Traktor/myenv/Lib/site-packages/sympy/geometry/curve.py

425 lines
9.9 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
"""Curves in 2-dimensional Euclidean space.
Contains
========
Curve
"""
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.core import diff
from sympy.core.containers import Tuple
from sympy.core.symbol import _symbol
from sympy.geometry.entity import GeometryEntity, GeometrySet
from sympy.geometry.point import Point
from sympy.integrals import integrate
from sympy.matrices import Matrix, rot_axis3
from sympy.utilities.iterables import is_sequence
from mpmath.libmp.libmpf import prec_to_dps
class Curve(GeometrySet):
"""A curve in space.
A curve is defined by parametric functions for the coordinates, a
parameter and the lower and upper bounds for the parameter value.
Parameters
==========
function : list of functions
limits : 3-tuple
Function parameter and lower and upper bounds.
Attributes
==========
functions
parameter
limits
Raises
======
ValueError
When `functions` are specified incorrectly.
When `limits` are specified incorrectly.
Examples
========
>>> from sympy import Curve, sin, cos, interpolate
>>> from sympy.abc import t, a
>>> C = Curve((sin(t), cos(t)), (t, 0, 2))
>>> C.functions
(sin(t), cos(t))
>>> C.limits
(t, 0, 2)
>>> C.parameter
t
>>> C = Curve((t, interpolate([1, 4, 9, 16], t)), (t, 0, 1)); C
Curve((t, t**2), (t, 0, 1))
>>> C.subs(t, 4)
Point2D(4, 16)
>>> C.arbitrary_point(a)
Point2D(a, a**2)
See Also
========
sympy.core.function.Function
sympy.polys.polyfuncs.interpolate
"""
def __new__(cls, function, limits):
if not is_sequence(function) or len(function) != 2:
raise ValueError("Function argument should be (x(t), y(t)) "
"but got %s" % str(function))
if not is_sequence(limits) or len(limits) != 3:
raise ValueError("Limit argument should be (t, tmin, tmax) "
"but got %s" % str(limits))
return GeometryEntity.__new__(cls, Tuple(*function), Tuple(*limits))
def __call__(self, f):
return self.subs(self.parameter, f)
def _eval_subs(self, old, new):
if old == self.parameter:
return Point(*[f.subs(old, new) for f in self.functions])
def _eval_evalf(self, prec=15, **options):
f, (t, a, b) = self.args
dps = prec_to_dps(prec)
f = tuple([i.evalf(n=dps, **options) for i in f])
a, b = [i.evalf(n=dps, **options) for i in (a, b)]
return self.func(f, (t, a, b))
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the curve.
Parameters
==========
parameter : str or Symbol, optional
Default value is 't'.
The Curve's parameter is selected with None or self.parameter
otherwise the provided symbol is used.
Returns
=======
Point :
Returns a point in parametric form.
Raises
======
ValueError
When `parameter` already appears in the functions.
Examples
========
>>> from sympy import Curve, Symbol
>>> from sympy.abc import s
>>> C = Curve([2*s, s**2], (s, 0, 2))
>>> C.arbitrary_point()
Point2D(2*t, t**2)
>>> C.arbitrary_point(C.parameter)
Point2D(2*s, s**2)
>>> C.arbitrary_point(None)
Point2D(2*s, s**2)
>>> C.arbitrary_point(Symbol('a'))
Point2D(2*a, a**2)
See Also
========
sympy.geometry.point.Point
"""
if parameter is None:
return Point(*self.functions)
tnew = _symbol(parameter, self.parameter, real=True)
t = self.parameter
if (tnew.name != t.name and
tnew.name in (f.name for f in self.free_symbols)):
raise ValueError('Symbol %s already appears in object '
'and cannot be used as a parameter.' % tnew.name)
return Point(*[w.subs(t, tnew) for w in self.functions])
@property
def free_symbols(self):
"""Return a set of symbols other than the bound symbols used to
parametrically define the Curve.
Returns
=======
set :
Set of all non-parameterized symbols.
Examples
========
>>> from sympy.abc import t, a
>>> from sympy import Curve
>>> Curve((t, t**2), (t, 0, 2)).free_symbols
set()
>>> Curve((t, t**2), (t, a, 2)).free_symbols
{a}
"""
free = set()
for a in self.functions + self.limits[1:]:
free |= a.free_symbols
free = free.difference({self.parameter})
return free
@property
def ambient_dimension(self):
"""The dimension of the curve.
Returns
=======
int :
the dimension of curve.
Examples
========
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve((t, t**2), (t, 0, 2))
>>> C.ambient_dimension
2
"""
return len(self.args[0])
@property
def functions(self):
"""The functions specifying the curve.
Returns
=======
functions :
list of parameterized coordinate functions.
Examples
========
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve((t, t**2), (t, 0, 2))
>>> C.functions
(t, t**2)
See Also
========
parameter
"""
return self.args[0]
@property
def limits(self):
"""The limits for the curve.
Returns
=======
limits : tuple
Contains parameter and lower and upper limits.
Examples
========
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve([t, t**3], (t, -2, 2))
>>> C.limits
(t, -2, 2)
See Also
========
plot_interval
"""
return self.args[1]
@property
def parameter(self):
"""The curve function variable.
Returns
=======
Symbol :
returns a bound symbol.
Examples
========
>>> from sympy.abc import t
>>> from sympy import Curve
>>> C = Curve([t, t**2], (t, 0, 2))
>>> C.parameter
t
See Also
========
functions
"""
return self.args[1][0]
@property
def length(self):
"""The curve length.
Examples
========
>>> from sympy import Curve
>>> from sympy.abc import t
>>> Curve((t, t), (t, 0, 1)).length
sqrt(2)
"""
integrand = sqrt(sum(diff(func, self.limits[0])**2 for func in self.functions))
return integrate(integrand, self.limits)
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the curve.
Parameters
==========
parameter : str or Symbol, optional
Default value is 't';
otherwise the provided symbol is used.
Returns
=======
List :
the plot interval as below:
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Curve, sin
>>> from sympy.abc import x, s
>>> Curve((x, sin(x)), (x, 1, 2)).plot_interval()
[t, 1, 2]
>>> Curve((x, sin(x)), (x, 1, 2)).plot_interval(s)
[s, 1, 2]
See Also
========
limits : Returns limits of the parameter interval
"""
t = _symbol(parameter, self.parameter, real=True)
return [t] + list(self.limits[1:])
def rotate(self, angle=0, pt=None):
"""This function is used to rotate a curve along given point ``pt`` at given angle(in radian).
Parameters
==========
angle :
the angle at which the curve will be rotated(in radian) in counterclockwise direction.
default value of angle is 0.
pt : Point
the point along which the curve will be rotated.
If no point given, the curve will be rotated around origin.
Returns
=======
Curve :
returns a curve rotated at given angle along given point.
Examples
========
>>> from sympy import Curve, pi
>>> from sympy.abc import x
>>> Curve((x, x), (x, 0, 1)).rotate(pi/2)
Curve((-x, x), (x, 0, 1))
"""
if pt:
pt = -Point(pt, dim=2)
else:
pt = Point(0,0)
rv = self.translate(*pt.args)
f = list(rv.functions)
f.append(0)
f = Matrix(1, 3, f)
f *= rot_axis3(angle)
rv = self.func(f[0, :2].tolist()[0], self.limits)
pt = -pt
return rv.translate(*pt.args)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since Curve is not made up of Points.
Returns
=======
Curve :
returns scaled curve.
Examples
========
>>> from sympy import Curve
>>> from sympy.abc import x
>>> Curve((x, x), (x, 0, 1)).scale(2)
Curve((2*x, x), (x, 0, 1))
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
fx, fy = self.functions
return self.func((fx*x, fy*y), self.limits)
def translate(self, x=0, y=0):
"""Translate the Curve by (x, y).
Returns
=======
Curve :
returns a translated curve.
Examples
========
>>> from sympy import Curve
>>> from sympy.abc import x
>>> Curve((x, x), (x, 0, 1)).translate(1, 2)
Curve((x + 1, x + 2), (x, 0, 1))
"""
fx, fy = self.functions
return self.func((fx + x, fy + y), self.limits)