th block system is not minimal
|
||
|
blocks_remove_mask[i] = True
|
||
|
elif len(r) < len(rep) and r.issubset(rep):
|
||
|
# the system being checked is not minimal
|
||
|
minimal = False
|
||
|
break
|
||
|
# remove non-minimal representative blocks
|
||
|
blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]]
|
||
|
num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]]
|
||
|
rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]]
|
||
|
|
||
|
if minimal and num_block not in num_blocks:
|
||
|
blocks.append(block)
|
||
|
num_blocks.append(num_block)
|
||
|
rep_blocks.append(rep)
|
||
|
return blocks
|
||
|
|
||
|
@property
|
||
|
def is_solvable(self):
|
||
|
"""Test if the group is solvable.
|
||
|
|
||
|
``G`` is solvable if its derived series terminates with the trivial
|
||
|
group ([1], p.29).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
||
|
>>> S = SymmetricGroup(3)
|
||
|
>>> S.is_solvable
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
is_nilpotent, derived_series
|
||
|
|
||
|
"""
|
||
|
if self._is_solvable is None:
|
||
|
if self.order() % 2 != 0:
|
||
|
return True
|
||
|
ds = self.derived_series()
|
||
|
terminator = ds[len(ds) - 1]
|
||
|
gens = terminator.generators
|
||
|
degree = self.degree
|
||
|
identity = _af_new(list(range(degree)))
|
||
|
if all(g == identity for g in gens):
|
||
|
self._is_solvable = True
|
||
|
return True
|
||
|
else:
|
||
|
self._is_solvable = False
|
||
|
return False
|
||
|
else:
|
||
|
return self._is_solvable
|
||
|
|
||
|
def is_subgroup(self, G, strict=True):
|
||
|
"""Return ``True`` if all elements of ``self`` belong to ``G``.
|
||
|
|
||
|
If ``strict`` is ``False`` then if ``self``'s degree is smaller
|
||
|
than ``G``'s, the elements will be resized to have the same degree.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> from sympy.combinatorics import SymmetricGroup, CyclicGroup
|
||
|
|
||
|
Testing is strict by default: the degree of each group must be the
|
||
|
same:
|
||
|
|
||
|
>>> p = Permutation(0, 1, 2, 3, 4, 5)
|
||
|
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
|
||
|
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
|
||
|
>>> G3 = PermutationGroup([p, p**2])
|
||
|
>>> assert G1.order() == G2.order() == G3.order() == 6
|
||
|
>>> G1.is_subgroup(G2)
|
||
|
True
|
||
|
>>> G1.is_subgroup(G3)
|
||
|
False
|
||
|
>>> G3.is_subgroup(PermutationGroup(G3[1]))
|
||
|
False
|
||
|
>>> G3.is_subgroup(PermutationGroup(G3[0]))
|
||
|
True
|
||
|
|
||
|
To ignore the size, set ``strict`` to ``False``:
|
||
|
|
||
|
>>> S3 = SymmetricGroup(3)
|
||
|
>>> S5 = SymmetricGroup(5)
|
||
|
>>> S3.is_subgroup(S5, strict=False)
|
||
|
True
|
||
|
>>> C7 = CyclicGroup(7)
|
||
|
>>> G = S5*C7
|
||
|
>>> S5.is_subgroup(G, False)
|
||
|
True
|
||
|
>>> C7.is_subgroup(G, 0)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
if isinstance(G, SymmetricPermutationGroup):
|
||
|
if self.degree != G.degree:
|
||
|
return False
|
||
|
return True
|
||
|
if not isinstance(G, PermutationGroup):
|
||
|
return False
|
||
|
if self == G or self.generators[0]==Permutation():
|
||
|
return True
|
||
|
if G.order() % self.order() != 0:
|
||
|
return False
|
||
|
if self.degree == G.degree or \
|
||
|
(self.degree < G.degree and not strict):
|
||
|
gens = self.generators
|
||
|
else:
|
||
|
return False
|
||
|
return all(G.contains(g, strict=strict) for g in gens)
|
||
|
|
||
|
@property
|
||
|
def is_polycyclic(self):
|
||
|
"""Return ``True`` if a group is polycyclic. A group is polycyclic if
|
||
|
it has a subnormal series with cyclic factors. For finite groups,
|
||
|
this is the same as if the group is solvable.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1, 3])
|
||
|
>>> b = Permutation([2, 0, 1, 3])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.is_polycyclic
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return self.is_solvable
|
||
|
|
||
|
def is_transitive(self, strict=True):
|
||
|
"""Test if the group is transitive.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A group is transitive if it has a single orbit.
|
||
|
|
||
|
If ``strict`` is ``False`` the group is transitive if it has
|
||
|
a single orbit of length different from 1.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1, 3])
|
||
|
>>> b = Permutation([2, 0, 1, 3])
|
||
|
>>> G1 = PermutationGroup([a, b])
|
||
|
>>> G1.is_transitive()
|
||
|
False
|
||
|
>>> G1.is_transitive(strict=False)
|
||
|
True
|
||
|
>>> c = Permutation([2, 3, 0, 1])
|
||
|
>>> G2 = PermutationGroup([a, c])
|
||
|
>>> G2.is_transitive()
|
||
|
True
|
||
|
>>> d = Permutation([1, 0, 2, 3])
|
||
|
>>> e = Permutation([0, 1, 3, 2])
|
||
|
>>> G3 = PermutationGroup([d, e])
|
||
|
>>> G3.is_transitive() or G3.is_transitive(strict=False)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
if self._is_transitive: # strict or not, if True then True
|
||
|
return self._is_transitive
|
||
|
if strict:
|
||
|
if self._is_transitive is not None: # we only store strict=True
|
||
|
return self._is_transitive
|
||
|
|
||
|
ans = len(self.orbit(0)) == self.degree
|
||
|
self._is_transitive = ans
|
||
|
return ans
|
||
|
|
||
|
got_orb = False
|
||
|
for x in self.orbits():
|
||
|
if len(x) > 1:
|
||
|
if got_orb:
|
||
|
return False
|
||
|
got_orb = True
|
||
|
return got_orb
|
||
|
|
||
|
@property
|
||
|
def is_trivial(self):
|
||
|
"""Test if the group is the trivial group.
|
||
|
|
||
|
This is true if the group contains only the identity permutation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> G = PermutationGroup([Permutation([0, 1, 2])])
|
||
|
>>> G.is_trivial
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if self._is_trivial is None:
|
||
|
self._is_trivial = len(self) == 1 and self[0].is_Identity
|
||
|
return self._is_trivial
|
||
|
|
||
|
def lower_central_series(self):
|
||
|
r"""Return the lower central series for the group.
|
||
|
|
||
|
The lower central series for a group `G` is the series
|
||
|
`G = G_0 > G_1 > G_2 > \ldots` where
|
||
|
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the
|
||
|
commutator of `G` and the previous term in `G1` ([1], p.29).
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import (AlternatingGroup,
|
||
|
... DihedralGroup)
|
||
|
>>> A = AlternatingGroup(4)
|
||
|
>>> len(A.lower_central_series())
|
||
|
2
|
||
|
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
commutator, derived_series
|
||
|
|
||
|
"""
|
||
|
res = [self]
|
||
|
current = self
|
||
|
nxt = self.commutator(self, current)
|
||
|
while not current.is_subgroup(nxt):
|
||
|
res.append(nxt)
|
||
|
current = nxt
|
||
|
nxt = self.commutator(self, current)
|
||
|
return res
|
||
|
|
||
|
@property
|
||
|
def max_div(self):
|
||
|
"""Maximum proper divisor of the degree of a permutation group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Obviously, this is the degree divided by its minimal proper divisor
|
||
|
(larger than ``1``, if one exists). As it is guaranteed to be prime,
|
||
|
the ``sieve`` from ``sympy.ntheory`` is used.
|
||
|
This function is also used as an optimization tool for the functions
|
||
|
``minimal_block`` and ``_union_find_merge``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
|
||
|
>>> G.max_div
|
||
|
2
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
minimal_block, _union_find_merge
|
||
|
|
||
|
"""
|
||
|
if self._max_div is not None:
|
||
|
return self._max_div
|
||
|
n = self.degree
|
||
|
if n == 1:
|
||
|
return 1
|
||
|
for x in sieve:
|
||
|
if n % x == 0:
|
||
|
d = n//x
|
||
|
self._max_div = d
|
||
|
return d
|
||
|
|
||
|
def minimal_block(self, points):
|
||
|
r"""For a transitive group, finds the block system generated by
|
||
|
``points``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S``
|
||
|
is called a block under the action of ``G`` if for all ``g`` in ``G``
|
||
|
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no
|
||
|
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]).
|
||
|
|
||
|
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G``
|
||
|
partition the set ``S`` and this set of translates is known as a block
|
||
|
system. Moreover, we obviously have that all blocks in the partition
|
||
|
have the same size, hence the block size divides ``|S|`` ([1], p.23).
|
||
|
A ``G``-congruence is an equivalence relation ``~`` on the set ``S``
|
||
|
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``.
|
||
|
For a transitive group, the equivalence classes of a ``G``-congruence
|
||
|
and the blocks of a block system are the same thing ([1], p.23).
|
||
|
|
||
|
The algorithm below checks the group for transitivity, and then finds
|
||
|
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2),
|
||
|
..., (p_0,p_{k-1})`` which is the same as finding the maximal block
|
||
|
system (i.e., the one with minimum block size) such that
|
||
|
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83).
|
||
|
|
||
|
It is an implementation of Atkinson's algorithm, as suggested in [1],
|
||
|
and manipulates an equivalence relation on the set ``S`` using a
|
||
|
union-find data structure. The running time is just above
|
||
|
`O(|points||S|)`. ([1], pp. 83-87; [7]).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> D = DihedralGroup(10)
|
||
|
>>> D.minimal_block([0, 5])
|
||
|
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
|
||
|
>>> D.minimal_block([0, 1])
|
||
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
_union_find_rep, _union_find_merge, is_transitive, is_primitive
|
||
|
|
||
|
"""
|
||
|
if not self.is_transitive():
|
||
|
return False
|
||
|
n = self.degree
|
||
|
gens = self.generators
|
||
|
# initialize the list of equivalence class representatives
|
||
|
parents = list(range(n))
|
||
|
ranks = [1]*n
|
||
|
not_rep = []
|
||
|
k = len(points)
|
||
|
# the block size must divide the degree of the group
|
||
|
if k > self.max_div:
|
||
|
return [0]*n
|
||
|
for i in range(k - 1):
|
||
|
parents[points[i + 1]] = points[0]
|
||
|
not_rep.append(points[i + 1])
|
||
|
ranks[points[0]] = k
|
||
|
i = 0
|
||
|
len_not_rep = k - 1
|
||
|
while i < len_not_rep:
|
||
|
gamma = not_rep[i]
|
||
|
i += 1
|
||
|
for gen in gens:
|
||
|
# find has side effects: performs path compression on the list
|
||
|
# of representatives
|
||
|
delta = self._union_find_rep(gamma, parents)
|
||
|
# union has side effects: performs union by rank on the list
|
||
|
# of representatives
|
||
|
temp = self._union_find_merge(gen(gamma), gen(delta), ranks,
|
||
|
parents, not_rep)
|
||
|
if temp == -1:
|
||
|
return [0]*n
|
||
|
len_not_rep += temp
|
||
|
for i in range(n):
|
||
|
# force path compression to get the final state of the equivalence
|
||
|
# relation
|
||
|
self._union_find_rep(i, parents)
|
||
|
|
||
|
# rewrite result so that block representatives are minimal
|
||
|
new_reps = {}
|
||
|
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)]
|
||
|
|
||
|
def conjugacy_class(self, x):
|
||
|
r"""Return the conjugacy class of an element in the group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The conjugacy class of an element ``g`` in a group ``G`` is the set of
|
||
|
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which
|
||
|
|
||
|
``g = xax^{-1}``
|
||
|
|
||
|
for some ``a`` in ``G``.
|
||
|
|
||
|
Note that conjugacy is an equivalence relation, and therefore that
|
||
|
conjugacy classes are partitions of ``G``. For a list of all the
|
||
|
conjugacy classes of the group, use the conjugacy_classes() method.
|
||
|
|
||
|
In a permutation group, each conjugacy class corresponds to a particular
|
||
|
`cycle structure': for example, in ``S_3``, the conjugacy classes are:
|
||
|
|
||
|
* the identity class, ``{()}``
|
||
|
* all transpositions, ``{(1 2), (1 3), (2 3)}``
|
||
|
* all 3-cycles, ``{(1 2 3), (1 3 2)}``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, SymmetricGroup
|
||
|
>>> S3 = SymmetricGroup(3)
|
||
|
>>> S3.conjugacy_class(Permutation(0, 1, 2))
|
||
|
{(0 1 2), (0 2 1)}
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This procedure computes the conjugacy class directly by finding the
|
||
|
orbit of the element under conjugation in G. This algorithm is only
|
||
|
feasible for permutation groups of relatively small order, but is like
|
||
|
the orbit() function itself in that respect.
|
||
|
"""
|
||
|
# Ref: "Computing the conjugacy classes of finite groups"; Butler, G.
|
||
|
# Groups '93 Galway/St Andrews; edited by Campbell, C. M.
|
||
|
new_class = {x}
|
||
|
last_iteration = new_class
|
||
|
|
||
|
while len(last_iteration) > 0:
|
||
|
this_iteration = set()
|
||
|
|
||
|
for y in last_iteration:
|
||
|
for s in self.generators:
|
||
|
conjugated = s * y * (~s)
|
||
|
if conjugated not in new_class:
|
||
|
this_iteration.add(conjugated)
|
||
|
|
||
|
new_class.update(last_iteration)
|
||
|
last_iteration = this_iteration
|
||
|
|
||
|
return new_class
|
||
|
|
||
|
|
||
|
def conjugacy_classes(self):
|
||
|
r"""Return the conjugacy classes of the group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
As described in the documentation for the .conjugacy_class() function,
|
||
|
conjugacy is an equivalence relation on a group G which partitions the
|
||
|
set of elements. This method returns a list of all these conjugacy
|
||
|
classes of G.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import SymmetricGroup
|
||
|
>>> SymmetricGroup(3).conjugacy_classes()
|
||
|
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}]
|
||
|
|
||
|
"""
|
||
|
identity = _af_new(list(range(self.degree)))
|
||
|
known_elements = {identity}
|
||
|
classes = [known_elements.copy()]
|
||
|
|
||
|
for x in self.generate():
|
||
|
if x not in known_elements:
|
||
|
new_class = self.conjugacy_class(x)
|
||
|
classes.append(new_class)
|
||
|
known_elements.update(new_class)
|
||
|
|
||
|
return classes
|
||
|
|
||
|
def normal_closure(self, other, k=10):
|
||
|
r"""Return the normal closure of a subgroup/set of permutations.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G``
|
||
|
is defined as the intersection of all normal subgroups of ``G`` that
|
||
|
contain ``A`` ([1], p.14). Alternatively, it is the group generated by
|
||
|
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a
|
||
|
generator of the subgroup ``\left\langle S\right\rangle`` generated by
|
||
|
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``)
|
||
|
([1], p.73).
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other
|
||
|
a subgroup/list of permutations/single permutation
|
||
|
k
|
||
|
an implementation-specific parameter that determines the number
|
||
|
of conjugates that are adjoined to ``other`` at once
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
||
|
... CyclicGroup, AlternatingGroup)
|
||
|
>>> S = SymmetricGroup(5)
|
||
|
>>> C = CyclicGroup(5)
|
||
|
>>> G = S.normal_closure(C)
|
||
|
>>> G.order()
|
||
|
60
|
||
|
>>> G.is_subgroup(AlternatingGroup(5))
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
commutator, derived_subgroup, random_pr
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The algorithm is described in [1], pp. 73-74; it makes use of the
|
||
|
generation of random elements for permutation groups by the product
|
||
|
replacement algorithm.
|
||
|
|
||
|
"""
|
||
|
if hasattr(other, 'generators'):
|
||
|
degree = self.degree
|
||
|
identity = _af_new(list(range(degree)))
|
||
|
|
||
|
if all(g == identity for g in other.generators):
|
||
|
return other
|
||
|
Z = PermutationGroup(other.generators[:])
|
||
|
base, strong_gens = Z.schreier_sims_incremental()
|
||
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
|
||
|
basic_orbits, basic_transversals = \
|
||
|
_orbits_transversals_from_bsgs(base, strong_gens_distr)
|
||
|
|
||
|
self._random_pr_init(r=10, n=20)
|
||
|
|
||
|
_loop = True
|
||
|
while _loop:
|
||
|
Z._random_pr_init(r=10, n=10)
|
||
|
for _ in range(k):
|
||
|
g = self.random_pr()
|
||
|
h = Z.random_pr()
|
||
|
conj = h^g
|
||
|
res = _strip(conj, base, basic_orbits, basic_transversals)
|
||
|
if res[0] != identity or res[1] != len(base) + 1:
|
||
|
gens = Z.generators
|
||
|
gens.append(conj)
|
||
|
Z = PermutationGroup(gens)
|
||
|
strong_gens.append(conj)
|
||
|
temp_base, temp_strong_gens = \
|
||
|
Z.schreier_sims_incremental(base, strong_gens)
|
||
|
base, strong_gens = temp_base, temp_strong_gens
|
||
|
strong_gens_distr = \
|
||
|
_distribute_gens_by_base(base, strong_gens)
|
||
|
basic_orbits, basic_transversals = \
|
||
|
_orbits_transversals_from_bsgs(base,
|
||
|
strong_gens_distr)
|
||
|
_loop = False
|
||
|
for g in self.generators:
|
||
|
for h in Z.generators:
|
||
|
conj = h^g
|
||
|
res = _strip(conj, base, basic_orbits,
|
||
|
basic_transversals)
|
||
|
if res[0] != identity or res[1] != len(base) + 1:
|
||
|
_loop = True
|
||
|
break
|
||
|
if _loop:
|
||
|
break
|
||
|
return Z
|
||
|
elif hasattr(other, '__getitem__'):
|
||
|
return self.normal_closure(PermutationGroup(other))
|
||
|
elif hasattr(other, 'array_form'):
|
||
|
return self.normal_closure(PermutationGroup([other]))
|
||
|
|
||
|
def orbit(self, alpha, action='tuples'):
|
||
|
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The time complexity of the algorithm used here is `O(|Orb|*r)` where
|
||
|
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
|
||
|
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
|
||
|
Here alpha can be a single point, or a list of points.
|
||
|
|
||
|
If alpha is a single point, the ordinary orbit is computed.
|
||
|
if alpha is a list of points, there are three available options:
|
||
|
|
||
|
'union' - computes the union of the orbits of the points in the list
|
||
|
'tuples' - computes the orbit of the list interpreted as an ordered
|
||
|
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) )
|
||
|
'sets' - computes the orbit of the list interpreted as a sets
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
|
||
|
>>> G = PermutationGroup([a])
|
||
|
>>> G.orbit(0)
|
||
|
{0, 1, 2}
|
||
|
>>> G.orbit([0, 4], 'union')
|
||
|
{0, 1, 2, 3, 4, 5, 6}
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
orbit_transversal
|
||
|
|
||
|
"""
|
||
|
return _orbit(self.degree, self.generators, alpha, action)
|
||
|
|
||
|
def orbit_rep(self, alpha, beta, schreier_vector=None):
|
||
|
"""Return a group element which sends ``alpha`` to ``beta``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If ``beta`` is not in the orbit of ``alpha``, the function returns
|
||
|
``False``. This implementation makes use of the schreier vector.
|
||
|
For a proof of correctness, see [1], p.80
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup
|
||
|
>>> G = AlternatingGroup(5)
|
||
|
>>> G.orbit_rep(0, 4)
|
||
|
(0 4 1 2 3)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
schreier_vector
|
||
|
|
||
|
"""
|
||
|
if schreier_vector is None:
|
||
|
schreier_vector = self.schreier_vector(alpha)
|
||
|
if schreier_vector[beta] is None:
|
||
|
return False
|
||
|
k = schreier_vector[beta]
|
||
|
gens = [x._array_form for x in self.generators]
|
||
|
a = []
|
||
|
while k != -1:
|
||
|
a.append(gens[k])
|
||
|
beta = gens[k].index(beta) # beta = (~gens[k])(beta)
|
||
|
k = schreier_vector[beta]
|
||
|
if a:
|
||
|
return _af_new(_af_rmuln(*a))
|
||
|
else:
|
||
|
return _af_new(list(range(self._degree)))
|
||
|
|
||
|
def orbit_transversal(self, alpha, pairs=False):
|
||
|
r"""Computes a transversal for the orbit of ``alpha`` as a set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For a permutation group `G`, a transversal for the orbit
|
||
|
`Orb = \{g(\alpha) | g \in G\}` is a set
|
||
|
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
|
||
|
Note that there may be more than one possible transversal.
|
||
|
If ``pairs`` is set to ``True``, it returns the list of pairs
|
||
|
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> G = DihedralGroup(6)
|
||
|
>>> G.orbit_transversal(0)
|
||
|
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
orbit
|
||
|
|
||
|
"""
|
||
|
return _orbit_transversal(self._degree, self.generators, alpha, pairs)
|
||
|
|
||
|
def orbits(self, rep=False):
|
||
|
"""Return the orbits of ``self``, ordered according to lowest element
|
||
|
in each orbit.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
|
||
|
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.orbits()
|
||
|
[{0, 2, 3, 4, 6}, {1, 5}]
|
||
|
"""
|
||
|
return _orbits(self._degree, self._generators)
|
||
|
|
||
|
def order(self):
|
||
|
"""Return the order of the group: the number of permutations that
|
||
|
can be generated from elements of the group.
|
||
|
|
||
|
The number of permutations comprising the group is given by
|
||
|
``len(group)``; the length of each permutation in the group is
|
||
|
given by ``group.size``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
|
||
|
>>> a = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a])
|
||
|
>>> G.degree
|
||
|
3
|
||
|
>>> len(G)
|
||
|
1
|
||
|
>>> G.order()
|
||
|
2
|
||
|
>>> list(G.generate())
|
||
|
[(2), (2)(0 1)]
|
||
|
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.order()
|
||
|
6
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
degree
|
||
|
|
||
|
"""
|
||
|
if self._order is not None:
|
||
|
return self._order
|
||
|
if self._is_sym:
|
||
|
n = self._degree
|
||
|
self._order = factorial(n)
|
||
|
return self._order
|
||
|
if self._is_alt:
|
||
|
n = self._degree
|
||
|
self._order = factorial(n)/2
|
||
|
return self._order
|
||
|
|
||
|
m = prod([len(x) for x in self.basic_transversals])
|
||
|
self._order = m
|
||
|
return m
|
||
|
|
||
|
def index(self, H):
|
||
|
"""
|
||
|
Returns the index of a permutation group.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation(1,2,3)
|
||
|
>>> b =Permutation(3)
|
||
|
>>> G = PermutationGroup([a])
|
||
|
>>> H = PermutationGroup([b])
|
||
|
>>> G.index(H)
|
||
|
3
|
||
|
|
||
|
"""
|
||
|
if H.is_subgroup(self):
|
||
|
return self.order()//H.order()
|
||
|
|
||
|
@property
|
||
|
def is_symmetric(self):
|
||
|
"""Return ``True`` if the group is symmetric.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import SymmetricGroup
|
||
|
>>> g = SymmetricGroup(5)
|
||
|
>>> g.is_symmetric
|
||
|
True
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> g = PermutationGroup(
|
||
|
... Permutation(0, 1, 2, 3, 4),
|
||
|
... Permutation(2, 3))
|
||
|
>>> g.is_symmetric
|
||
|
True
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This uses a naive test involving the computation of the full
|
||
|
group order.
|
||
|
If you need more quicker taxonomy for large groups, you can use
|
||
|
:meth:`PermutationGroup.is_alt_sym`.
|
||
|
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
|
||
|
and is not able to distinguish between an alternating group and
|
||
|
a symmetric group.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
is_alt_sym
|
||
|
"""
|
||
|
_is_sym = self._is_sym
|
||
|
if _is_sym is not None:
|
||
|
return _is_sym
|
||
|
|
||
|
n = self.degree
|
||
|
if n >= 8:
|
||
|
if self.is_transitive():
|
||
|
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
|
||
|
if _is_alt_sym:
|
||
|
if any(g.is_odd for g in self.generators):
|
||
|
self._is_sym, self._is_alt = True, False
|
||
|
return True
|
||
|
|
||
|
self._is_sym, self._is_alt = False, True
|
||
|
return False
|
||
|
|
||
|
return self._eval_is_alt_sym_naive(only_sym=True)
|
||
|
|
||
|
self._is_sym, self._is_alt = False, False
|
||
|
return False
|
||
|
|
||
|
return self._eval_is_alt_sym_naive(only_sym=True)
|
||
|
|
||
|
|
||
|
@property
|
||
|
def is_alternating(self):
|
||
|
"""Return ``True`` if the group is alternating.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import AlternatingGroup
|
||
|
>>> g = AlternatingGroup(5)
|
||
|
>>> g.is_alternating
|
||
|
True
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> g = PermutationGroup(
|
||
|
... Permutation(0, 1, 2, 3, 4),
|
||
|
... Permutation(2, 3, 4))
|
||
|
>>> g.is_alternating
|
||
|
True
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This uses a naive test involving the computation of the full
|
||
|
group order.
|
||
|
If you need more quicker taxonomy for large groups, you can use
|
||
|
:meth:`PermutationGroup.is_alt_sym`.
|
||
|
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
|
||
|
and is not able to distinguish between an alternating group and
|
||
|
a symmetric group.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
is_alt_sym
|
||
|
"""
|
||
|
_is_alt = self._is_alt
|
||
|
if _is_alt is not None:
|
||
|
return _is_alt
|
||
|
|
||
|
n = self.degree
|
||
|
if n >= 8:
|
||
|
if self.is_transitive():
|
||
|
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
|
||
|
if _is_alt_sym:
|
||
|
if all(g.is_even for g in self.generators):
|
||
|
self._is_sym, self._is_alt = False, True
|
||
|
return True
|
||
|
|
||
|
self._is_sym, self._is_alt = True, False
|
||
|
return False
|
||
|
|
||
|
return self._eval_is_alt_sym_naive(only_alt=True)
|
||
|
|
||
|
self._is_sym, self._is_alt = False, False
|
||
|
return False
|
||
|
|
||
|
return self._eval_is_alt_sym_naive(only_alt=True)
|
||
|
|
||
|
@classmethod
|
||
|
def _distinct_primes_lemma(cls, primes):
|
||
|
"""Subroutine to test if there is only one cyclic group for the
|
||
|
order."""
|
||
|
primes = sorted(primes)
|
||
|
l = len(primes)
|
||
|
for i in range(l):
|
||
|
for j in range(i+1, l):
|
||
|
if primes[j] % primes[i] == 1:
|
||
|
return None
|
||
|
return True
|
||
|
|
||
|
@property
|
||
|
def is_cyclic(self):
|
||
|
r"""
|
||
|
Return ``True`` if the group is Cyclic.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import AbelianGroup
|
||
|
>>> G = AbelianGroup(3, 4)
|
||
|
>>> G.is_cyclic
|
||
|
True
|
||
|
>>> G = AbelianGroup(4, 4)
|
||
|
>>> G.is_cyclic
|
||
|
False
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
If the order of a group $n$ can be factored into the distinct
|
||
|
primes $p_1, p_2, \dots , p_s$ and if
|
||
|
|
||
|
.. math::
|
||
|
\forall i, j \in \{1, 2, \dots, s \}:
|
||
|
p_i \not \equiv 1 \pmod {p_j}
|
||
|
|
||
|
holds true, there is only one group of the order $n$ which
|
||
|
is a cyclic group [1]_. This is a generalization of the lemma
|
||
|
that the group of order $15, 35, \dots$ are cyclic.
|
||
|
|
||
|
And also, these additional lemmas can be used to test if a
|
||
|
group is cyclic if the order of the group is already found.
|
||
|
|
||
|
- If the group is abelian and the order of the group is
|
||
|
square-free, the group is cyclic.
|
||
|
- If the order of the group is less than $6$ and is not $4$, the
|
||
|
group is cyclic.
|
||
|
- If the order of the group is prime, the group is cyclic.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] 1978: John S. Rose: A Course on Group Theory,
|
||
|
Introduction to Finite Group Theory: 1.4
|
||
|
"""
|
||
|
if self._is_cyclic is not None:
|
||
|
return self._is_cyclic
|
||
|
|
||
|
if len(self.generators) == 1:
|
||
|
self._is_cyclic = True
|
||
|
self._is_abelian = True
|
||
|
return True
|
||
|
|
||
|
if self._is_abelian is False:
|
||
|
self._is_cyclic = False
|
||
|
return False
|
||
|
|
||
|
order = self.order()
|
||
|
|
||
|
if order < 6:
|
||
|
self._is_abelian = True
|
||
|
if order != 4:
|
||
|
self._is_cyclic = True
|
||
|
return True
|
||
|
|
||
|
factors = factorint(order)
|
||
|
if all(v == 1 for v in factors.values()):
|
||
|
if self._is_abelian:
|
||
|
self._is_cyclic = True
|
||
|
return True
|
||
|
|
||
|
primes = list(factors.keys())
|
||
|
if PermutationGroup._distinct_primes_lemma(primes) is True:
|
||
|
self._is_cyclic = True
|
||
|
self._is_abelian = True
|
||
|
return True
|
||
|
|
||
|
if not self.is_abelian:
|
||
|
self._is_cyclic = False
|
||
|
return False
|
||
|
|
||
|
self._is_cyclic = all(
|
||
|
any(g**(order//p) != self.identity for g in self.generators)
|
||
|
for p, e in factors.items() if e > 1
|
||
|
)
|
||
|
return self._is_cyclic
|
||
|
|
||
|
@property
|
||
|
def is_dihedral(self):
|
||
|
r"""
|
||
|
Return ``True`` if the group is dihedral.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.perm_groups import PermutationGroup
|
||
|
>>> from sympy.combinatorics.permutations import Permutation
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup
|
||
|
>>> G = PermutationGroup(Permutation(1, 6)(2, 5)(3, 4), Permutation(0, 1, 2, 3, 4, 5, 6))
|
||
|
>>> G.is_dihedral
|
||
|
True
|
||
|
>>> G = SymmetricGroup(3)
|
||
|
>>> G.is_dihedral
|
||
|
True
|
||
|
>>> G = CyclicGroup(6)
|
||
|
>>> G.is_dihedral
|
||
|
False
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [Di1] https://math.stackexchange.com/a/827273
|
||
|
.. [Di2] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral.pdf
|
||
|
.. [Di3] https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf
|
||
|
.. [Di4] https://en.wikipedia.org/wiki/Dihedral_group
|
||
|
"""
|
||
|
if self._is_dihedral is not None:
|
||
|
return self._is_dihedral
|
||
|
|
||
|
order = self.order()
|
||
|
|
||
|
if order % 2 == 1:
|
||
|
self._is_dihedral = False
|
||
|
return False
|
||
|
if order == 2:
|
||
|
self._is_dihedral = True
|
||
|
return True
|
||
|
if order == 4:
|
||
|
# The dihedral group of order 4 is the Klein 4-group.
|
||
|
self._is_dihedral = not self.is_cyclic
|
||
|
return self._is_dihedral
|
||
|
if self.is_abelian:
|
||
|
# The only abelian dihedral groups are the ones of orders 2 and 4.
|
||
|
self._is_dihedral = False
|
||
|
return False
|
||
|
|
||
|
# Now we know the group is of even order >= 6, and nonabelian.
|
||
|
n = order // 2
|
||
|
|
||
|
# Handle special cases where there are exactly two generators.
|
||
|
gens = self.generators
|
||
|
if len(gens) == 2:
|
||
|
x, y = gens
|
||
|
a, b = x.order(), y.order()
|
||
|
# Make a >= b
|
||
|
if a < b:
|
||
|
x, y, a, b = y, x, b, a
|
||
|
# Using Theorem 2.1 of [Di3]:
|
||
|
if a == 2 == b:
|
||
|
self._is_dihedral = True
|
||
|
return True
|
||
|
# Using Theorem 1.1 of [Di3]:
|
||
|
if a == n and b == 2 and y*x*y == ~x:
|
||
|
self._is_dihedral = True
|
||
|
return True
|
||
|
|
||
|
# Proceed with algorithm of [Di1]
|
||
|
# Find elements of orders 2 and n
|
||
|
order_2, order_n = [], []
|
||
|
for p in self.elements:
|
||
|
k = p.order()
|
||
|
if k == 2:
|
||
|
order_2.append(p)
|
||
|
elif k == n:
|
||
|
order_n.append(p)
|
||
|
|
||
|
if len(order_2) != n + 1 - (n % 2):
|
||
|
self._is_dihedral = False
|
||
|
return False
|
||
|
|
||
|
if not order_n:
|
||
|
self._is_dihedral = False
|
||
|
return False
|
||
|
|
||
|
x = order_n[0]
|
||
|
# Want an element y of order 2 that is not a power of x
|
||
|
# (i.e. that is not the 180-deg rotation, when n is even).
|
||
|
y = order_2[0]
|
||
|
if n % 2 == 0 and y == x**(n//2):
|
||
|
y = order_2[1]
|
||
|
|
||
|
self._is_dihedral = (y*x*y == ~x)
|
||
|
return self._is_dihedral
|
||
|
|
||
|
def pointwise_stabilizer(self, points, incremental=True):
|
||
|
r"""Return the pointwise stabilizer for a set of points.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For a permutation group `G` and a set of points
|
||
|
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of
|
||
|
`p_1, p_2, \ldots, p_k` is defined as
|
||
|
`G_{p_1,\ldots, p_k} =
|
||
|
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20).
|
||
|
It is a subgroup of `G`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
||
|
>>> S = SymmetricGroup(7)
|
||
|
>>> Stab = S.pointwise_stabilizer([2, 3, 5])
|
||
|
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
stabilizer, schreier_sims_incremental
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
When incremental == True,
|
||
|
rather than the obvious implementation using successive calls to
|
||
|
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm
|
||
|
to obtain a base with starting segment - the given points.
|
||
|
|
||
|
"""
|
||
|
if incremental:
|
||
|
base, strong_gens = self.schreier_sims_incremental(base=points)
|
||
|
stab_gens = []
|
||
|
degree = self.degree
|
||
|
for gen in strong_gens:
|
||
|
if [gen(point) for point in points] == points:
|
||
|
stab_gens.append(gen)
|
||
|
if not stab_gens:
|
||
|
stab_gens = _af_new(list(range(degree)))
|
||
|
return PermutationGroup(stab_gens)
|
||
|
else:
|
||
|
gens = self._generators
|
||
|
degree = self.degree
|
||
|
for x in points:
|
||
|
gens = _stabilizer(degree, gens, x)
|
||
|
return PermutationGroup(gens)
|
||
|
|
||
|
def make_perm(self, n, seed=None):
|
||
|
"""
|
||
|
Multiply ``n`` randomly selected permutations from
|
||
|
pgroup together, starting with the identity
|
||
|
permutation. If ``n`` is a list of integers, those
|
||
|
integers will be used to select the permutations and they
|
||
|
will be applied in L to R order: make_perm((A, B, C)) will
|
||
|
give CBA(I) where I is the identity permutation.
|
||
|
|
||
|
``seed`` is used to set the seed for the random selection
|
||
|
of permutations from pgroup. If this is a list of integers,
|
||
|
the corresponding permutations from pgroup will be selected
|
||
|
in the order give. This is mainly used for testing purposes.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.make_perm(1, [0])
|
||
|
(0 1)(2 3)
|
||
|
>>> G.make_perm(3, [0, 1, 0])
|
||
|
(0 2 3 1)
|
||
|
>>> G.make_perm([0, 1, 0])
|
||
|
(0 2 3 1)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
random
|
||
|
"""
|
||
|
if is_sequence(n):
|
||
|
if seed is not None:
|
||
|
raise ValueError('If n is a sequence, seed should be None')
|
||
|
n, seed = len(n), n
|
||
|
else:
|
||
|
try:
|
||
|
n = int(n)
|
||
|
except TypeError:
|
||
|
raise ValueError('n must be an integer or a sequence.')
|
||
|
randomrange = _randrange(seed)
|
||
|
|
||
|
# start with the identity permutation
|
||
|
result = Permutation(list(range(self.degree)))
|
||
|
m = len(self)
|
||
|
for _ in range(n):
|
||
|
p = self[randomrange(m)]
|
||
|
result = rmul(result, p)
|
||
|
return result
|
||
|
|
||
|
def random(self, af=False):
|
||
|
"""Return a random group element
|
||
|
"""
|
||
|
rank = randrange(self.order())
|
||
|
return self.coset_unrank(rank, af)
|
||
|
|
||
|
def random_pr(self, gen_count=11, iterations=50, _random_prec=None):
|
||
|
"""Return a random group element using product replacement.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
For the details of the product replacement algorithm, see
|
||
|
``_random_pr_init`` In ``random_pr`` the actual 'product replacement'
|
||
|
is performed. Notice that if the attribute ``_random_gens``
|
||
|
is empty, it needs to be initialized by ``_random_pr_init``.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
_random_pr_init
|
||
|
|
||
|
"""
|
||
|
if self._random_gens == []:
|
||
|
self._random_pr_init(gen_count, iterations)
|
||
|
random_gens = self._random_gens
|
||
|
r = len(random_gens) - 1
|
||
|
|
||
|
# handle randomized input for testing purposes
|
||
|
if _random_prec is None:
|
||
|
s = randrange(r)
|
||
|
t = randrange(r - 1)
|
||
|
if t == s:
|
||
|
t = r - 1
|
||
|
x = choice([1, 2])
|
||
|
e = choice([-1, 1])
|
||
|
else:
|
||
|
s = _random_prec['s']
|
||
|
t = _random_prec['t']
|
||
|
if t == s:
|
||
|
t = r - 1
|
||
|
x = _random_prec['x']
|
||
|
e = _random_prec['e']
|
||
|
|
||
|
if x == 1:
|
||
|
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e))
|
||
|
random_gens[r] = _af_rmul(random_gens[r], random_gens[s])
|
||
|
else:
|
||
|
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s])
|
||
|
random_gens[r] = _af_rmul(random_gens[s], random_gens[r])
|
||
|
return _af_new(random_gens[r])
|
||
|
|
||
|
def random_stab(self, alpha, schreier_vector=None, _random_prec=None):
|
||
|
"""Random element from the stabilizer of ``alpha``.
|
||
|
|
||
|
The schreier vector for ``alpha`` is an optional argument used
|
||
|
for speeding up repeated calls. The algorithm is described in [1], p.81
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
random_pr, orbit_rep
|
||
|
|
||
|
"""
|
||
|
if schreier_vector is None:
|
||
|
schreier_vector = self.schreier_vector(alpha)
|
||
|
if _random_prec is None:
|
||
|
rand = self.random_pr()
|
||
|
else:
|
||
|
rand = _random_prec['rand']
|
||
|
beta = rand(alpha)
|
||
|
h = self.orbit_rep(alpha, beta, schreier_vector)
|
||
|
return rmul(~h, rand)
|
||
|
|
||
|
def schreier_sims(self):
|
||
|
"""Schreier-Sims algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
It computes the generators of the chain of stabilizers
|
||
|
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1`
|
||
|
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`,
|
||
|
and the corresponding ``s`` cosets.
|
||
|
An element of the group can be written as the product
|
||
|
`h_1*..*h_s`.
|
||
|
|
||
|
We use the incremental Schreier-Sims algorithm.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.schreier_sims()
|
||
|
>>> G.basic_transversals
|
||
|
[{0: (2)(0 1), 1: (2), 2: (1 2)},
|
||
|
{0: (2), 2: (0 2)}]
|
||
|
"""
|
||
|
if self._transversals:
|
||
|
return
|
||
|
self._schreier_sims()
|
||
|
return
|
||
|
|
||
|
def _schreier_sims(self, base=None):
|
||
|
schreier = self.schreier_sims_incremental(base=base, slp_dict=True)
|
||
|
base, strong_gens = schreier[:2]
|
||
|
self._base = base
|
||
|
self._strong_gens = strong_gens
|
||
|
self._strong_gens_slp = schreier[2]
|
||
|
if not base:
|
||
|
self._transversals = []
|
||
|
self._basic_orbits = []
|
||
|
return
|
||
|
|
||
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
|
||
|
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\
|
||
|
strong_gens_distr, slp=True)
|
||
|
|
||
|
# rewrite the indices stored in slps in terms of strong_gens
|
||
|
for i, slp in enumerate(slps):
|
||
|
gens = strong_gens_distr[i]
|
||
|
for k in slp:
|
||
|
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]]
|
||
|
|
||
|
self._transversals = transversals
|
||
|
self._basic_orbits = [sorted(x) for x in basic_orbits]
|
||
|
self._transversal_slp = slps
|
||
|
|
||
|
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
|
||
|
"""Extend a sequence of points and generating set to a base and strong
|
||
|
generating set.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
base
|
||
|
The sequence of points to be extended to a base. Optional
|
||
|
parameter with default value ``[]``.
|
||
|
gens
|
||
|
The generating set to be extended to a strong generating set
|
||
|
relative to the base obtained. Optional parameter with default
|
||
|
value ``self.generators``.
|
||
|
|
||
|
slp_dict
|
||
|
If `True`, return a dictionary `{g: gens}` for each strong
|
||
|
generator `g` where `gens` is a list of strong generators
|
||
|
coming before `g` in `strong_gens`, such that the product
|
||
|
of the elements of `gens` is equal to `g`.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(base, strong_gens)
|
||
|
``base`` is the base obtained, and ``strong_gens`` is the strong
|
||
|
generating set relative to it. The original parameters ``base``,
|
||
|
``gens`` remain unchanged.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup
|
||
|
>>> from sympy.combinatorics.testutil import _verify_bsgs
|
||
|
>>> A = AlternatingGroup(7)
|
||
|
>>> base = [2, 3]
|
||
|
>>> seq = [2, 3]
|
||
|
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
|
||
|
>>> _verify_bsgs(A, base, strong_gens)
|
||
|
True
|
||
|
>>> base[:2]
|
||
|
[2, 3]
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This version of the Schreier-Sims algorithm runs in polynomial time.
|
||
|
There are certain assumptions in the implementation - if the trivial
|
||
|
group is provided, ``base`` and ``gens`` are returned immediately,
|
||
|
as any sequence of points is a base for the trivial group. If the
|
||
|
identity is present in the generators ``gens``, it is removed as
|
||
|
it is a redundant generator.
|
||
|
The implementation is described in [1], pp. 90-93.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
schreier_sims, schreier_sims_random
|
||
|
|
||
|
"""
|
||
|
if base is None:
|
||
|
base = []
|
||
|
if gens is None:
|
||
|
gens = self.generators[:]
|
||
|
degree = self.degree
|
||
|
id_af = list(range(degree))
|
||
|
# handle the trivial group
|
||
|
if len(gens) == 1 and gens[0].is_Identity:
|
||
|
if slp_dict:
|
||
|
return base, gens, {gens[0]: [gens[0]]}
|
||
|
return base, gens
|
||
|
# prevent side effects
|
||
|
_base, _gens = base[:], gens[:]
|
||
|
# remove the identity as a generator
|
||
|
_gens = [x for x in _gens if not x.is_Identity]
|
||
|
# make sure no generator fixes all base points
|
||
|
for gen in _gens:
|
||
|
if all(x == gen._array_form[x] for x in _base):
|
||
|
for new in id_af:
|
||
|
if gen._array_form[new] != new:
|
||
|
break
|
||
|
else:
|
||
|
assert None # can this ever happen?
|
||
|
_base.append(new)
|
||
|
# distribute generators according to basic stabilizers
|
||
|
strong_gens_distr = _distribute_gens_by_base(_base, _gens)
|
||
|
strong_gens_slp = []
|
||
|
# initialize the basic stabilizers, basic orbits and basic transversals
|
||
|
orbs = {}
|
||
|
transversals = {}
|
||
|
slps = {}
|
||
|
base_len = len(_base)
|
||
|
for i in range(base_len):
|
||
|
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
|
||
|
_base[i], pairs=True, af=True, slp=True)
|
||
|
transversals[i] = dict(transversals[i])
|
||
|
orbs[i] = list(transversals[i].keys())
|
||
|
# main loop: amend the stabilizer chain until we have generators
|
||
|
# for all stabilizers
|
||
|
i = base_len - 1
|
||
|
while i >= 0:
|
||
|
# this flag is used to continue with the main loop from inside
|
||
|
# a nested loop
|
||
|
continue_i = False
|
||
|
# test the generators for being a strong generating set
|
||
|
db = {}
|
||
|
for beta, u_beta in list(transversals[i].items()):
|
||
|
for j, gen in enumerate(strong_gens_distr[i]):
|
||
|
gb = gen._array_form[beta]
|
||
|
u1 = transversals[i][gb]
|
||
|
g1 = _af_rmul(gen._array_form, u_beta)
|
||
|
slp = [(i, g) for g in slps[i][beta]]
|
||
|
slp = [(i, j)] + slp
|
||
|
if g1 != u1:
|
||
|
# test if the schreier generator is in the i+1-th
|
||
|
# would-be basic stabilizer
|
||
|
y = True
|
||
|
try:
|
||
|
u1_inv = db[gb]
|
||
|
except KeyError:
|
||
|
u1_inv = db[gb] = _af_invert(u1)
|
||
|
schreier_gen = _af_rmul(u1_inv, g1)
|
||
|
u1_inv_slp = slps[i][gb][:]
|
||
|
u1_inv_slp.reverse()
|
||
|
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp]
|
||
|
slp = u1_inv_slp + slp
|
||
|
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps)
|
||
|
if j <= base_len:
|
||
|
# new strong generator h at level j
|
||
|
y = False
|
||
|
elif h:
|
||
|
# h fixes all base points
|
||
|
y = False
|
||
|
moved = 0
|
||
|
while h[moved] == moved:
|
||
|
moved += 1
|
||
|
_base.append(moved)
|
||
|
base_len += 1
|
||
|
strong_gens_distr.append([])
|
||
|
if y is False:
|
||
|
# if a new strong generator is found, update the
|
||
|
# data structures and start over
|
||
|
h = _af_new(h)
|
||
|
strong_gens_slp.append((h, slp))
|
||
|
for l in range(i + 1, j):
|
||
|
strong_gens_distr[l].append(h)
|
||
|
transversals[l], slps[l] =\
|
||
|
_orbit_transversal(degree, strong_gens_distr[l],
|
||
|
_base[l], pairs=True, af=True, slp=True)
|
||
|
transversals[l] = dict(transversals[l])
|
||
|
orbs[l] = list(transversals[l].keys())
|
||
|
i = j - 1
|
||
|
# continue main loop using the flag
|
||
|
continue_i = True
|
||
|
if continue_i is True:
|
||
|
break
|
||
|
if continue_i is True:
|
||
|
break
|
||
|
if continue_i is True:
|
||
|
continue
|
||
|
i -= 1
|
||
|
|
||
|
strong_gens = _gens[:]
|
||
|
|
||
|
if slp_dict:
|
||
|
# create the list of the strong generators strong_gens and
|
||
|
# rewrite the indices of strong_gens_slp in terms of the
|
||
|
# elements of strong_gens
|
||
|
for k, slp in strong_gens_slp:
|
||
|
strong_gens.append(k)
|
||
|
for i in range(len(slp)):
|
||
|
s = slp[i]
|
||
|
if isinstance(s[1], tuple):
|
||
|
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1
|
||
|
else:
|
||
|
slp[i] = strong_gens_distr[s[0]][s[1]]
|
||
|
strong_gens_slp = dict(strong_gens_slp)
|
||
|
# add the original generators
|
||
|
for g in _gens:
|
||
|
strong_gens_slp[g] = [g]
|
||
|
return (_base, strong_gens, strong_gens_slp)
|
||
|
|
||
|
strong_gens.extend([k for k, _ in strong_gens_slp])
|
||
|
return _base, strong_gens
|
||
|
|
||
|
def schreier_sims_random(self, base=None, gens=None, consec_succ=10,
|
||
|
_random_prec=None):
|
||
|
r"""Randomized Schreier-Sims algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The randomized Schreier-Sims algorithm takes the sequence ``base``
|
||
|
and the generating set ``gens``, and extends ``base`` to a base, and
|
||
|
``gens`` to a strong generating set relative to that base with
|
||
|
probability of a wrong answer at most `2^{-consec\_succ}`,
|
||
|
provided the random generators are sufficiently random.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
base
|
||
|
The sequence to be extended to a base.
|
||
|
gens
|
||
|
The generating set to be extended to a strong generating set.
|
||
|
consec_succ
|
||
|
The parameter defining the probability of a wrong answer.
|
||
|
_random_prec
|
||
|
An internal parameter used for testing purposes.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
(base, strong_gens)
|
||
|
``base`` is the base and ``strong_gens`` is the strong generating
|
||
|
set relative to it.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.testutil import _verify_bsgs
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
||
|
>>> S = SymmetricGroup(5)
|
||
|
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5)
|
||
|
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP
|
||
|
True
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The algorithm is described in detail in [1], pp. 97-98. It extends
|
||
|
the orbits ``orbs`` and the permutation groups ``stabs`` to
|
||
|
basic orbits and basic stabilizers for the base and strong generating
|
||
|
set produced in the end.
|
||
|
The idea of the extension process
|
||
|
is to "sift" random group elements through the stabilizer chain
|
||
|
and amend the stabilizers/orbits along the way when a sift
|
||
|
is not successful.
|
||
|
The helper function ``_strip`` is used to attempt
|
||
|
to decompose a random group element according to the current
|
||
|
state of the stabilizer chain and report whether the element was
|
||
|
fully decomposed (successful sift) or not (unsuccessful sift). In
|
||
|
the latter case, the level at which the sift failed is reported and
|
||
|
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly.
|
||
|
The halting condition is for ``consec_succ`` consecutive successful
|
||
|
sifts to pass. This makes sure that the current ``base`` and ``gens``
|
||
|
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
schreier_sims
|
||
|
|
||
|
"""
|
||
|
if base is None:
|
||
|
base = []
|
||
|
if gens is None:
|
||
|
gens = self.generators
|
||
|
base_len = len(base)
|
||
|
n = self.degree
|
||
|
# make sure no generator fixes all base points
|
||
|
for gen in gens:
|
||
|
if all(gen(x) == x for x in base):
|
||
|
new = 0
|
||
|
while gen._array_form[new] == new:
|
||
|
new += 1
|
||
|
base.append(new)
|
||
|
base_len += 1
|
||
|
# distribute generators according to basic stabilizers
|
||
|
strong_gens_distr = _distribute_gens_by_base(base, gens)
|
||
|
# initialize the basic stabilizers, basic transversals and basic orbits
|
||
|
transversals = {}
|
||
|
orbs = {}
|
||
|
for i in range(base_len):
|
||
|
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i],
|
||
|
base[i], pairs=True))
|
||
|
orbs[i] = list(transversals[i].keys())
|
||
|
# initialize the number of consecutive elements sifted
|
||
|
c = 0
|
||
|
# start sifting random elements while the number of consecutive sifts
|
||
|
# is less than consec_succ
|
||
|
while c < consec_succ:
|
||
|
if _random_prec is None:
|
||
|
g = self.random_pr()
|
||
|
else:
|
||
|
g = _random_prec['g'].pop()
|
||
|
h, j = _strip(g, base, orbs, transversals)
|
||
|
y = True
|
||
|
# determine whether a new base point is needed
|
||
|
if j <= base_len:
|
||
|
y = False
|
||
|
elif not h.is_Identity:
|
||
|
y = False
|
||
|
moved = 0
|
||
|
while h(moved) == moved:
|
||
|
moved += 1
|
||
|
base.append(moved)
|
||
|
base_len += 1
|
||
|
strong_gens_distr.append([])
|
||
|
# if the element doesn't sift, amend the strong generators and
|
||
|
# associated stabilizers and orbits
|
||
|
if y is False:
|
||
|
for l in range(1, j):
|
||
|
strong_gens_distr[l].append(h)
|
||
|
transversals[l] = dict(_orbit_transversal(n,
|
||
|
strong_gens_distr[l], base[l], pairs=True))
|
||
|
orbs[l] = list(transversals[l].keys())
|
||
|
c = 0
|
||
|
else:
|
||
|
c += 1
|
||
|
# build the strong generating set
|
||
|
strong_gens = strong_gens_distr[0][:]
|
||
|
for gen in strong_gens_distr[1]:
|
||
|
if gen not in strong_gens:
|
||
|
strong_gens.append(gen)
|
||
|
return base, strong_gens
|
||
|
|
||
|
def schreier_vector(self, alpha):
|
||
|
"""Computes the schreier vector for ``alpha``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Schreier vector efficiently stores information
|
||
|
about the orbit of ``alpha``. It can later be used to quickly obtain
|
||
|
elements of the group that send ``alpha`` to a particular element
|
||
|
in the orbit. Notice that the Schreier vector depends on the order
|
||
|
in which the group generators are listed. For a definition, see [3].
|
||
|
Since list indices start from zero, we adopt the convention to use
|
||
|
"None" instead of 0 to signify that an element does not belong
|
||
|
to the orbit.
|
||
|
For the algorithm and its correctness, see [2], pp.78-80.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
|
||
|
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.schreier_vector(0)
|
||
|
[-1, None, 0, 1, None, 1, 0]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
orbit
|
||
|
|
||
|
"""
|
||
|
n = self.degree
|
||
|
v = [None]*n
|
||
|
v[alpha] = -1
|
||
|
orb = [alpha]
|
||
|
used = [False]*n
|
||
|
used[alpha] = True
|
||
|
gens = self.generators
|
||
|
r = len(gens)
|
||
|
for b in orb:
|
||
|
for i in range(r):
|
||
|
temp = gens[i]._array_form[b]
|
||
|
if used[temp] is False:
|
||
|
orb.append(temp)
|
||
|
used[temp] = True
|
||
|
v[temp] = i
|
||
|
return v
|
||
|
|
||
|
def stabilizer(self, alpha):
|
||
|
r"""Return the stabilizer subgroup of ``alpha``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The stabilizer of `\alpha` is the group `G_\alpha =
|
||
|
\{g \in G | g(\alpha) = \alpha\}`.
|
||
|
For a proof of correctness, see [1], p.79.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> G = DihedralGroup(6)
|
||
|
>>> G.stabilizer(5)
|
||
|
PermutationGroup([
|
||
|
(5)(0 4)(1 3)])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
orbit
|
||
|
|
||
|
"""
|
||
|
return PermGroup(_stabilizer(self._degree, self._generators, alpha))
|
||
|
|
||
|
@property
|
||
|
def strong_gens(self):
|
||
|
r"""Return a strong generating set from the Schreier-Sims algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group
|
||
|
`G` is a strong generating set relative to the sequence of points
|
||
|
(referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for
|
||
|
`1 \leq i \leq k` we have that the intersection of the pointwise
|
||
|
stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates
|
||
|
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and
|
||
|
strong generating set and their applications are discussed in depth
|
||
|
in [1], pp. 87-89 and [2], pp. 55-57.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> D = DihedralGroup(4)
|
||
|
>>> D.strong_gens
|
||
|
[(0 1 2 3), (0 3)(1 2), (1 3)]
|
||
|
>>> D.base
|
||
|
[0, 1]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
base, basic_transversals, basic_orbits, basic_stabilizers
|
||
|
|
||
|
"""
|
||
|
if self._strong_gens == []:
|
||
|
self.schreier_sims()
|
||
|
return self._strong_gens
|
||
|
|
||
|
def subgroup(self, gens):
|
||
|
"""
|
||
|
Return the subgroup generated by `gens` which is a list of
|
||
|
elements of the group
|
||
|
"""
|
||
|
|
||
|
if not all(g in self for g in gens):
|
||
|
raise ValueError("The group does not contain the supplied generators")
|
||
|
|
||
|
G = PermutationGroup(gens)
|
||
|
return G
|
||
|
|
||
|
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None,
|
||
|
init_subgroup=None):
|
||
|
"""Find the subgroup of all elements satisfying the property ``prop``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is done by a depth-first search with respect to base images that
|
||
|
uses several tests to prune the search tree.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
prop
|
||
|
The property to be used. Has to be callable on group elements
|
||
|
and always return ``True`` or ``False``. It is assumed that
|
||
|
all group elements satisfying ``prop`` indeed form a subgroup.
|
||
|
base
|
||
|
A base for the supergroup.
|
||
|
strong_gens
|
||
|
A strong generating set for the supergroup.
|
||
|
tests
|
||
|
A list of callables of length equal to the length of ``base``.
|
||
|
These are used to rule out group elements by partial base images,
|
||
|
so that ``tests[l](g)`` returns False if the element ``g`` is known
|
||
|
not to satisfy prop base on where g sends the first ``l + 1`` base
|
||
|
points.
|
||
|
init_subgroup
|
||
|
if a subgroup of the sought group is
|
||
|
known in advance, it can be passed to the function as this
|
||
|
parameter.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
res
|
||
|
The subgroup of all elements satisfying ``prop``. The generating
|
||
|
set for this group is guaranteed to be a strong generating set
|
||
|
relative to the base ``base``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
|
||
|
... AlternatingGroup)
|
||
|
>>> from sympy.combinatorics.testutil import _verify_bsgs
|
||
|
>>> S = SymmetricGroup(7)
|
||
|
>>> prop_even = lambda x: x.is_even
|
||
|
>>> base, strong_gens = S.schreier_sims_incremental()
|
||
|
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens)
|
||
|
>>> G.is_subgroup(AlternatingGroup(7))
|
||
|
True
|
||
|
>>> _verify_bsgs(G, base, G.generators)
|
||
|
True
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This function is extremely lengthy and complicated and will require
|
||
|
some careful attention. The implementation is described in
|
||
|
[1], pp. 114-117, and the comments for the code here follow the lines
|
||
|
of the pseudocode in the book for clarity.
|
||
|
|
||
|
The complexity is exponential in general, since the search process by
|
||
|
itself visits all members of the supergroup. However, there are a lot
|
||
|
of tests which are used to prune the search tree, and users can define
|
||
|
their own tests via the ``tests`` parameter, so in practice, and for
|
||
|
some computations, it's not terrible.
|
||
|
|
||
|
A crucial part in the procedure is the frequent base change performed
|
||
|
(this is line 11 in the pseudocode) in order to obtain a new basic
|
||
|
stabilizer. The book mentiones that this can be done by using
|
||
|
``.baseswap(...)``, however the current implementation uses a more
|
||
|
straightforward way to find the next basic stabilizer - calling the
|
||
|
function ``.stabilizer(...)`` on the previous basic stabilizer.
|
||
|
|
||
|
"""
|
||
|
# initialize BSGS and basic group properties
|
||
|
def get_reps(orbits):
|
||
|
# get the minimal element in the base ordering
|
||
|
return [min(orbit, key = lambda x: base_ordering[x]) \
|
||
|
for orbit in orbits]
|
||
|
|
||
|
def update_nu(l):
|
||
|
temp_index = len(basic_orbits[l]) + 1 -\
|
||
|
len(res_basic_orbits_init_base[l])
|
||
|
# this corresponds to the element larger than all points
|
||
|
if temp_index >= len(sorted_orbits[l]):
|
||
|
nu[l] = base_ordering[degree]
|
||
|
else:
|
||
|
nu[l] = sorted_orbits[l][temp_index]
|
||
|
|
||
|
if base is None:
|
||
|
base, strong_gens = self.schreier_sims_incremental()
|
||
|
base_len = len(base)
|
||
|
degree = self.degree
|
||
|
identity = _af_new(list(range(degree)))
|
||
|
base_ordering = _base_ordering(base, degree)
|
||
|
# add an element larger than all points
|
||
|
base_ordering.append(degree)
|
||
|
# add an element smaller than all points
|
||
|
base_ordering.append(-1)
|
||
|
# compute BSGS-related structures
|
||
|
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
|
||
|
basic_orbits, transversals = _orbits_transversals_from_bsgs(base,
|
||
|
strong_gens_distr)
|
||
|
# handle subgroup initialization and tests
|
||
|
if init_subgroup is None:
|
||
|
init_subgroup = PermutationGroup([identity])
|
||
|
if tests is None:
|
||
|
trivial_test = lambda x: True
|
||
|
tests = []
|
||
|
for i in range(base_len):
|
||
|
tests.append(trivial_test)
|
||
|
# line 1: more initializations.
|
||
|
res = init_subgroup
|
||
|
f = base_len - 1
|
||
|
l = base_len - 1
|
||
|
# line 2: set the base for K to the base for G
|
||
|
res_base = base[:]
|
||
|
# line 3: compute BSGS and related structures for K
|
||
|
res_base, res_strong_gens = res.schreier_sims_incremental(
|
||
|
base=res_base)
|
||
|
res_strong_gens_distr = _distribute_gens_by_base(res_base,
|
||
|
res_strong_gens)
|
||
|
res_generators = res.generators
|
||
|
res_basic_orbits_init_base = \
|
||
|
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\
|
||
|
for i in range(base_len)]
|
||
|
# initialize orbit representatives
|
||
|
orbit_reps = [None]*base_len
|
||
|
# line 4: orbit representatives for f-th basic stabilizer of K
|
||
|
orbits = _orbits(degree, res_strong_gens_distr[f])
|
||
|
orbit_reps[f] = get_reps(orbits)
|
||
|
# line 5: remove the base point from the representatives to avoid
|
||
|
# getting the identity element as a generator for K
|
||
|
orbit_reps[f].remove(base[f])
|
||
|
# line 6: more initializations
|
||
|
c = [0]*base_len
|
||
|
u = [identity]*base_len
|
||
|
sorted_orbits = [None]*base_len
|
||
|
for i in range(base_len):
|
||
|
sorted_orbits[i] = basic_orbits[i][:]
|
||
|
sorted_orbits[i].sort(key=lambda point: base_ordering[point])
|
||
|
# line 7: initializations
|
||
|
mu = [None]*base_len
|
||
|
nu = [None]*base_len
|
||
|
# this corresponds to the element smaller than all points
|
||
|
mu[l] = degree + 1
|
||
|
update_nu(l)
|
||
|
# initialize computed words
|
||
|
computed_words = [identity]*base_len
|
||
|
# line 8: main loop
|
||
|
while True:
|
||
|
# apply all the tests
|
||
|
while l < base_len - 1 and \
|
||
|
computed_words[l](base[l]) in orbit_reps[l] and \
|
||
|
base_ordering[mu[l]] < \
|
||
|
base_ordering[computed_words[l](base[l])] < \
|
||
|
base_ordering[nu[l]] and \
|
||
|
tests[l](computed_words):
|
||
|
# line 11: change the (partial) base of K
|
||
|
new_point = computed_words[l](base[l])
|
||
|
res_base[l] = new_point
|
||
|
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l],
|
||
|
new_point)
|
||
|
res_strong_gens_distr[l + 1] = new_stab_gens
|
||
|
# line 12: calculate minimal orbit representatives for the
|
||
|
# l+1-th basic stabilizer
|
||
|
orbits = _orbits(degree, new_stab_gens)
|
||
|
orbit_reps[l + 1] = get_reps(orbits)
|
||
|
# line 13: amend sorted orbits
|
||
|
l += 1
|
||
|
temp_orbit = [computed_words[l - 1](point) for point
|
||
|
in basic_orbits[l]]
|
||
|
temp_orbit.sort(key=lambda point: base_ordering[point])
|
||
|
sorted_orbits[l] = temp_orbit
|
||
|
# lines 14 and 15: update variables used minimality tests
|
||
|
new_mu = degree + 1
|
||
|
for i in range(l):
|
||
|
if base[l] in res_basic_orbits_init_base[i]:
|
||
|
candidate = computed_words[i](base[i])
|
||
|
if base_ordering[candidate] > base_ordering[new_mu]:
|
||
|
new_mu = candidate
|
||
|
mu[l] = new_mu
|
||
|
update_nu(l)
|
||
|
# line 16: determine the new transversal element
|
||
|
c[l] = 0
|
||
|
temp_point = sorted_orbits[l][c[l]]
|
||
|
gamma = computed_words[l - 1]._array_form.index(temp_point)
|
||
|
u[l] = transversals[l][gamma]
|
||
|
# update computed words
|
||
|
computed_words[l] = rmul(computed_words[l - 1], u[l])
|
||
|
# lines 17 & 18: apply the tests to the group element found
|
||
|
g = computed_words[l]
|
||
|
temp_point = g(base[l])
|
||
|
if l == base_len - 1 and \
|
||
|
base_ordering[mu[l]] < \
|
||
|
base_ordering[temp_point] < base_ordering[nu[l]] and \
|
||
|
temp_point in orbit_reps[l] and \
|
||
|
tests[l](computed_words) and \
|
||
|
prop(g):
|
||
|
# line 19: reset the base of K
|
||
|
res_generators.append(g)
|
||
|
res_base = base[:]
|
||
|
# line 20: recalculate basic orbits (and transversals)
|
||
|
res_strong_gens.append(g)
|
||
|
res_strong_gens_distr = _distribute_gens_by_base(res_base,
|
||
|
res_strong_gens)
|
||
|
res_basic_orbits_init_base = \
|
||
|
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \
|
||
|
for i in range(base_len)]
|
||
|
# line 21: recalculate orbit representatives
|
||
|
# line 22: reset the search depth
|
||
|
orbit_reps[f] = get_reps(orbits)
|
||
|
l = f
|
||
|
# line 23: go up the tree until in the first branch not fully
|
||
|
# searched
|
||
|
while l >= 0 and c[l] == len(basic_orbits[l]) - 1:
|
||
|
l = l - 1
|
||
|
# line 24: if the entire tree is traversed, return K
|
||
|
if l == -1:
|
||
|
return PermutationGroup(res_generators)
|
||
|
# lines 25-27: update orbit representatives
|
||
|
if l < f:
|
||
|
# line 26
|
||
|
f = l
|
||
|
c[l] = 0
|
||
|
# line 27
|
||
|
temp_orbits = _orbits(degree, res_strong_gens_distr[f])
|
||
|
orbit_reps[f] = get_reps(temp_orbits)
|
||
|
# line 28: update variables used for minimality testing
|
||
|
mu[l] = degree + 1
|
||
|
temp_index = len(basic_orbits[l]) + 1 - \
|
||
|
len(res_basic_orbits_init_base[l])
|
||
|
if temp_index >= len(sorted_orbits[l]):
|
||
|
nu[l] = base_ordering[degree]
|
||
|
else:
|
||
|
nu[l] = sorted_orbits[l][temp_index]
|
||
|
# line 29: set the next element from the current branch and update
|
||
|
# accordingly
|
||
|
c[l] += 1
|
||
|
if l == 0:
|
||
|
gamma = sorted_orbits[l][c[l]]
|
||
|
else:
|
||
|
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]])
|
||
|
|
||
|
u[l] = transversals[l][gamma]
|
||
|
if l == 0:
|
||
|
computed_words[l] = u[l]
|
||
|
else:
|
||
|
computed_words[l] = rmul(computed_words[l - 1], u[l])
|
||
|
|
||
|
@property
|
||
|
def transitivity_degree(self):
|
||
|
r"""Compute the degree of transitivity of the group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is
|
||
|
``k``-fold transitive, if, for any `k` points
|
||
|
`(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points
|
||
|
`(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that
|
||
|
`g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k`
|
||
|
The degree of transitivity of `G` is the maximum ``k`` such that
|
||
|
`G` is ``k``-fold transitive. ([8])
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> a = Permutation([1, 2, 0])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> G.transitivity_degree
|
||
|
3
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
is_transitive, orbit
|
||
|
|
||
|
"""
|
||
|
if self._transitivity_degree is None:
|
||
|
n = self.degree
|
||
|
G = self
|
||
|
# if G is k-transitive, a tuple (a_0,..,a_k)
|
||
|
# can be brought to (b_0,...,b_(k-1), b_k)
|
||
|
# where b_0,...,b_(k-1) are fixed points;
|
||
|
# consider the group G_k which stabilizes b_0,...,b_(k-1)
|
||
|
# if G_k is transitive on the subset excluding b_0,...,b_(k-1)
|
||
|
# then G is (k+1)-transitive
|
||
|
for i in range(n):
|
||
|
orb = G.orbit(i)
|
||
|
if len(orb) != n - i:
|
||
|
self._transitivity_degree = i
|
||
|
return i
|
||
|
G = G.stabilizer(i)
|
||
|
self._transitivity_degree = n
|
||
|
return n
|
||
|
else:
|
||
|
return self._transitivity_degree
|
||
|
|
||
|
def _p_elements_group(self, p):
|
||
|
'''
|
||
|
For an abelian p-group, return the subgroup consisting of
|
||
|
all elements of order p (and the identity)
|
||
|
|
||
|
'''
|
||
|
gens = self.generators[:]
|
||
|
gens = sorted(gens, key=lambda x: x.order(), reverse=True)
|
||
|
gens_p = [g**(g.order()/p) for g in gens]
|
||
|
gens_r = []
|
||
|
for i in range(len(gens)):
|
||
|
x = gens[i]
|
||
|
x_order = x.order()
|
||
|
# x_p has order p
|
||
|
x_p = x**(x_order/p)
|
||
|
if i > 0:
|
||
|
P = PermutationGroup(gens_p[:i])
|
||
|
else:
|
||
|
P = PermutationGroup(self.identity)
|
||
|
if x**(x_order/p) not in P:
|
||
|
gens_r.append(x**(x_order/p))
|
||
|
else:
|
||
|
# replace x by an element of order (x.order()/p)
|
||
|
# so that gens still generates G
|
||
|
g = P.generator_product(x_p, original=True)
|
||
|
for s in g:
|
||
|
x = x*s**-1
|
||
|
x_order = x_order/p
|
||
|
# insert x to gens so that the sorting is preserved
|
||
|
del gens[i]
|
||
|
del gens_p[i]
|
||
|
j = i - 1
|
||
|
while j < len(gens) and gens[j].order() >= x_order:
|
||
|
j += 1
|
||
|
gens = gens[:j] + [x] + gens[j:]
|
||
|
gens_p = gens_p[:j] + [x] + gens_p[j:]
|
||
|
return PermutationGroup(gens_r)
|
||
|
|
||
|
def _sylow_alt_sym(self, p):
|
||
|
'''
|
||
|
Return a p-Sylow subgroup of a symmetric or an
|
||
|
alternating group.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The algorithm for this is hinted at in [1], Chapter 4,
|
||
|
Exercise 4.
|
||
|
|
||
|
For Sym(n) with n = p^i, the idea is as follows. Partition
|
||
|
the interval [0..n-1] into p equal parts, each of length p^(i-1):
|
||
|
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1].
|
||
|
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup
|
||
|
of ``self``) acting on each of the parts. Call the subgroups
|
||
|
P_1, P_2...P_p. The generators for the subgroups P_2...P_p
|
||
|
can be obtained from those of P_1 by applying a "shifting"
|
||
|
permutation to them, that is, a permutation mapping [0..p^(i-1)-1]
|
||
|
to the second part (the other parts are obtained by using the shift
|
||
|
multiple times). The union of this permutation and the generators
|
||
|
of P_1 is a p-Sylow subgroup of ``self``.
|
||
|
|
||
|
For n not equal to a power of p, partition
|
||
|
[0..n-1] in accordance with how n would be written in base p.
|
||
|
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition
|
||
|
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup,
|
||
|
take the union of the generators for each of the parts.
|
||
|
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)}
|
||
|
from the first part, {(8 9)} from the second part and
|
||
|
nothing from the third. This gives 4 generators in total, and
|
||
|
the subgroup they generate is p-Sylow.
|
||
|
|
||
|
Alternating groups are treated the same except when p=2. In this
|
||
|
case, (0 1)(s s+1) should be added for an appropriate s (the start
|
||
|
of a part) for each part in the partitions.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sylow_subgroup, is_alt_sym
|
||
|
|
||
|
'''
|
||
|
n = self.degree
|
||
|
gens = []
|
||
|
identity = Permutation(n-1)
|
||
|
# the case of 2-sylow subgroups of alternating groups
|
||
|
# needs special treatment
|
||
|
alt = p == 2 and all(g.is_even for g in self.generators)
|
||
|
|
||
|
# find the presentation of n in base p
|
||
|
coeffs = []
|
||
|
m = n
|
||
|
while m > 0:
|
||
|
coeffs.append(m % p)
|
||
|
m = m // p
|
||
|
|
||
|
power = len(coeffs)-1
|
||
|
# for a symmetric group, gens[:i] is the generating
|
||
|
# set for a p-Sylow subgroup on [0..p**(i-1)-1]. For
|
||
|
# alternating groups, the same is given by gens[:2*(i-1)]
|
||
|
for i in range(1, power+1):
|
||
|
if i == 1 and alt:
|
||
|
# (0 1) shouldn't be added for alternating groups
|
||
|
continue
|
||
|
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)])
|
||
|
gens.append(identity*gen)
|
||
|
if alt:
|
||
|
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen
|
||
|
gens.append(gen)
|
||
|
|
||
|
# the first point in the current part (see the algorithm
|
||
|
# description in the docstring)
|
||
|
start = 0
|
||
|
|
||
|
while power > 0:
|
||
|
a = coeffs[power]
|
||
|
|
||
|
# make the permutation shifting the start of the first
|
||
|
# part ([0..p^i-1] for some i) to the current one
|
||
|
for _ in range(a):
|
||
|
shift = Permutation()
|
||
|
if start > 0:
|
||
|
for i in range(p**power):
|
||
|
shift = shift(i, start + i)
|
||
|
|
||
|
if alt:
|
||
|
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift
|
||
|
gens.append(gen)
|
||
|
j = 2*(power - 1)
|
||
|
else:
|
||
|
j = power
|
||
|
|
||
|
for i, gen in enumerate(gens[:j]):
|
||
|
if alt and i % 2 == 1:
|
||
|
continue
|
||
|
# shift the generator to the start of the
|
||
|
# partition part
|
||
|
gen = shift*gen*shift
|
||
|
gens.append(gen)
|
||
|
|
||
|
start += p**power
|
||
|
power = power-1
|
||
|
|
||
|
return gens
|
||
|
|
||
|
def sylow_subgroup(self, p):
|
||
|
'''
|
||
|
Return a p-Sylow subgroup of the group.
|
||
|
|
||
|
The algorithm is described in [1], Chapter 4, Section 7
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> from sympy.combinatorics.named_groups import SymmetricGroup
|
||
|
>>> from sympy.combinatorics.named_groups import AlternatingGroup
|
||
|
|
||
|
>>> D = DihedralGroup(6)
|
||
|
>>> S = D.sylow_subgroup(2)
|
||
|
>>> S.order()
|
||
|
4
|
||
|
>>> G = SymmetricGroup(6)
|
||
|
>>> S = G.sylow_subgroup(5)
|
||
|
>>> S.order()
|
||
|
5
|
||
|
|
||
|
>>> G1 = AlternatingGroup(3)
|
||
|
>>> G2 = AlternatingGroup(5)
|
||
|
>>> G3 = AlternatingGroup(9)
|
||
|
|
||
|
>>> S1 = G1.sylow_subgroup(3)
|
||
|
>>> S2 = G2.sylow_subgroup(3)
|
||
|
>>> S3 = G3.sylow_subgroup(3)
|
||
|
|
||
|
>>> len1 = len(S1.lower_central_series())
|
||
|
>>> len2 = len(S2.lower_central_series())
|
||
|
>>> len3 = len(S3.lower_central_series())
|
||
|
|
||
|
>>> len1 == len2
|
||
|
True
|
||
|
>>> len1 < len3
|
||
|
True
|
||
|
|
||
|
'''
|
||
|
from sympy.combinatorics.homomorphisms import (
|
||
|
orbit_homomorphism, block_homomorphism)
|
||
|
|
||
|
if not isprime(p):
|
||
|
raise ValueError("p must be a prime")
|
||
|
|
||
|
def is_p_group(G):
|
||
|
# check if the order of G is a power of p
|
||
|
# and return the power
|
||
|
m = G.order()
|
||
|
n = 0
|
||
|
while m % p == 0:
|
||
|
m = m/p
|
||
|
n += 1
|
||
|
if m == 1:
|
||
|
return True, n
|
||
|
return False, n
|
||
|
|
||
|
def _sylow_reduce(mu, nu):
|
||
|
# reduction based on two homomorphisms
|
||
|
# mu and nu with trivially intersecting
|
||
|
# kernels
|
||
|
Q = mu.image().sylow_subgroup(p)
|
||
|
Q = mu.invert_subgroup(Q)
|
||
|
nu = nu.restrict_to(Q)
|
||
|
R = nu.image().sylow_subgroup(p)
|
||
|
return nu.invert_subgroup(R)
|
||
|
|
||
|
order = self.order()
|
||
|
if order % p != 0:
|
||
|
return PermutationGroup([self.identity])
|
||
|
p_group, n = is_p_group(self)
|
||
|
if p_group:
|
||
|
return self
|
||
|
|
||
|
if self.is_alt_sym():
|
||
|
return PermutationGroup(self._sylow_alt_sym(p))
|
||
|
|
||
|
# if there is a non-trivial orbit with size not divisible
|
||
|
# by p, the sylow subgroup is contained in its stabilizer
|
||
|
# (by orbit-stabilizer theorem)
|
||
|
orbits = self.orbits()
|
||
|
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1]
|
||
|
if non_p_orbits:
|
||
|
G = self.stabilizer(list(non_p_orbits[0]).pop())
|
||
|
return G.sylow_subgroup(p)
|
||
|
|
||
|
if not self.is_transitive():
|
||
|
# apply _sylow_reduce to orbit actions
|
||
|
orbits = sorted(orbits, key=len)
|
||
|
omega1 = orbits.pop()
|
||
|
omega2 = orbits[0].union(*orbits)
|
||
|
mu = orbit_homomorphism(self, omega1)
|
||
|
nu = orbit_homomorphism(self, omega2)
|
||
|
return _sylow_reduce(mu, nu)
|
||
|
|
||
|
blocks = self.minimal_blocks()
|
||
|
if len(blocks) > 1:
|
||
|
# apply _sylow_reduce to block system actions
|
||
|
mu = block_homomorphism(self, blocks[0])
|
||
|
nu = block_homomorphism(self, blocks[1])
|
||
|
return _sylow_reduce(mu, nu)
|
||
|
elif len(blocks) == 1:
|
||
|
block = list(blocks)[0]
|
||
|
if any(e != 0 for e in block):
|
||
|
# self is imprimitive
|
||
|
mu = block_homomorphism(self, block)
|
||
|
if not is_p_group(mu.image())[0]:
|
||
|
S = mu.image().sylow_subgroup(p)
|
||
|
return mu.invert_subgroup(S).sylow_subgroup(p)
|
||
|
|
||
|
# find an element of order p
|
||
|
g = self.random()
|
||
|
g_order = g.order()
|
||
|
while g_order % p != 0 or g_order == 0:
|
||
|
g = self.random()
|
||
|
g_order = g.order()
|
||
|
g = g**(g_order // p)
|
||
|
if order % p**2 != 0:
|
||
|
return PermutationGroup(g)
|
||
|
|
||
|
C = self.centralizer(g)
|
||
|
while C.order() % p**n != 0:
|
||
|
S = C.sylow_subgroup(p)
|
||
|
s_order = S.order()
|
||
|
Z = S.center()
|
||
|
P = Z._p_elements_group(p)
|
||
|
h = P.random()
|
||
|
C_h = self.centralizer(h)
|
||
|
while C_h.order() % p*s_order != 0:
|
||
|
h = P.random()
|
||
|
C_h = self.centralizer(h)
|
||
|
C = C_h
|
||
|
|
||
|
return C.sylow_subgroup(p)
|
||
|
|
||
|
def _block_verify(self, L, alpha):
|
||
|
delta = sorted(self.orbit(alpha))
|
||
|
# p[i] will be the number of the block
|
||
|
# delta[i] belongs to
|
||
|
p = [-1]*len(delta)
|
||
|
blocks = [-1]*len(delta)
|
||
|
|
||
|
B = [[]] # future list of blocks
|
||
|
u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i]
|
||
|
|
||
|
t = L.orbit_transversal(alpha, pairs=True)
|
||
|
for a, beta in t:
|
||
|
B[0].append(a)
|
||
|
i_a = delta.index(a)
|
||
|
p[i_a] = 0
|
||
|
blocks[i_a] = alpha
|
||
|
u[i_a] = beta
|
||
|
|
||
|
rho = 0
|
||
|
m = 0 # number of blocks - 1
|
||
|
|
||
|
while rho <= m:
|
||
|
beta = B[rho][0]
|
||
|
for g in self.generators:
|
||
|
d = beta^g
|
||
|
i_d = delta.index(d)
|
||
|
sigma = p[i_d]
|
||
|
if sigma < 0:
|
||
|
# define a new block
|
||
|
m += 1
|
||
|
sigma = m
|
||
|
u[i_d] = u[delta.index(beta)]*g
|
||
|
p[i_d] = sigma
|
||
|
rep = d
|
||
|
blocks[i_d] = rep
|
||
|
newb = [rep]
|
||
|
for gamma in B[rho][1:]:
|
||
|
i_gamma = delta.index(gamma)
|
||
|
d = gamma^g
|
||
|
i_d = delta.index(d)
|
||
|
if p[i_d] < 0:
|
||
|
u[i_d] = u[i_gamma]*g
|
||
|
p[i_d] = sigma
|
||
|
blocks[i_d] = rep
|
||
|
newb.append(d)
|
||
|
else:
|
||
|
# B[rho] is not a block
|
||
|
s = u[i_gamma]*g*u[i_d]**(-1)
|
||
|
return False, s
|
||
|
|
||
|
B.append(newb)
|
||
|
else:
|
||
|
for h in B[rho][1:]:
|
||
|
if h^g not in B[sigma]:
|
||
|
# B[rho] is not a block
|
||
|
s = u[delta.index(beta)]*g*u[i_d]**(-1)
|
||
|
return False, s
|
||
|
rho += 1
|
||
|
|
||
|
return True, blocks
|
||
|
|
||
|
def _verify(H, K, phi, z, alpha):
|
||
|
'''
|
||
|
Return a list of relators ``rels`` in generators ``gens`_h` that
|
||
|
are mapped to ``H.generators`` by ``phi`` so that given a finite
|
||
|
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h``
|
||
|
<gens_h | rels_k + rels> is a finite presentation of ``H``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
``H`` should be generated by the union of ``K.generators`` and ``z``
|
||
|
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a
|
||
|
canonical injection from a free group into a permutation group
|
||
|
containing ``H``.
|
||
|
|
||
|
The algorithm is described in [1], Chapter 6.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import free_group, Permutation, PermutationGroup
|
||
|
>>> from sympy.combinatorics.homomorphisms import homomorphism
|
||
|
>>> from sympy.combinatorics.fp_groups import FpGroup
|
||
|
|
||
|
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5))
|
||
|
>>> K = PermutationGroup(Permutation(5)(0, 2))
|
||
|
>>> F = free_group("x_0 x_1")[0]
|
||
|
>>> gens = F.generators
|
||
|
>>> phi = homomorphism(F, H, F.generators, H.generators)
|
||
|
>>> rels_k = [gens[0]**2] # relators for presentation of K
|
||
|
>>> z= Permutation(1, 5)
|
||
|
>>> check, rels_h = H._verify(K, phi, z, 1)
|
||
|
>>> check
|
||
|
True
|
||
|
>>> rels = rels_k + rels_h
|
||
|
>>> G = FpGroup(F, rels) # presentation of H
|
||
|
>>> G.order() == H.order()
|
||
|
True
|
||
|
|
||
|
See also
|
||
|
========
|
||
|
|
||
|
strong_presentation, presentation, stabilizer
|
||
|
|
||
|
'''
|
||
|
|
||
|
orbit = H.orbit(alpha)
|
||
|
beta = alpha^(z**-1)
|
||
|
|
||
|
K_beta = K.stabilizer(beta)
|
||
|
|
||
|
# orbit representatives of K_beta
|
||
|
gammas = [alpha, beta]
|
||
|
orbits = list({tuple(K_beta.orbit(o)) for o in orbit})
|
||
|
orbit_reps = [orb[0] for orb in orbits]
|
||
|
for rep in orbit_reps:
|
||
|
if rep not in gammas:
|
||
|
gammas.append(rep)
|
||
|
|
||
|
# orbit transversal of K
|
||
|
betas = [alpha, beta]
|
||
|
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)}
|
||
|
|
||
|
for s, g in K.orbit_transversal(beta, pairs=True):
|
||
|
if s not in transversal:
|
||
|
transversal[s] = transversal[beta]*phi.invert(g)
|
||
|
|
||
|
|
||
|
union = K.orbit(alpha).union(K.orbit(beta))
|
||
|
while (len(union) < len(orbit)):
|
||
|
for gamma in gammas:
|
||
|
if gamma in union:
|
||
|
r = gamma^z
|
||
|
if r not in union:
|
||
|
betas.append(r)
|
||
|
transversal[r] = transversal[gamma]*phi.invert(z)
|
||
|
for s, g in K.orbit_transversal(r, pairs=True):
|
||
|
if s not in transversal:
|
||
|
transversal[s] = transversal[r]*phi.invert(g)
|
||
|
union = union.union(K.orbit(r))
|
||
|
break
|
||
|
|
||
|
# compute relators
|
||
|
rels = []
|
||
|
|
||
|
for b in betas:
|
||
|
k_gens = K.stabilizer(b).generators
|
||
|
for y in k_gens:
|
||
|
new_rel = transversal[b]
|
||
|
gens = K.generator_product(y, original=True)
|
||
|
for g in gens[::-1]:
|
||
|
new_rel = new_rel*phi.invert(g)
|
||
|
new_rel = new_rel*transversal[b]**-1
|
||
|
|
||
|
perm = phi(new_rel)
|
||
|
try:
|
||
|
gens = K.generator_product(perm, original=True)
|
||
|
except ValueError:
|
||
|
return False, perm
|
||
|
for g in gens:
|
||
|
new_rel = new_rel*phi.invert(g)**-1
|
||
|
if new_rel not in rels:
|
||
|
rels.append(new_rel)
|
||
|
|
||
|
for gamma in gammas:
|
||
|
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1
|
||
|
perm = phi(new_rel)
|
||
|
try:
|
||
|
gens = K.generator_product(perm, original=True)
|
||
|
except ValueError:
|
||
|
return False, perm
|
||
|
for g in gens:
|
||
|
new_rel = new_rel*phi.invert(g)**-1
|
||
|
if new_rel not in rels:
|
||
|
rels.append(new_rel)
|
||
|
|
||
|
return True, rels
|
||
|
|
||
|
def strong_presentation(self):
|
||
|
'''
|
||
|
Return a strong finite presentation of group. The generators
|
||
|
of the returned group are in the same order as the strong
|
||
|
generators of group.
|
||
|
|
||
|
The algorithm is based on Sims' Verify algorithm described
|
||
|
in [1], Chapter 6.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> P = DihedralGroup(4)
|
||
|
>>> G = P.strong_presentation()
|
||
|
>>> P.order() == G.order()
|
||
|
True
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
presentation, _verify
|
||
|
|
||
|
'''
|
||
|
from sympy.combinatorics.fp_groups import (FpGroup,
|
||
|
simplify_presentation)
|
||
|
from sympy.combinatorics.free_groups import free_group
|
||
|
from sympy.combinatorics.homomorphisms import (block_homomorphism,
|
||
|
homomorphism, GroupHomomorphism)
|
||
|
|
||
|
strong_gens = self.strong_gens[:]
|
||
|
stabs = self.basic_stabilizers[:]
|
||
|
base = self.base[:]
|
||
|
|
||
|
# injection from a free group on len(strong_gens)
|
||
|
# generators into G
|
||
|
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))]
|
||
|
F = free_group(', '.join(gen_syms))[0]
|
||
|
phi = homomorphism(F, self, F.generators, strong_gens)
|
||
|
|
||
|
H = PermutationGroup(self.identity)
|
||
|
while stabs:
|
||
|
alpha = base.pop()
|
||
|
K = H
|
||
|
H = stabs.pop()
|
||
|
new_gens = [g for g in H.generators if g not in K]
|
||
|
|
||
|
if K.order() == 1:
|
||
|
z = new_gens.pop()
|
||
|
rels = [F.generators[-1]**z.order()]
|
||
|
intermediate_gens = [z]
|
||
|
K = PermutationGroup(intermediate_gens)
|
||
|
|
||
|
# add generators one at a time building up from K to H
|
||
|
while new_gens:
|
||
|
z = new_gens.pop()
|
||
|
intermediate_gens = [z] + intermediate_gens
|
||
|
K_s = PermutationGroup(intermediate_gens)
|
||
|
orbit = K_s.orbit(alpha)
|
||
|
orbit_k = K.orbit(alpha)
|
||
|
|
||
|
# split into cases based on the orbit of K_s
|
||
|
if orbit_k == orbit:
|
||
|
if z in K:
|
||
|
rel = phi.invert(z)
|
||
|
perm = z
|
||
|
else:
|
||
|
t = K.orbit_rep(alpha, alpha^z)
|
||
|
rel = phi.invert(z)*phi.invert(t)**-1
|
||
|
perm = z*t**-1
|
||
|
for g in K.generator_product(perm, original=True):
|
||
|
rel = rel*phi.invert(g)**-1
|
||
|
new_rels = [rel]
|
||
|
elif len(orbit_k) == 1:
|
||
|
# `success` is always true because `strong_gens`
|
||
|
# and `base` are already a verified BSGS. Later
|
||
|
# this could be changed to start with a randomly
|
||
|
# generated (potential) BSGS, and then new elements
|
||
|
# would have to be appended to it when `success`
|
||
|
# is false.
|
||
|
success, new_rels = K_s._verify(K, phi, z, alpha)
|
||
|
else:
|
||
|
# K.orbit(alpha) should be a block
|
||
|
# under the action of K_s on K_s.orbit(alpha)
|
||
|
check, block = K_s._block_verify(K, alpha)
|
||
|
if check:
|
||
|
# apply _verify to the action of K_s
|
||
|
# on the block system; for convenience,
|
||
|
# add the blocks as additional points
|
||
|
# that K_s should act on
|
||
|
t = block_homomorphism(K_s, block)
|
||
|
m = t.codomain.degree # number of blocks
|
||
|
d = K_s.degree
|
||
|
|
||
|
# conjugating with p will shift
|
||
|
# permutations in t.image() to
|
||
|
# higher numbers, e.g.
|
||
|
# p*(0 1)*p = (m m+1)
|
||
|
p = Permutation()
|
||
|
for i in range(m):
|
||
|
p *= Permutation(i, i+d)
|
||
|
|
||
|
t_img = t.images
|
||
|
# combine generators of K_s with their
|
||
|
# action on the block system
|
||
|
images = {g: g*p*t_img[g]*p for g in t_img}
|
||
|
for g in self.strong_gens[:-len(K_s.generators)]:
|
||
|
images[g] = g
|
||
|
K_s_act = PermutationGroup(list(images.values()))
|
||
|
f = GroupHomomorphism(self, K_s_act, images)
|
||
|
|
||
|
K_act = PermutationGroup([f(g) for g in K.generators])
|
||
|
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d)
|
||
|
|
||
|
for n in new_rels:
|
||
|
if n not in rels:
|
||
|
rels.append(n)
|
||
|
K = K_s
|
||
|
|
||
|
group = FpGroup(F, rels)
|
||
|
return simplify_presentation(group)
|
||
|
|
||
|
def presentation(self, eliminate_gens=True):
|
||
|
'''
|
||
|
Return an `FpGroup` presentation of the group.
|
||
|
|
||
|
The algorithm is described in [1], Chapter 6.1.
|
||
|
|
||
|
'''
|
||
|
from sympy.combinatorics.fp_groups import (FpGroup,
|
||
|
simplify_presentation)
|
||
|
from sympy.combinatorics.coset_table import CosetTable
|
||
|
from sympy.combinatorics.free_groups import free_group
|
||
|
from sympy.combinatorics.homomorphisms import homomorphism
|
||
|
|
||
|
if self._fp_presentation:
|
||
|
return self._fp_presentation
|
||
|
|
||
|
def _factor_group_by_rels(G, rels):
|
||
|
if isinstance(G, FpGroup):
|
||
|
rels.extend(G.relators)
|
||
|
return FpGroup(G.free_group, list(set(rels)))
|
||
|
return FpGroup(G, rels)
|
||
|
|
||
|
gens = self.generators
|
||
|
len_g = len(gens)
|
||
|
|
||
|
if len_g == 1:
|
||
|
order = gens[0].order()
|
||
|
# handle the trivial group
|
||
|
if order == 1:
|
||
|
return free_group([])[0]
|
||
|
F, x = free_group('x')
|
||
|
return FpGroup(F, [x**order])
|
||
|
|
||
|
if self.order() > 20:
|
||
|
half_gens = self.generators[0:(len_g+1)//2]
|
||
|
else:
|
||
|
half_gens = []
|
||
|
H = PermutationGroup(half_gens)
|
||
|
H_p = H.presentation()
|
||
|
|
||
|
len_h = len(H_p.generators)
|
||
|
|
||
|
C = self.coset_table(H)
|
||
|
n = len(C) # subgroup index
|
||
|
|
||
|
gen_syms = [('x_%d'%i) for i in range(len(gens))]
|
||
|
F = free_group(', '.join(gen_syms))[0]
|
||
|
|
||
|
# mapping generators of H_p to those of F
|
||
|
images = [F.generators[i] for i in range(len_h)]
|
||
|
R = homomorphism(H_p, F, H_p.generators, images, check=False)
|
||
|
|
||
|
# rewrite relators
|
||
|
rels = R(H_p.relators)
|
||
|
G_p = FpGroup(F, rels)
|
||
|
|
||
|
# injective homomorphism from G_p into self
|
||
|
T = homomorphism(G_p, self, G_p.generators, gens)
|
||
|
|
||
|
C_p = CosetTable(G_p, [])
|
||
|
|
||
|
C_p.table = [[None]*(2*len_g) for i in range(n)]
|
||
|
|
||
|
# initiate the coset transversal
|
||
|
transversal = [None]*n
|
||
|
transversal[0] = G_p.identity
|
||
|
|
||
|
# fill in the coset table as much as possible
|
||
|
for i in range(2*len_h):
|
||
|
C_p.table[0][i] = 0
|
||
|
|
||
|
gamma = 1
|
||
|
for alpha, x in product(range(n), range(2*len_g)):
|
||
|
beta = C[alpha][x]
|
||
|
if beta == gamma:
|
||
|
gen = G_p.generators[x//2]**((-1)**(x % 2))
|
||
|
transversal[beta] = transversal[alpha]*gen
|
||
|
C_p.table[alpha][x] = beta
|
||
|
C_p.table[beta][x + (-1)**(x % 2)] = alpha
|
||
|
gamma += 1
|
||
|
if gamma == n:
|
||
|
break
|
||
|
|
||
|
C_p.p = list(range(n))
|
||
|
beta = x = 0
|
||
|
|
||
|
while not C_p.is_complete():
|
||
|
# find the first undefined entry
|
||
|
while C_p.table[beta][x] == C[beta][x]:
|
||
|
x = (x + 1) % (2*len_g)
|
||
|
if x == 0:
|
||
|
beta = (beta + 1) % n
|
||
|
|
||
|
# define a new relator
|
||
|
gen = G_p.generators[x//2]**((-1)**(x % 2))
|
||
|
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1
|
||
|
perm = T(new_rel)
|
||
|
nxt = G_p.identity
|
||
|
for s in H.generator_product(perm, original=True):
|
||
|
nxt = nxt*T.invert(s)**-1
|
||
|
new_rel = new_rel*nxt
|
||
|
|
||
|
# continue coset enumeration
|
||
|
G_p = _factor_group_by_rels(G_p, [new_rel])
|
||
|
C_p.scan_and_fill(0, new_rel)
|
||
|
C_p = G_p.coset_enumeration([], strategy="coset_table",
|
||
|
draft=C_p, max_cosets=n, incomplete=True)
|
||
|
|
||
|
self._fp_presentation = simplify_presentation(G_p)
|
||
|
return self._fp_presentation
|
||
|
|
||
|
def polycyclic_group(self):
|
||
|
"""
|
||
|
Return the PolycyclicGroup instance with below parameters:
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
* pc_sequence : Polycyclic sequence is formed by collecting all
|
||
|
the missing generators between the adjacent groups in the
|
||
|
derived series of given permutation group.
|
||
|
|
||
|
* pc_series : Polycyclic series is formed by adding all the missing
|
||
|
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents
|
||
|
the derived series.
|
||
|
|
||
|
* relative_order : A list, computed by the ratio of adjacent groups in
|
||
|
pc_series.
|
||
|
|
||
|
"""
|
||
|
from sympy.combinatorics.pc_groups import PolycyclicGroup
|
||
|
if not self.is_polycyclic:
|
||
|
raise ValueError("The group must be solvable")
|
||
|
|
||
|
der = self.derived_series()
|
||
|
pc_series = []
|
||
|
pc_sequence = []
|
||
|
relative_order = []
|
||
|
pc_series.append(der[-1])
|
||
|
der.reverse()
|
||
|
|
||
|
for i in range(len(der)-1):
|
||
|
H = der[i]
|
||
|
for g in der[i+1].generators:
|
||
|
if g not in H:
|
||
|
H = PermutationGroup([g] + H.generators)
|
||
|
pc_series.insert(0, H)
|
||
|
pc_sequence.insert(0, g)
|
||
|
|
||
|
G1 = pc_series[0].order()
|
||
|
G2 = pc_series[1].order()
|
||
|
relative_order.insert(0, G1 // G2)
|
||
|
|
||
|
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None)
|
||
|
|
||
|
|
||
|
def _orbit(degree, generators, alpha, action='tuples'):
|
||
|
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The time complexity of the algorithm used here is `O(|Orb|*r)` where
|
||
|
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
|
||
|
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
|
||
|
Here alpha can be a single point, or a list of points.
|
||
|
|
||
|
If alpha is a single point, the ordinary orbit is computed.
|
||
|
if alpha is a list of points, there are three available options:
|
||
|
|
||
|
'union' - computes the union of the orbits of the points in the list
|
||
|
'tuples' - computes the orbit of the list interpreted as an ordered
|
||
|
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) )
|
||
|
'sets' - computes the orbit of the list interpreted as a sets
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup
|
||
|
>>> from sympy.combinatorics.perm_groups import _orbit
|
||
|
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
|
||
|
>>> G = PermutationGroup([a])
|
||
|
>>> _orbit(G.degree, G.generators, 0)
|
||
|
{0, 1, 2}
|
||
|
>>> _orbit(G.degree, G.generators, [0, 4], 'union')
|
||
|
{0, 1, 2, 3, 4, 5, 6}
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
orbit, orbit_transversal
|
||
|
|
||
|
"""
|
||
|
if not hasattr(alpha, '__getitem__'):
|
||
|
alpha = [alpha]
|
||
|
|
||
|
gens = [x._array_form for x in generators]
|
||
|
if len(alpha) == 1 or action == 'union':
|
||
|
orb = alpha
|
||
|
used = [False]*degree
|
||
|
for el in alpha:
|
||
|
used[el] = True
|
||
|
for b in orb:
|
||
|
for gen in gens:
|
||
|
temp = gen[b]
|
||
|
if used[temp] == False:
|
||
|
orb.append(temp)
|
||
|
used[temp] = True
|
||
|
return set(orb)
|
||
|
elif action == 'tuples':
|
||
|
alpha = tuple(alpha)
|
||
|
orb = [alpha]
|
||
|
used = {alpha}
|
||
|
for b in orb:
|
||
|
for gen in gens:
|
||
|
temp = tuple([gen[x] for x in b])
|
||
|
if temp not in used:
|
||
|
orb.append(temp)
|
||
|
used.add(temp)
|
||
|
return set(orb)
|
||
|
elif action == 'sets':
|
||
|
alpha = frozenset(alpha)
|
||
|
orb = [alpha]
|
||
|
used = {alpha}
|
||
|
for b in orb:
|
||
|
for gen in gens:
|
||
|
temp = frozenset([gen[x] for x in b])
|
||
|
if temp not in used:
|
||
|
orb.append(temp)
|
||
|
used.add(temp)
|
||
|
return {tuple(x) for x in orb}
|
||
|
|
||
|
|
||
|
def _orbits(degree, generators):
|
||
|
"""Compute the orbits of G.
|
||
|
|
||
|
If ``rep=False`` it returns a list of sets else it returns a list of
|
||
|
representatives of the orbits
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation
|
||
|
>>> from sympy.combinatorics.perm_groups import _orbits
|
||
|
>>> a = Permutation([0, 2, 1])
|
||
|
>>> b = Permutation([1, 0, 2])
|
||
|
>>> _orbits(a.size, [a, b])
|
||
|
[{0, 1, 2}]
|
||
|
"""
|
||
|
|
||
|
orbs = []
|
||
|
sorted_I = list(range(degree))
|
||
|
I = set(sorted_I)
|
||
|
while I:
|
||
|
i = sorted_I[0]
|
||
|
orb = _orbit(degree, generators, i)
|
||
|
orbs.append(orb)
|
||
|
# remove all indices that are in this orbit
|
||
|
I -= orb
|
||
|
sorted_I = [i for i in sorted_I if i not in orb]
|
||
|
return orbs
|
||
|
|
||
|
|
||
|
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False):
|
||
|
r"""Computes a transversal for the orbit of ``alpha`` as a set.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
generators generators of the group ``G``
|
||
|
|
||
|
For a permutation group ``G``, a transversal for the orbit
|
||
|
`Orb = \{g(\alpha) | g \in G\}` is a set
|
||
|
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
|
||
|
Note that there may be more than one possible transversal.
|
||
|
If ``pairs`` is set to ``True``, it returns the list of pairs
|
||
|
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
|
||
|
|
||
|
if ``af`` is ``True``, the transversal elements are given in
|
||
|
array form.
|
||
|
|
||
|
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned
|
||
|
for `\beta \in Orb` where `slp_beta` is a list of indices of the
|
||
|
generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]`
|
||
|
`g_\beta = generators[i_n] \times \dots \times generators[i_1]`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> from sympy.combinatorics.perm_groups import _orbit_transversal
|
||
|
>>> G = DihedralGroup(6)
|
||
|
>>> _orbit_transversal(G.degree, G.generators, 0, False)
|
||
|
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
|
||
|
"""
|
||
|
|
||
|
tr = [(alpha, list(range(degree)))]
|
||
|
slp_dict = {alpha: []}
|
||
|
used = [False]*degree
|
||
|
used[alpha] = True
|
||
|
gens = [x._array_form for x in generators]
|
||
|
for x, px in tr:
|
||
|
px_slp = slp_dict[x]
|
||
|
for gen in gens:
|
||
|
temp = gen[x]
|
||
|
if used[temp] == False:
|
||
|
slp_dict[temp] = [gens.index(gen)] + px_slp
|
||
|
tr.append((temp, _af_rmul(gen, px)))
|
||
|
used[temp] = True
|
||
|
if pairs:
|
||
|
if not af:
|
||
|
tr = [(x, _af_new(y)) for x, y in tr]
|
||
|
if not slp:
|
||
|
return tr
|
||
|
return tr, slp_dict
|
||
|
|
||
|
if af:
|
||
|
tr = [y for _, y in tr]
|
||
|
if not slp:
|
||
|
return tr
|
||
|
return tr, slp_dict
|
||
|
|
||
|
tr = [_af_new(y) for _, y in tr]
|
||
|
if not slp:
|
||
|
return tr
|
||
|
return tr, slp_dict
|
||
|
|
||
|
|
||
|
def _stabilizer(degree, generators, alpha):
|
||
|
r"""Return the stabilizer subgroup of ``alpha``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The stabilizer of `\alpha` is the group `G_\alpha =
|
||
|
\{g \in G | g(\alpha) = \alpha\}`.
|
||
|
For a proof of correctness, see [1], p.79.
|
||
|
|
||
|
degree : degree of G
|
||
|
generators : generators of G
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics.perm_groups import _stabilizer
|
||
|
>>> from sympy.combinatorics.named_groups import DihedralGroup
|
||
|
>>> G = DihedralGroup(6)
|
||
|
>>> _stabilizer(G.degree, G.generators, 5)
|
||
|
[(5)(0 4)(1 3), (5)]
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
orbit
|
||
|
|
||
|
"""
|
||
|
orb = [alpha]
|
||
|
table = {alpha: list(range(degree))}
|
||
|
table_inv = {alpha: list(range(degree))}
|
||
|
used = [False]*degree
|
||
|
used[alpha] = True
|
||
|
gens = [x._array_form for x in generators]
|
||
|
stab_gens = []
|
||
|
for b in orb:
|
||
|
for gen in gens:
|
||
|
temp = gen[b]
|
||
|
if used[temp] is False:
|
||
|
gen_temp = _af_rmul(gen, table[b])
|
||
|
orb.append(temp)
|
||
|
table[temp] = gen_temp
|
||
|
table_inv[temp] = _af_invert(gen_temp)
|
||
|
used[temp] = True
|
||
|
else:
|
||
|
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b])
|
||
|
if schreier_gen not in stab_gens:
|
||
|
stab_gens.append(schreier_gen)
|
||
|
return [_af_new(x) for x in stab_gens]
|
||
|
|
||
|
|
||
|
PermGroup = PermutationGroup
|
||
|
|
||
|
|
||
|
class SymmetricPermutationGroup(Basic):
|
||
|
"""
|
||
|
The class defining the lazy form of SymmetricGroup.
|
||
|
|
||
|
deg : int
|
||
|
|
||
|
"""
|
||
|
def __new__(cls, deg):
|
||
|
deg = _sympify(deg)
|
||
|
obj = Basic.__new__(cls, deg)
|
||
|
return obj
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
self._deg = self.args[0]
|
||
|
self._order = None
|
||
|
|
||
|
def __contains__(self, i):
|
||
|
"""Return ``True`` if *i* is contained in SymmetricPermutationGroup.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup
|
||
|
>>> G = SymmetricPermutationGroup(4)
|
||
|
>>> Permutation(1, 2, 3) in G
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if not isinstance(i, Permutation):
|
||
|
raise TypeError("A SymmetricPermutationGroup contains only Permutations as "
|
||
|
"elements, not elements of type %s" % type(i))
|
||
|
return i.size == self.degree
|
||
|
|
||
|
def order(self):
|
||
|
"""
|
||
|
Return the order of the SymmetricPermutationGroup.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import SymmetricPermutationGroup
|
||
|
>>> G = SymmetricPermutationGroup(4)
|
||
|
>>> G.order()
|
||
|
24
|
||
|
"""
|
||
|
if self._order is not None:
|
||
|
return self._order
|
||
|
n = self._deg
|
||
|
self._order = factorial(n)
|
||
|
return self._order
|
||
|
|
||
|
@property
|
||
|
def degree(self):
|
||
|
"""
|
||
|
Return the degree of the SymmetricPermutationGroup.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import SymmetricPermutationGroup
|
||
|
>>> G = SymmetricPermutationGroup(4)
|
||
|
>>> G.degree
|
||
|
4
|
||
|
|
||
|
"""
|
||
|
return self._deg
|
||
|
|
||
|
@property
|
||
|
def identity(self):
|
||
|
'''
|
||
|
Return the identity element of the SymmetricPermutationGroup.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import SymmetricPermutationGroup
|
||
|
>>> G = SymmetricPermutationGroup(4)
|
||
|
>>> G.identity()
|
||
|
(3)
|
||
|
|
||
|
'''
|
||
|
return _af_new(list(range(self._deg)))
|
||
|
|
||
|
|
||
|
class Coset(Basic):
|
||
|
"""A left coset of a permutation group with respect to an element.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
g : Permutation
|
||
|
|
||
|
H : PermutationGroup
|
||
|
|
||
|
dir : "+" or "-", If not specified by default it will be "+"
|
||
|
here ``dir`` specified the type of coset "+" represent the
|
||
|
right coset and "-" represent the left coset.
|
||
|
|
||
|
G : PermutationGroup, optional
|
||
|
The group which contains *H* as its subgroup and *g* as its
|
||
|
element.
|
||
|
|
||
|
If not specified, it would automatically become a symmetric
|
||
|
group ``SymmetricPermutationGroup(g.size)`` and
|
||
|
``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree``
|
||
|
are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup
|
||
|
used for representation purpose.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, g, H, G=None, dir="+"):
|
||
|
g = _sympify(g)
|
||
|
if not isinstance(g, Permutation):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
H = _sympify(H)
|
||
|
if not isinstance(H, PermutationGroup):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
if G is not None:
|
||
|
G = _sympify(G)
|
||
|
if not isinstance(G, (PermutationGroup, SymmetricPermutationGroup)):
|
||
|
raise NotImplementedError
|
||
|
if not H.is_subgroup(G):
|
||
|
raise ValueError("{} must be a subgroup of {}.".format(H, G))
|
||
|
if g not in G:
|
||
|
raise ValueError("{} must be an element of {}.".format(g, G))
|
||
|
else:
|
||
|
g_size = g.size
|
||
|
h_degree = H.degree
|
||
|
if g_size != h_degree:
|
||
|
raise ValueError(
|
||
|
"The size of the permutation {} and the degree of "
|
||
|
"the permutation group {} should be matching "
|
||
|
.format(g, H))
|
||
|
G = SymmetricPermutationGroup(g.size)
|
||
|
|
||
|
if isinstance(dir, str):
|
||
|
dir = Symbol(dir)
|
||
|
elif not isinstance(dir, Symbol):
|
||
|
raise TypeError("dir must be of type basestring or "
|
||
|
"Symbol, not %s" % type(dir))
|
||
|
if str(dir) not in ('+', '-'):
|
||
|
raise ValueError("dir must be one of '+' or '-' not %s" % dir)
|
||
|
obj = Basic.__new__(cls, g, H, G, dir)
|
||
|
return obj
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
self._dir = self.args[3]
|
||
|
|
||
|
@property
|
||
|
def is_left_coset(self):
|
||
|
"""
|
||
|
Check if the coset is left coset that is ``gH``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
|
||
|
>>> a = Permutation(1, 2)
|
||
|
>>> b = Permutation(0, 1)
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> cst = Coset(a, G, dir="-")
|
||
|
>>> cst.is_left_coset
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return str(self._dir) == '-'
|
||
|
|
||
|
@property
|
||
|
def is_right_coset(self):
|
||
|
"""
|
||
|
Check if the coset is right coset that is ``Hg``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
|
||
|
>>> a = Permutation(1, 2)
|
||
|
>>> b = Permutation(0, 1)
|
||
|
>>> G = PermutationGroup([a, b])
|
||
|
>>> cst = Coset(a, G, dir="+")
|
||
|
>>> cst.is_right_coset
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return str(self._dir) == '+'
|
||
|
|
||
|
def as_list(self):
|
||
|
"""
|
||
|
Return all the elements of coset in the form of list.
|
||
|
"""
|
||
|
g = self.args[0]
|
||
|
H = self.args[1]
|
||
|
cst = []
|
||
|
if str(self._dir) == '+':
|
||
|
for h in H.elements:
|
||
|
cst.append(h*g)
|
||
|
else:
|
||
|
for h in H.elements:
|
||
|
cst.append(g*h)
|
||
|
return cst
|