2172 lines
74 KiB
Python
2172 lines
74 KiB
Python
|
"""Integration method that emulates by-hand techniques.
|
||
|
|
||
|
This module also provides functionality to get the steps used to evaluate a
|
||
|
particular integral, in the ``integral_steps`` function. This will return
|
||
|
nested ``Rule`` s representing the integration rules used.
|
||
|
|
||
|
Each ``Rule`` class represents a (maybe parametrized) integration rule, e.g.
|
||
|
``SinRule`` for integrating ``sin(x)`` and ``ReciprocalSqrtQuadraticRule``
|
||
|
for integrating ``1/sqrt(a+b*x+c*x**2)``. The ``eval`` method returns the
|
||
|
integration result.
|
||
|
|
||
|
The ``manualintegrate`` function computes the integral by calling ``eval``
|
||
|
on the rule returned by ``integral_steps``.
|
||
|
|
||
|
The integrator can be extended with new heuristics and evaluation
|
||
|
techniques. To do so, extend the ``Rule`` class, implement ``eval`` method,
|
||
|
then write a function that accepts an ``IntegralInfo`` object and returns
|
||
|
either a ``Rule`` instance or ``None``. If the new technique requires a new
|
||
|
match, add the key and call to the antiderivative function to integral_steps.
|
||
|
To enable simple substitutions, add the match to find_substitutions.
|
||
|
|
||
|
"""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
from typing import NamedTuple, Type, Callable, Sequence
|
||
|
from abc import ABC, abstractmethod
|
||
|
from dataclasses import dataclass
|
||
|
from collections import defaultdict
|
||
|
from collections.abc import Mapping
|
||
|
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.cache import cacheit
|
||
|
from sympy.core.containers import Dict
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.function import Derivative
|
||
|
from sympy.core.logic import fuzzy_not
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.numbers import Integer, Number, E
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.relational import Eq, Ne, Boolean
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import Dummy, Symbol, Wild
|
||
|
from sympy.functions.elementary.complexes import Abs
|
||
|
from sympy.functions.elementary.exponential import exp, log
|
||
|
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction, csch,
|
||
|
cosh, coth, sech, sinh, tanh, asinh)
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.functions.elementary.trigonometric import (TrigonometricFunction,
|
||
|
cos, sin, tan, cot, csc, sec, acos, asin, atan, acot, acsc, asec)
|
||
|
from sympy.functions.special.delta_functions import Heaviside, DiracDelta
|
||
|
from sympy.functions.special.error_functions import (erf, erfi, fresnelc,
|
||
|
fresnels, Ci, Chi, Si, Shi, Ei, li)
|
||
|
from sympy.functions.special.gamma_functions import uppergamma
|
||
|
from sympy.functions.special.elliptic_integrals import elliptic_e, elliptic_f
|
||
|
from sympy.functions.special.polynomials import (chebyshevt, chebyshevu,
|
||
|
legendre, hermite, laguerre, assoc_laguerre, gegenbauer, jacobi,
|
||
|
OrthogonalPolynomial)
|
||
|
from sympy.functions.special.zeta_functions import polylog
|
||
|
from .integrals import Integral
|
||
|
from sympy.logic.boolalg import And
|
||
|
from sympy.ntheory.factor_ import primefactors
|
||
|
from sympy.polys.polytools import degree, lcm_list, gcd_list, Poly
|
||
|
from sympy.simplify.radsimp import fraction
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
from sympy.solvers.solvers import solve
|
||
|
from sympy.strategies.core import switch, do_one, null_safe, condition
|
||
|
from sympy.utilities.iterables import iterable
|
||
|
from sympy.utilities.misc import debug
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class Rule(ABC):
|
||
|
integrand: Expr
|
||
|
variable: Symbol
|
||
|
|
||
|
@abstractmethod
|
||
|
def eval(self) -> Expr:
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
pass
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class AtomicRule(Rule, ABC):
|
||
|
"""A simple rule that does not depend on other rules"""
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return False
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ConstantRule(AtomicRule):
|
||
|
"""integrate(a, x) -> a*x"""
|
||
|
def eval(self) -> Expr:
|
||
|
return self.integrand * self.variable
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ConstantTimesRule(Rule):
|
||
|
"""integrate(a*f(x), x) -> a*integrate(f(x), x)"""
|
||
|
constant: Expr
|
||
|
other: Expr
|
||
|
substep: Rule
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return self.constant * self.substep.eval()
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return self.substep.contains_dont_know()
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PowerRule(AtomicRule):
|
||
|
"""integrate(x**a, x)"""
|
||
|
base: Expr
|
||
|
exp: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return Piecewise(
|
||
|
((self.base**(self.exp + 1))/(self.exp + 1), Ne(self.exp, -1)),
|
||
|
(log(self.base), True),
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class NestedPowRule(AtomicRule):
|
||
|
"""integrate((x**a)**b, x)"""
|
||
|
base: Expr
|
||
|
exp: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
m = self.base * self.integrand
|
||
|
return Piecewise((m / (self.exp + 1), Ne(self.exp, -1)),
|
||
|
(m * log(self.base), True))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class AddRule(Rule):
|
||
|
"""integrate(f(x) + g(x), x) -> integrate(f(x), x) + integrate(g(x), x)"""
|
||
|
substeps: list[Rule]
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return Add(*(substep.eval() for substep in self.substeps))
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return any(substep.contains_dont_know() for substep in self.substeps)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class URule(Rule):
|
||
|
"""integrate(f(g(x))*g'(x), x) -> integrate(f(u), u), u = g(x)"""
|
||
|
u_var: Symbol
|
||
|
u_func: Expr
|
||
|
substep: Rule
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
result = self.substep.eval()
|
||
|
if self.u_func.is_Pow:
|
||
|
base, exp_ = self.u_func.as_base_exp()
|
||
|
if exp_ == -1:
|
||
|
# avoid needless -log(1/x) from substitution
|
||
|
result = result.subs(log(self.u_var), -log(base))
|
||
|
return result.subs(self.u_var, self.u_func)
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return self.substep.contains_dont_know()
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PartsRule(Rule):
|
||
|
"""integrate(u(x)*v'(x), x) -> u(x)*v(x) - integrate(u'(x)*v(x), x)"""
|
||
|
u: Symbol
|
||
|
dv: Expr
|
||
|
v_step: Rule
|
||
|
second_step: Rule | None # None when is a substep of CyclicPartsRule
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
assert self.second_step is not None
|
||
|
v = self.v_step.eval()
|
||
|
return self.u * v - self.second_step.eval()
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return self.v_step.contains_dont_know() or (
|
||
|
self.second_step is not None and self.second_step.contains_dont_know())
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CyclicPartsRule(Rule):
|
||
|
"""Apply PartsRule multiple times to integrate exp(x)*sin(x)"""
|
||
|
parts_rules: list[PartsRule]
|
||
|
coefficient: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
result = []
|
||
|
sign = 1
|
||
|
for rule in self.parts_rules:
|
||
|
result.append(sign * rule.u * rule.v_step.eval())
|
||
|
sign *= -1
|
||
|
return Add(*result) / (1 - self.coefficient)
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return any(substep.contains_dont_know() for substep in self.parts_rules)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class TrigRule(AtomicRule, ABC):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SinRule(TrigRule):
|
||
|
"""integrate(sin(x), x) -> -cos(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return -cos(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CosRule(TrigRule):
|
||
|
"""integrate(cos(x), x) -> sin(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return sin(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SecTanRule(TrigRule):
|
||
|
"""integrate(sec(x)*tan(x), x) -> sec(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return sec(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CscCotRule(TrigRule):
|
||
|
"""integrate(csc(x)*cot(x), x) -> -csc(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return -csc(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class Sec2Rule(TrigRule):
|
||
|
"""integrate(sec(x)**2, x) -> tan(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return tan(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class Csc2Rule(TrigRule):
|
||
|
"""integrate(csc(x)**2, x) -> -cot(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return -cot(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class HyperbolicRule(AtomicRule, ABC):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SinhRule(HyperbolicRule):
|
||
|
"""integrate(sinh(x), x) -> cosh(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return cosh(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CoshRule(HyperbolicRule):
|
||
|
"""integrate(cosh(x), x) -> sinh(x)"""
|
||
|
def eval(self):
|
||
|
return sinh(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ExpRule(AtomicRule):
|
||
|
"""integrate(a**x, x) -> a**x/ln(a)"""
|
||
|
base: Expr
|
||
|
exp: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return self.integrand / log(self.base)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ReciprocalRule(AtomicRule):
|
||
|
"""integrate(1/x, x) -> ln(x)"""
|
||
|
base: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return log(self.base)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ArcsinRule(AtomicRule):
|
||
|
"""integrate(1/sqrt(1-x**2), x) -> asin(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return asin(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ArcsinhRule(AtomicRule):
|
||
|
"""integrate(1/sqrt(1+x**2), x) -> asin(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
return asinh(self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ReciprocalSqrtQuadraticRule(AtomicRule):
|
||
|
"""integrate(1/sqrt(a+b*x+c*x**2), x) -> log(2*sqrt(c)*sqrt(a+b*x+c*x**2)+b+2*c*x)/sqrt(c)"""
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
c: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, c, x = self.a, self.b, self.c, self.variable
|
||
|
return log(2*sqrt(c)*sqrt(a+b*x+c*x**2)+b+2*c*x)/sqrt(c)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SqrtQuadraticDenomRule(AtomicRule):
|
||
|
"""integrate(poly(x)/sqrt(a+b*x+c*x**2), x)"""
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
c: Expr
|
||
|
coeffs: list[Expr]
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, c, coeffs, x = self.a, self.b, self.c, self.coeffs.copy(), self.variable
|
||
|
# Integrate poly/sqrt(a+b*x+c*x**2) using recursion.
|
||
|
# coeffs are coefficients of the polynomial.
|
||
|
# Let I_n = x**n/sqrt(a+b*x+c*x**2), then
|
||
|
# I_n = A * x**(n-1)*sqrt(a+b*x+c*x**2) - B * I_{n-1} - C * I_{n-2}
|
||
|
# where A = 1/(n*c), B = (2*n-1)*b/(2*n*c), C = (n-1)*a/(n*c)
|
||
|
# See https://github.com/sympy/sympy/pull/23608 for proof.
|
||
|
result_coeffs = []
|
||
|
coeffs = coeffs.copy()
|
||
|
for i in range(len(coeffs)-2):
|
||
|
n = len(coeffs)-1-i
|
||
|
coeff = coeffs[i]/(c*n)
|
||
|
result_coeffs.append(coeff)
|
||
|
coeffs[i+1] -= (2*n-1)*b/2*coeff
|
||
|
coeffs[i+2] -= (n-1)*a*coeff
|
||
|
d, e = coeffs[-1], coeffs[-2]
|
||
|
s = sqrt(a+b*x+c*x**2)
|
||
|
constant = d-b*e/(2*c)
|
||
|
if constant == 0:
|
||
|
I0 = 0
|
||
|
else:
|
||
|
step = inverse_trig_rule(IntegralInfo(1/s, x), degenerate=False)
|
||
|
I0 = constant*step.eval()
|
||
|
return Add(*(result_coeffs[i]*x**(len(coeffs)-2-i)
|
||
|
for i in range(len(result_coeffs))), e/c)*s + I0
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SqrtQuadraticRule(AtomicRule):
|
||
|
"""integrate(sqrt(a+b*x+c*x**2), x)"""
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
c: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
step = sqrt_quadratic_rule(IntegralInfo(self.integrand, self.variable), degenerate=False)
|
||
|
return step.eval()
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class AlternativeRule(Rule):
|
||
|
"""Multiple ways to do integration."""
|
||
|
alternatives: list[Rule]
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return self.alternatives[0].eval()
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return any(substep.contains_dont_know() for substep in self.alternatives)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DontKnowRule(Rule):
|
||
|
"""Leave the integral as is."""
|
||
|
def eval(self) -> Expr:
|
||
|
return Integral(self.integrand, self.variable)
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return True
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DerivativeRule(AtomicRule):
|
||
|
"""integrate(f'(x), x) -> f(x)"""
|
||
|
def eval(self) -> Expr:
|
||
|
assert isinstance(self.integrand, Derivative)
|
||
|
variable_count = list(self.integrand.variable_count)
|
||
|
for i, (var, count) in enumerate(variable_count):
|
||
|
if var == self.variable:
|
||
|
variable_count[i] = (var, count - 1)
|
||
|
break
|
||
|
return Derivative(self.integrand.expr, *variable_count)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class RewriteRule(Rule):
|
||
|
"""Rewrite integrand to another form that is easier to handle."""
|
||
|
rewritten: Expr
|
||
|
substep: Rule
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return self.substep.eval()
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return self.substep.contains_dont_know()
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CompleteSquareRule(RewriteRule):
|
||
|
"""Rewrite a+b*x+c*x**2 to a-b**2/(4*c) + c*(x+b/(2*c))**2"""
|
||
|
pass
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PiecewiseRule(Rule):
|
||
|
subfunctions: Sequence[tuple[Rule, bool | Boolean]]
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return Piecewise(*[(substep.eval(), cond)
|
||
|
for substep, cond in self.subfunctions])
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return any(substep.contains_dont_know() for substep, _ in self.subfunctions)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class HeavisideRule(Rule):
|
||
|
harg: Expr
|
||
|
ibnd: Expr
|
||
|
substep: Rule
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
# If we are integrating over x and the integrand has the form
|
||
|
# Heaviside(m*x+b)*g(x) == Heaviside(harg)*g(symbol)
|
||
|
# then there needs to be continuity at -b/m == ibnd,
|
||
|
# so we subtract the appropriate term.
|
||
|
result = self.substep.eval()
|
||
|
return Heaviside(self.harg) * (result - result.subs(self.variable, self.ibnd))
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return self.substep.contains_dont_know()
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class DiracDeltaRule(AtomicRule):
|
||
|
n: Expr
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
n, a, b, x = self.n, self.a, self.b, self.variable
|
||
|
if n == 0:
|
||
|
return Heaviside(a+b*x)/b
|
||
|
return DiracDelta(a+b*x, n-1)/b
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class TrigSubstitutionRule(Rule):
|
||
|
theta: Expr
|
||
|
func: Expr
|
||
|
rewritten: Expr
|
||
|
substep: Rule
|
||
|
restriction: bool | Boolean
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
theta, func, x = self.theta, self.func, self.variable
|
||
|
func = func.subs(sec(theta), 1/cos(theta))
|
||
|
func = func.subs(csc(theta), 1/sin(theta))
|
||
|
func = func.subs(cot(theta), 1/tan(theta))
|
||
|
|
||
|
trig_function = list(func.find(TrigonometricFunction))
|
||
|
assert len(trig_function) == 1
|
||
|
trig_function = trig_function[0]
|
||
|
relation = solve(x - func, trig_function)
|
||
|
assert len(relation) == 1
|
||
|
numer, denom = fraction(relation[0])
|
||
|
|
||
|
if isinstance(trig_function, sin):
|
||
|
opposite = numer
|
||
|
hypotenuse = denom
|
||
|
adjacent = sqrt(denom**2 - numer**2)
|
||
|
inverse = asin(relation[0])
|
||
|
elif isinstance(trig_function, cos):
|
||
|
adjacent = numer
|
||
|
hypotenuse = denom
|
||
|
opposite = sqrt(denom**2 - numer**2)
|
||
|
inverse = acos(relation[0])
|
||
|
else: # tan
|
||
|
opposite = numer
|
||
|
adjacent = denom
|
||
|
hypotenuse = sqrt(denom**2 + numer**2)
|
||
|
inverse = atan(relation[0])
|
||
|
|
||
|
substitution = [
|
||
|
(sin(theta), opposite/hypotenuse),
|
||
|
(cos(theta), adjacent/hypotenuse),
|
||
|
(tan(theta), opposite/adjacent),
|
||
|
(theta, inverse)
|
||
|
]
|
||
|
return Piecewise(
|
||
|
(self.substep.eval().subs(substitution).trigsimp(), self.restriction)
|
||
|
)
|
||
|
|
||
|
def contains_dont_know(self) -> bool:
|
||
|
return self.substep.contains_dont_know()
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ArctanRule(AtomicRule):
|
||
|
"""integrate(a/(b*x**2+c), x) -> a/b / sqrt(c/b) * atan(x/sqrt(c/b))"""
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
c: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, c, x = self.a, self.b, self.c, self.variable
|
||
|
return a/b / sqrt(c/b) * atan(x/sqrt(c/b))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class OrthogonalPolyRule(AtomicRule, ABC):
|
||
|
n: Expr
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class JacobiRule(OrthogonalPolyRule):
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
n, a, b, x = self.n, self.a, self.b, self.variable
|
||
|
return Piecewise(
|
||
|
(2*jacobi(n + 1, a - 1, b - 1, x)/(n + a + b), Ne(n + a + b, 0)),
|
||
|
(x, Eq(n, 0)),
|
||
|
((a + b + 2)*x**2/4 + (a - b)*x/2, Eq(n, 1)))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class GegenbauerRule(OrthogonalPolyRule):
|
||
|
a: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
n, a, x = self.n, self.a, self.variable
|
||
|
return Piecewise(
|
||
|
(gegenbauer(n + 1, a - 1, x)/(2*(a - 1)), Ne(a, 1)),
|
||
|
(chebyshevt(n + 1, x)/(n + 1), Ne(n, -1)),
|
||
|
(S.Zero, True))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ChebyshevTRule(OrthogonalPolyRule):
|
||
|
def eval(self) -> Expr:
|
||
|
n, x = self.n, self.variable
|
||
|
return Piecewise(
|
||
|
((chebyshevt(n + 1, x)/(n + 1) -
|
||
|
chebyshevt(n - 1, x)/(n - 1))/2, Ne(Abs(n), 1)),
|
||
|
(x**2/2, True))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ChebyshevURule(OrthogonalPolyRule):
|
||
|
def eval(self) -> Expr:
|
||
|
n, x = self.n, self.variable
|
||
|
return Piecewise(
|
||
|
(chebyshevt(n + 1, x)/(n + 1), Ne(n, -1)),
|
||
|
(S.Zero, True))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class LegendreRule(OrthogonalPolyRule):
|
||
|
def eval(self) -> Expr:
|
||
|
n, x = self.n, self.variable
|
||
|
return(legendre(n + 1, x) - legendre(n - 1, x))/(2*n + 1)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class HermiteRule(OrthogonalPolyRule):
|
||
|
def eval(self) -> Expr:
|
||
|
n, x = self.n, self.variable
|
||
|
return hermite(n + 1, x)/(2*(n + 1))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class LaguerreRule(OrthogonalPolyRule):
|
||
|
def eval(self) -> Expr:
|
||
|
n, x = self.n, self.variable
|
||
|
return laguerre(n, x) - laguerre(n + 1, x)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class AssocLaguerreRule(OrthogonalPolyRule):
|
||
|
a: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return -assoc_laguerre(self.n + 1, self.a - 1, self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class IRule(AtomicRule, ABC):
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class CiRule(IRule):
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, x = self.a, self.b, self.variable
|
||
|
return cos(b)*Ci(a*x) - sin(b)*Si(a*x)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ChiRule(IRule):
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, x = self.a, self.b, self.variable
|
||
|
return cosh(b)*Chi(a*x) + sinh(b)*Shi(a*x)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class EiRule(IRule):
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, x = self.a, self.b, self.variable
|
||
|
return exp(b)*Ei(a*x)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SiRule(IRule):
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, x = self.a, self.b, self.variable
|
||
|
return sin(b)*Ci(a*x) + cos(b)*Si(a*x)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ShiRule(IRule):
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, x = self.a, self.b, self.variable
|
||
|
return sinh(b)*Chi(a*x) + cosh(b)*Shi(a*x)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class LiRule(IRule):
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, x = self.a, self.b, self.variable
|
||
|
return li(a*x + b)/a
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ErfRule(AtomicRule):
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
c: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, c, x = self.a, self.b, self.c, self.variable
|
||
|
if a.is_extended_real:
|
||
|
return Piecewise(
|
||
|
(sqrt(S.Pi/(-a))/2 * exp(c - b**2/(4*a)) *
|
||
|
erf((-2*a*x - b)/(2*sqrt(-a))), a < 0),
|
||
|
(sqrt(S.Pi/a)/2 * exp(c - b**2/(4*a)) *
|
||
|
erfi((2*a*x + b)/(2*sqrt(a))), True))
|
||
|
return sqrt(S.Pi/a)/2 * exp(c - b**2/(4*a)) * \
|
||
|
erfi((2*a*x + b)/(2*sqrt(a)))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FresnelCRule(AtomicRule):
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
c: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, c, x = self.a, self.b, self.c, self.variable
|
||
|
return sqrt(S.Pi/(2*a)) * (
|
||
|
cos(b**2/(4*a) - c)*fresnelc((2*a*x + b)/sqrt(2*a*S.Pi)) +
|
||
|
sin(b**2/(4*a) - c)*fresnels((2*a*x + b)/sqrt(2*a*S.Pi)))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class FresnelSRule(AtomicRule):
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
c: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
a, b, c, x = self.a, self.b, self.c, self.variable
|
||
|
return sqrt(S.Pi/(2*a)) * (
|
||
|
cos(b**2/(4*a) - c)*fresnels((2*a*x + b)/sqrt(2*a*S.Pi)) -
|
||
|
sin(b**2/(4*a) - c)*fresnelc((2*a*x + b)/sqrt(2*a*S.Pi)))
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class PolylogRule(AtomicRule):
|
||
|
a: Expr
|
||
|
b: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return polylog(self.b + 1, self.a * self.variable)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class UpperGammaRule(AtomicRule):
|
||
|
a: Expr
|
||
|
e: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
a, e, x = self.a, self.e, self.variable
|
||
|
return x**e * (-a*x)**(-e) * uppergamma(e + 1, -a*x)/a
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class EllipticFRule(AtomicRule):
|
||
|
a: Expr
|
||
|
d: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return elliptic_f(self.variable, self.d/self.a)/sqrt(self.a)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class EllipticERule(AtomicRule):
|
||
|
a: Expr
|
||
|
d: Expr
|
||
|
|
||
|
def eval(self) -> Expr:
|
||
|
return elliptic_e(self.variable, self.d/self.a)*sqrt(self.a)
|
||
|
|
||
|
|
||
|
class IntegralInfo(NamedTuple):
|
||
|
integrand: Expr
|
||
|
symbol: Symbol
|
||
|
|
||
|
|
||
|
def manual_diff(f, symbol):
|
||
|
"""Derivative of f in form expected by find_substitutions
|
||
|
|
||
|
SymPy's derivatives for some trig functions (like cot) are not in a form
|
||
|
that works well with finding substitutions; this replaces the
|
||
|
derivatives for those particular forms with something that works better.
|
||
|
|
||
|
"""
|
||
|
if f.args:
|
||
|
arg = f.args[0]
|
||
|
if isinstance(f, tan):
|
||
|
return arg.diff(symbol) * sec(arg)**2
|
||
|
elif isinstance(f, cot):
|
||
|
return -arg.diff(symbol) * csc(arg)**2
|
||
|
elif isinstance(f, sec):
|
||
|
return arg.diff(symbol) * sec(arg) * tan(arg)
|
||
|
elif isinstance(f, csc):
|
||
|
return -arg.diff(symbol) * csc(arg) * cot(arg)
|
||
|
elif isinstance(f, Add):
|
||
|
return sum([manual_diff(arg, symbol) for arg in f.args])
|
||
|
elif isinstance(f, Mul):
|
||
|
if len(f.args) == 2 and isinstance(f.args[0], Number):
|
||
|
return f.args[0] * manual_diff(f.args[1], symbol)
|
||
|
return f.diff(symbol)
|
||
|
|
||
|
def manual_subs(expr, *args):
|
||
|
"""
|
||
|
A wrapper for `expr.subs(*args)` with additional logic for substitution
|
||
|
of invertible functions.
|
||
|
"""
|
||
|
if len(args) == 1:
|
||
|
sequence = args[0]
|
||
|
if isinstance(sequence, (Dict, Mapping)):
|
||
|
sequence = sequence.items()
|
||
|
elif not iterable(sequence):
|
||
|
raise ValueError("Expected an iterable of (old, new) pairs")
|
||
|
elif len(args) == 2:
|
||
|
sequence = [args]
|
||
|
else:
|
||
|
raise ValueError("subs accepts either 1 or 2 arguments")
|
||
|
|
||
|
new_subs = []
|
||
|
for old, new in sequence:
|
||
|
if isinstance(old, log):
|
||
|
# If log(x) = y, then exp(a*log(x)) = exp(a*y)
|
||
|
# that is, x**a = exp(a*y). Replace nontrivial powers of x
|
||
|
# before subs turns them into `exp(y)**a`, but
|
||
|
# do not replace x itself yet, to avoid `log(exp(y))`.
|
||
|
x0 = old.args[0]
|
||
|
expr = expr.replace(lambda x: x.is_Pow and x.base == x0,
|
||
|
lambda x: exp(x.exp*new))
|
||
|
new_subs.append((x0, exp(new)))
|
||
|
|
||
|
return expr.subs(list(sequence) + new_subs)
|
||
|
|
||
|
# Method based on that on SIN, described in "Symbolic Integration: The
|
||
|
# Stormy Decade"
|
||
|
|
||
|
inverse_trig_functions = (atan, asin, acos, acot, acsc, asec)
|
||
|
|
||
|
|
||
|
def find_substitutions(integrand, symbol, u_var):
|
||
|
results = []
|
||
|
|
||
|
def test_subterm(u, u_diff):
|
||
|
if u_diff == 0:
|
||
|
return False
|
||
|
substituted = integrand / u_diff
|
||
|
debug("substituted: {}, u: {}, u_var: {}".format(substituted, u, u_var))
|
||
|
substituted = manual_subs(substituted, u, u_var).cancel()
|
||
|
|
||
|
if substituted.has_free(symbol):
|
||
|
return False
|
||
|
# avoid increasing the degree of a rational function
|
||
|
if integrand.is_rational_function(symbol) and substituted.is_rational_function(u_var):
|
||
|
deg_before = max([degree(t, symbol) for t in integrand.as_numer_denom()])
|
||
|
deg_after = max([degree(t, u_var) for t in substituted.as_numer_denom()])
|
||
|
if deg_after > deg_before:
|
||
|
return False
|
||
|
return substituted.as_independent(u_var, as_Add=False)
|
||
|
|
||
|
def exp_subterms(term: Expr):
|
||
|
linear_coeffs = []
|
||
|
terms = []
|
||
|
n = Wild('n', properties=[lambda n: n.is_Integer])
|
||
|
for exp_ in term.find(exp):
|
||
|
arg = exp_.args[0]
|
||
|
if symbol not in arg.free_symbols:
|
||
|
continue
|
||
|
match = arg.match(n*symbol)
|
||
|
if match:
|
||
|
linear_coeffs.append(match[n])
|
||
|
else:
|
||
|
terms.append(exp_)
|
||
|
if linear_coeffs:
|
||
|
terms.append(exp(gcd_list(linear_coeffs)*symbol))
|
||
|
return terms
|
||
|
|
||
|
def possible_subterms(term):
|
||
|
if isinstance(term, (TrigonometricFunction, HyperbolicFunction,
|
||
|
*inverse_trig_functions,
|
||
|
exp, log, Heaviside)):
|
||
|
return [term.args[0]]
|
||
|
elif isinstance(term, (chebyshevt, chebyshevu,
|
||
|
legendre, hermite, laguerre)):
|
||
|
return [term.args[1]]
|
||
|
elif isinstance(term, (gegenbauer, assoc_laguerre)):
|
||
|
return [term.args[2]]
|
||
|
elif isinstance(term, jacobi):
|
||
|
return [term.args[3]]
|
||
|
elif isinstance(term, Mul):
|
||
|
r = []
|
||
|
for u in term.args:
|
||
|
r.append(u)
|
||
|
r.extend(possible_subterms(u))
|
||
|
return r
|
||
|
elif isinstance(term, Pow):
|
||
|
r = [arg for arg in term.args if arg.has(symbol)]
|
||
|
if term.exp.is_Integer:
|
||
|
r.extend([term.base**d for d in primefactors(term.exp)
|
||
|
if 1 < d < abs(term.args[1])])
|
||
|
if term.base.is_Add:
|
||
|
r.extend([t for t in possible_subterms(term.base)
|
||
|
if t.is_Pow])
|
||
|
return r
|
||
|
elif isinstance(term, Add):
|
||
|
r = []
|
||
|
for arg in term.args:
|
||
|
r.append(arg)
|
||
|
r.extend(possible_subterms(arg))
|
||
|
return r
|
||
|
return []
|
||
|
|
||
|
for u in list(dict.fromkeys(possible_subterms(integrand) + exp_subterms(integrand))):
|
||
|
if u == symbol:
|
||
|
continue
|
||
|
u_diff = manual_diff(u, symbol)
|
||
|
new_integrand = test_subterm(u, u_diff)
|
||
|
if new_integrand is not False:
|
||
|
constant, new_integrand = new_integrand
|
||
|
if new_integrand == integrand.subs(symbol, u_var):
|
||
|
continue
|
||
|
substitution = (u, constant, new_integrand)
|
||
|
if substitution not in results:
|
||
|
results.append(substitution)
|
||
|
|
||
|
return results
|
||
|
|
||
|
def rewriter(condition, rewrite):
|
||
|
"""Strategy that rewrites an integrand."""
|
||
|
def _rewriter(integral):
|
||
|
integrand, symbol = integral
|
||
|
debug("Integral: {} is rewritten with {} on symbol: {}".format(integrand, rewrite, symbol))
|
||
|
if condition(*integral):
|
||
|
rewritten = rewrite(*integral)
|
||
|
if rewritten != integrand:
|
||
|
substep = integral_steps(rewritten, symbol)
|
||
|
if not isinstance(substep, DontKnowRule) and substep:
|
||
|
return RewriteRule(integrand, symbol, rewritten, substep)
|
||
|
return _rewriter
|
||
|
|
||
|
def proxy_rewriter(condition, rewrite):
|
||
|
"""Strategy that rewrites an integrand based on some other criteria."""
|
||
|
def _proxy_rewriter(criteria):
|
||
|
criteria, integral = criteria
|
||
|
integrand, symbol = integral
|
||
|
debug("Integral: {} is rewritten with {} on symbol: {} and criteria: {}".format(integrand, rewrite, symbol, criteria))
|
||
|
args = criteria + list(integral)
|
||
|
if condition(*args):
|
||
|
rewritten = rewrite(*args)
|
||
|
if rewritten != integrand:
|
||
|
return RewriteRule(integrand, symbol, rewritten, integral_steps(rewritten, symbol))
|
||
|
return _proxy_rewriter
|
||
|
|
||
|
def multiplexer(conditions):
|
||
|
"""Apply the rule that matches the condition, else None"""
|
||
|
def multiplexer_rl(expr):
|
||
|
for key, rule in conditions.items():
|
||
|
if key(expr):
|
||
|
return rule(expr)
|
||
|
return multiplexer_rl
|
||
|
|
||
|
def alternatives(*rules):
|
||
|
"""Strategy that makes an AlternativeRule out of multiple possible results."""
|
||
|
def _alternatives(integral):
|
||
|
alts = []
|
||
|
count = 0
|
||
|
debug("List of Alternative Rules")
|
||
|
for rule in rules:
|
||
|
count = count + 1
|
||
|
debug("Rule {}: {}".format(count, rule))
|
||
|
|
||
|
result = rule(integral)
|
||
|
if (result and not isinstance(result, DontKnowRule) and
|
||
|
result != integral and result not in alts):
|
||
|
alts.append(result)
|
||
|
if len(alts) == 1:
|
||
|
return alts[0]
|
||
|
elif alts:
|
||
|
doable = [rule for rule in alts if not rule.contains_dont_know()]
|
||
|
if doable:
|
||
|
return AlternativeRule(*integral, doable)
|
||
|
else:
|
||
|
return AlternativeRule(*integral, alts)
|
||
|
return _alternatives
|
||
|
|
||
|
def constant_rule(integral):
|
||
|
return ConstantRule(*integral)
|
||
|
|
||
|
def power_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
base, expt = integrand.as_base_exp()
|
||
|
|
||
|
if symbol not in expt.free_symbols and isinstance(base, Symbol):
|
||
|
if simplify(expt + 1) == 0:
|
||
|
return ReciprocalRule(integrand, symbol, base)
|
||
|
return PowerRule(integrand, symbol, base, expt)
|
||
|
elif symbol not in base.free_symbols and isinstance(expt, Symbol):
|
||
|
rule = ExpRule(integrand, symbol, base, expt)
|
||
|
|
||
|
if fuzzy_not(log(base).is_zero):
|
||
|
return rule
|
||
|
elif log(base).is_zero:
|
||
|
return ConstantRule(1, symbol)
|
||
|
|
||
|
return PiecewiseRule(integrand, symbol, [
|
||
|
(rule, Ne(log(base), 0)),
|
||
|
(ConstantRule(1, symbol), True)
|
||
|
])
|
||
|
|
||
|
def exp_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
if isinstance(integrand.args[0], Symbol):
|
||
|
return ExpRule(integrand, symbol, E, integrand.args[0])
|
||
|
|
||
|
|
||
|
def orthogonal_poly_rule(integral):
|
||
|
orthogonal_poly_classes = {
|
||
|
jacobi: JacobiRule,
|
||
|
gegenbauer: GegenbauerRule,
|
||
|
chebyshevt: ChebyshevTRule,
|
||
|
chebyshevu: ChebyshevURule,
|
||
|
legendre: LegendreRule,
|
||
|
hermite: HermiteRule,
|
||
|
laguerre: LaguerreRule,
|
||
|
assoc_laguerre: AssocLaguerreRule
|
||
|
}
|
||
|
orthogonal_poly_var_index = {
|
||
|
jacobi: 3,
|
||
|
gegenbauer: 2,
|
||
|
assoc_laguerre: 2
|
||
|
}
|
||
|
integrand, symbol = integral
|
||
|
for klass in orthogonal_poly_classes:
|
||
|
if isinstance(integrand, klass):
|
||
|
var_index = orthogonal_poly_var_index.get(klass, 1)
|
||
|
if (integrand.args[var_index] is symbol and not
|
||
|
any(v.has(symbol) for v in integrand.args[:var_index])):
|
||
|
return orthogonal_poly_classes[klass](integrand, symbol, *integrand.args[:var_index])
|
||
|
|
||
|
|
||
|
_special_function_patterns: list[tuple[Type, Expr, Callable | None, tuple]] = []
|
||
|
_wilds = []
|
||
|
_symbol = Dummy('x')
|
||
|
|
||
|
|
||
|
def special_function_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
if not _special_function_patterns:
|
||
|
a = Wild('a', exclude=[_symbol], properties=[lambda x: not x.is_zero])
|
||
|
b = Wild('b', exclude=[_symbol])
|
||
|
c = Wild('c', exclude=[_symbol])
|
||
|
d = Wild('d', exclude=[_symbol], properties=[lambda x: not x.is_zero])
|
||
|
e = Wild('e', exclude=[_symbol], properties=[
|
||
|
lambda x: not (x.is_nonnegative and x.is_integer)])
|
||
|
_wilds.extend((a, b, c, d, e))
|
||
|
# patterns consist of a SymPy class, a wildcard expr, an optional
|
||
|
# condition coded as a lambda (when Wild properties are not enough),
|
||
|
# followed by an applicable rule
|
||
|
linear_pattern = a*_symbol + b
|
||
|
quadratic_pattern = a*_symbol**2 + b*_symbol + c
|
||
|
_special_function_patterns.extend((
|
||
|
(Mul, exp(linear_pattern, evaluate=False)/_symbol, None, EiRule),
|
||
|
(Mul, cos(linear_pattern, evaluate=False)/_symbol, None, CiRule),
|
||
|
(Mul, cosh(linear_pattern, evaluate=False)/_symbol, None, ChiRule),
|
||
|
(Mul, sin(linear_pattern, evaluate=False)/_symbol, None, SiRule),
|
||
|
(Mul, sinh(linear_pattern, evaluate=False)/_symbol, None, ShiRule),
|
||
|
(Pow, 1/log(linear_pattern, evaluate=False), None, LiRule),
|
||
|
(exp, exp(quadratic_pattern, evaluate=False), None, ErfRule),
|
||
|
(sin, sin(quadratic_pattern, evaluate=False), None, FresnelSRule),
|
||
|
(cos, cos(quadratic_pattern, evaluate=False), None, FresnelCRule),
|
||
|
(Mul, _symbol**e*exp(a*_symbol, evaluate=False), None, UpperGammaRule),
|
||
|
(Mul, polylog(b, a*_symbol, evaluate=False)/_symbol, None, PolylogRule),
|
||
|
(Pow, 1/sqrt(a - d*sin(_symbol, evaluate=False)**2),
|
||
|
lambda a, d: a != d, EllipticFRule),
|
||
|
(Pow, sqrt(a - d*sin(_symbol, evaluate=False)**2),
|
||
|
lambda a, d: a != d, EllipticERule),
|
||
|
))
|
||
|
_integrand = integrand.subs(symbol, _symbol)
|
||
|
for type_, pattern, constraint, rule in _special_function_patterns:
|
||
|
if isinstance(_integrand, type_):
|
||
|
match = _integrand.match(pattern)
|
||
|
if match:
|
||
|
wild_vals = tuple(match.get(w) for w in _wilds
|
||
|
if match.get(w) is not None)
|
||
|
if constraint is None or constraint(*wild_vals):
|
||
|
return rule(integrand, symbol, *wild_vals)
|
||
|
|
||
|
|
||
|
def _add_degenerate_step(generic_cond, generic_step: Rule, degenerate_step: Rule | None) -> Rule:
|
||
|
if degenerate_step is None:
|
||
|
return generic_step
|
||
|
if isinstance(generic_step, PiecewiseRule):
|
||
|
subfunctions = [(substep, (cond & generic_cond).simplify())
|
||
|
for substep, cond in generic_step.subfunctions]
|
||
|
else:
|
||
|
subfunctions = [(generic_step, generic_cond)]
|
||
|
if isinstance(degenerate_step, PiecewiseRule):
|
||
|
subfunctions += degenerate_step.subfunctions
|
||
|
else:
|
||
|
subfunctions.append((degenerate_step, S.true))
|
||
|
return PiecewiseRule(generic_step.integrand, generic_step.variable, subfunctions)
|
||
|
|
||
|
|
||
|
def nested_pow_rule(integral: IntegralInfo):
|
||
|
# nested (c*(a+b*x)**d)**e
|
||
|
integrand, x = integral
|
||
|
|
||
|
a_ = Wild('a', exclude=[x])
|
||
|
b_ = Wild('b', exclude=[x, 0])
|
||
|
pattern = a_+b_*x
|
||
|
generic_cond = S.true
|
||
|
|
||
|
class NoMatch(Exception):
|
||
|
pass
|
||
|
|
||
|
def _get_base_exp(expr: Expr) -> tuple[Expr, Expr]:
|
||
|
if not expr.has_free(x):
|
||
|
return S.One, S.Zero
|
||
|
if expr.is_Mul:
|
||
|
_, terms = expr.as_coeff_mul()
|
||
|
if not terms:
|
||
|
return S.One, S.Zero
|
||
|
results = [_get_base_exp(term) for term in terms]
|
||
|
bases = {b for b, _ in results}
|
||
|
bases.discard(S.One)
|
||
|
if len(bases) == 1:
|
||
|
return bases.pop(), Add(*(e for _, e in results))
|
||
|
raise NoMatch
|
||
|
if expr.is_Pow:
|
||
|
b, e = expr.base, expr.exp # type: ignore
|
||
|
if e.has_free(x):
|
||
|
raise NoMatch
|
||
|
base_, sub_exp = _get_base_exp(b)
|
||
|
return base_, sub_exp * e
|
||
|
match = expr.match(pattern)
|
||
|
if match:
|
||
|
a, b = match[a_], match[b_]
|
||
|
base_ = x + a/b
|
||
|
nonlocal generic_cond
|
||
|
generic_cond = Ne(b, 0)
|
||
|
return base_, S.One
|
||
|
raise NoMatch
|
||
|
|
||
|
try:
|
||
|
base, exp_ = _get_base_exp(integrand)
|
||
|
except NoMatch:
|
||
|
return
|
||
|
if generic_cond is S.true:
|
||
|
degenerate_step = None
|
||
|
else:
|
||
|
# equivalent with subs(b, 0) but no need to find b
|
||
|
degenerate_step = ConstantRule(integrand.subs(x, 0), x)
|
||
|
generic_step = NestedPowRule(integrand, x, base, exp_)
|
||
|
return _add_degenerate_step(generic_cond, generic_step, degenerate_step)
|
||
|
|
||
|
|
||
|
def inverse_trig_rule(integral: IntegralInfo, degenerate=True):
|
||
|
"""
|
||
|
Set degenerate=False on recursive call where coefficient of quadratic term
|
||
|
is assumed non-zero.
|
||
|
"""
|
||
|
integrand, symbol = integral
|
||
|
base, exp = integrand.as_base_exp()
|
||
|
a = Wild('a', exclude=[symbol])
|
||
|
b = Wild('b', exclude=[symbol])
|
||
|
c = Wild('c', exclude=[symbol, 0])
|
||
|
match = base.match(a + b*symbol + c*symbol**2)
|
||
|
|
||
|
if not match:
|
||
|
return
|
||
|
|
||
|
def make_inverse_trig(RuleClass, a, sign_a, c, sign_c, h) -> Rule:
|
||
|
u_var = Dummy("u")
|
||
|
rewritten = 1/sqrt(sign_a*a + sign_c*c*(symbol-h)**2) # a>0, c>0
|
||
|
quadratic_base = sqrt(c/a)*(symbol-h)
|
||
|
constant = 1/sqrt(c)
|
||
|
u_func = None
|
||
|
if quadratic_base is not symbol:
|
||
|
u_func = quadratic_base
|
||
|
quadratic_base = u_var
|
||
|
standard_form = 1/sqrt(sign_a + sign_c*quadratic_base**2)
|
||
|
substep = RuleClass(standard_form, quadratic_base)
|
||
|
if constant != 1:
|
||
|
substep = ConstantTimesRule(constant*standard_form, symbol, constant, standard_form, substep)
|
||
|
if u_func is not None:
|
||
|
substep = URule(rewritten, symbol, u_var, u_func, substep)
|
||
|
if h != 0:
|
||
|
substep = CompleteSquareRule(integrand, symbol, rewritten, substep)
|
||
|
return substep
|
||
|
|
||
|
a, b, c = [match.get(i, S.Zero) for i in (a, b, c)]
|
||
|
generic_cond = Ne(c, 0)
|
||
|
if not degenerate or generic_cond is S.true:
|
||
|
degenerate_step = None
|
||
|
elif b.is_zero:
|
||
|
degenerate_step = ConstantRule(a ** exp, symbol)
|
||
|
else:
|
||
|
degenerate_step = sqrt_linear_rule(IntegralInfo((a + b * symbol) ** exp, symbol))
|
||
|
|
||
|
if simplify(2*exp + 1) == 0:
|
||
|
h, k = -b/(2*c), a - b**2/(4*c) # rewrite base to k + c*(symbol-h)**2
|
||
|
non_square_cond = Ne(k, 0)
|
||
|
square_step = None
|
||
|
if non_square_cond is not S.true:
|
||
|
square_step = NestedPowRule(1/sqrt(c*(symbol-h)**2), symbol, symbol-h, S.NegativeOne)
|
||
|
if non_square_cond is S.false:
|
||
|
return square_step
|
||
|
generic_step = ReciprocalSqrtQuadraticRule(integrand, symbol, a, b, c)
|
||
|
step = _add_degenerate_step(non_square_cond, generic_step, square_step)
|
||
|
if k.is_real and c.is_real:
|
||
|
# list of ((rule, base_exp, a, sign_a, b, sign_b), condition)
|
||
|
rules = []
|
||
|
for args, cond in ( # don't apply ArccoshRule to x**2-1
|
||
|
((ArcsinRule, k, 1, -c, -1, h), And(k > 0, c < 0)), # 1-x**2
|
||
|
((ArcsinhRule, k, 1, c, 1, h), And(k > 0, c > 0)), # 1+x**2
|
||
|
):
|
||
|
if cond is S.true:
|
||
|
return make_inverse_trig(*args)
|
||
|
if cond is not S.false:
|
||
|
rules.append((make_inverse_trig(*args), cond))
|
||
|
if rules:
|
||
|
if not k.is_positive: # conditions are not thorough, need fall back rule
|
||
|
rules.append((generic_step, S.true))
|
||
|
step = PiecewiseRule(integrand, symbol, rules)
|
||
|
else:
|
||
|
step = generic_step
|
||
|
return _add_degenerate_step(generic_cond, step, degenerate_step)
|
||
|
if exp == S.Half:
|
||
|
step = SqrtQuadraticRule(integrand, symbol, a, b, c)
|
||
|
return _add_degenerate_step(generic_cond, step, degenerate_step)
|
||
|
|
||
|
|
||
|
def add_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
results = [integral_steps(g, symbol)
|
||
|
for g in integrand.as_ordered_terms()]
|
||
|
return None if None in results else AddRule(integrand, symbol, results)
|
||
|
|
||
|
|
||
|
def mul_rule(integral: IntegralInfo):
|
||
|
integrand, symbol = integral
|
||
|
|
||
|
# Constant times function case
|
||
|
coeff, f = integrand.as_independent(symbol)
|
||
|
if coeff != 1:
|
||
|
next_step = integral_steps(f, symbol)
|
||
|
if next_step is not None:
|
||
|
return ConstantTimesRule(integrand, symbol, coeff, f, next_step)
|
||
|
|
||
|
|
||
|
def _parts_rule(integrand, symbol) -> tuple[Expr, Expr, Expr, Expr, Rule] | None:
|
||
|
# LIATE rule:
|
||
|
# log, inverse trig, algebraic, trigonometric, exponential
|
||
|
def pull_out_algebraic(integrand):
|
||
|
integrand = integrand.cancel().together()
|
||
|
# iterating over Piecewise args would not work here
|
||
|
algebraic = ([] if isinstance(integrand, Piecewise) or not integrand.is_Mul
|
||
|
else [arg for arg in integrand.args if arg.is_algebraic_expr(symbol)])
|
||
|
if algebraic:
|
||
|
u = Mul(*algebraic)
|
||
|
dv = (integrand / u).cancel()
|
||
|
return u, dv
|
||
|
|
||
|
def pull_out_u(*functions) -> Callable[[Expr], tuple[Expr, Expr] | None]:
|
||
|
def pull_out_u_rl(integrand: Expr) -> tuple[Expr, Expr] | None:
|
||
|
if any(integrand.has(f) for f in functions):
|
||
|
args = [arg for arg in integrand.args
|
||
|
if any(isinstance(arg, cls) for cls in functions)]
|
||
|
if args:
|
||
|
u = Mul(*args)
|
||
|
dv = integrand / u
|
||
|
return u, dv
|
||
|
return None
|
||
|
|
||
|
return pull_out_u_rl
|
||
|
|
||
|
liate_rules = [pull_out_u(log), pull_out_u(*inverse_trig_functions),
|
||
|
pull_out_algebraic, pull_out_u(sin, cos),
|
||
|
pull_out_u(exp)]
|
||
|
|
||
|
|
||
|
dummy = Dummy("temporary")
|
||
|
# we can integrate log(x) and atan(x) by setting dv = 1
|
||
|
if isinstance(integrand, (log, *inverse_trig_functions)):
|
||
|
integrand = dummy * integrand
|
||
|
|
||
|
for index, rule in enumerate(liate_rules):
|
||
|
result = rule(integrand)
|
||
|
|
||
|
if result:
|
||
|
u, dv = result
|
||
|
|
||
|
# Don't pick u to be a constant if possible
|
||
|
if symbol not in u.free_symbols and not u.has(dummy):
|
||
|
return None
|
||
|
|
||
|
u = u.subs(dummy, 1)
|
||
|
dv = dv.subs(dummy, 1)
|
||
|
|
||
|
# Don't pick a non-polynomial algebraic to be differentiated
|
||
|
if rule == pull_out_algebraic and not u.is_polynomial(symbol):
|
||
|
return None
|
||
|
# Don't trade one logarithm for another
|
||
|
if isinstance(u, log):
|
||
|
rec_dv = 1/dv
|
||
|
if (rec_dv.is_polynomial(symbol) and
|
||
|
degree(rec_dv, symbol) == 1):
|
||
|
return None
|
||
|
|
||
|
# Can integrate a polynomial times OrthogonalPolynomial
|
||
|
if rule == pull_out_algebraic:
|
||
|
if dv.is_Derivative or dv.has(TrigonometricFunction) or \
|
||
|
isinstance(dv, OrthogonalPolynomial):
|
||
|
v_step = integral_steps(dv, symbol)
|
||
|
if v_step.contains_dont_know():
|
||
|
return None
|
||
|
else:
|
||
|
du = u.diff(symbol)
|
||
|
v = v_step.eval()
|
||
|
return u, dv, v, du, v_step
|
||
|
|
||
|
# make sure dv is amenable to integration
|
||
|
accept = False
|
||
|
if index < 2: # log and inverse trig are usually worth trying
|
||
|
accept = True
|
||
|
elif (rule == pull_out_algebraic and dv.args and
|
||
|
all(isinstance(a, (sin, cos, exp))
|
||
|
for a in dv.args)):
|
||
|
accept = True
|
||
|
else:
|
||
|
for lrule in liate_rules[index + 1:]:
|
||
|
r = lrule(integrand)
|
||
|
if r and r[0].subs(dummy, 1).equals(dv):
|
||
|
accept = True
|
||
|
break
|
||
|
|
||
|
if accept:
|
||
|
du = u.diff(symbol)
|
||
|
v_step = integral_steps(simplify(dv), symbol)
|
||
|
if not v_step.contains_dont_know():
|
||
|
v = v_step.eval()
|
||
|
return u, dv, v, du, v_step
|
||
|
return None
|
||
|
|
||
|
|
||
|
def parts_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
constant, integrand = integrand.as_coeff_Mul()
|
||
|
|
||
|
result = _parts_rule(integrand, symbol)
|
||
|
|
||
|
steps = []
|
||
|
if result:
|
||
|
u, dv, v, du, v_step = result
|
||
|
debug("u : {}, dv : {}, v : {}, du : {}, v_step: {}".format(u, dv, v, du, v_step))
|
||
|
steps.append(result)
|
||
|
|
||
|
if isinstance(v, Integral):
|
||
|
return
|
||
|
|
||
|
# Set a limit on the number of times u can be used
|
||
|
if isinstance(u, (sin, cos, exp, sinh, cosh)):
|
||
|
cachekey = u.xreplace({symbol: _cache_dummy})
|
||
|
if _parts_u_cache[cachekey] > 2:
|
||
|
return
|
||
|
_parts_u_cache[cachekey] += 1
|
||
|
|
||
|
# Try cyclic integration by parts a few times
|
||
|
for _ in range(4):
|
||
|
debug("Cyclic integration {} with v: {}, du: {}, integrand: {}".format(_, v, du, integrand))
|
||
|
coefficient = ((v * du) / integrand).cancel()
|
||
|
if coefficient == 1:
|
||
|
break
|
||
|
if symbol not in coefficient.free_symbols:
|
||
|
rule = CyclicPartsRule(integrand, symbol,
|
||
|
[PartsRule(None, None, u, dv, v_step, None)
|
||
|
for (u, dv, v, du, v_step) in steps],
|
||
|
(-1) ** len(steps) * coefficient)
|
||
|
if (constant != 1) and rule:
|
||
|
rule = ConstantTimesRule(constant * integrand, symbol, constant, integrand, rule)
|
||
|
return rule
|
||
|
|
||
|
# _parts_rule is sensitive to constants, factor it out
|
||
|
next_constant, next_integrand = (v * du).as_coeff_Mul()
|
||
|
result = _parts_rule(next_integrand, symbol)
|
||
|
|
||
|
if result:
|
||
|
u, dv, v, du, v_step = result
|
||
|
u *= next_constant
|
||
|
du *= next_constant
|
||
|
steps.append((u, dv, v, du, v_step))
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
def make_second_step(steps, integrand):
|
||
|
if steps:
|
||
|
u, dv, v, du, v_step = steps[0]
|
||
|
return PartsRule(integrand, symbol, u, dv, v_step, make_second_step(steps[1:], v * du))
|
||
|
return integral_steps(integrand, symbol)
|
||
|
|
||
|
if steps:
|
||
|
u, dv, v, du, v_step = steps[0]
|
||
|
rule = PartsRule(integrand, symbol, u, dv, v_step, make_second_step(steps[1:], v * du))
|
||
|
if (constant != 1) and rule:
|
||
|
rule = ConstantTimesRule(constant * integrand, symbol, constant, integrand, rule)
|
||
|
return rule
|
||
|
|
||
|
|
||
|
def trig_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
if integrand == sin(symbol):
|
||
|
return SinRule(integrand, symbol)
|
||
|
if integrand == cos(symbol):
|
||
|
return CosRule(integrand, symbol)
|
||
|
if integrand == sec(symbol)**2:
|
||
|
return Sec2Rule(integrand, symbol)
|
||
|
if integrand == csc(symbol)**2:
|
||
|
return Csc2Rule(integrand, symbol)
|
||
|
|
||
|
if isinstance(integrand, tan):
|
||
|
rewritten = sin(*integrand.args) / cos(*integrand.args)
|
||
|
elif isinstance(integrand, cot):
|
||
|
rewritten = cos(*integrand.args) / sin(*integrand.args)
|
||
|
elif isinstance(integrand, sec):
|
||
|
arg = integrand.args[0]
|
||
|
rewritten = ((sec(arg)**2 + tan(arg) * sec(arg)) /
|
||
|
(sec(arg) + tan(arg)))
|
||
|
elif isinstance(integrand, csc):
|
||
|
arg = integrand.args[0]
|
||
|
rewritten = ((csc(arg)**2 + cot(arg) * csc(arg)) /
|
||
|
(csc(arg) + cot(arg)))
|
||
|
else:
|
||
|
return
|
||
|
|
||
|
return RewriteRule(integrand, symbol, rewritten, integral_steps(rewritten, symbol))
|
||
|
|
||
|
def trig_product_rule(integral: IntegralInfo):
|
||
|
integrand, symbol = integral
|
||
|
if integrand == sec(symbol) * tan(symbol):
|
||
|
return SecTanRule(integrand, symbol)
|
||
|
if integrand == csc(symbol) * cot(symbol):
|
||
|
return CscCotRule(integrand, symbol)
|
||
|
|
||
|
|
||
|
def quadratic_denom_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
a = Wild('a', exclude=[symbol])
|
||
|
b = Wild('b', exclude=[symbol])
|
||
|
c = Wild('c', exclude=[symbol])
|
||
|
|
||
|
match = integrand.match(a / (b * symbol ** 2 + c))
|
||
|
|
||
|
if match:
|
||
|
a, b, c = match[a], match[b], match[c]
|
||
|
general_rule = ArctanRule(integrand, symbol, a, b, c)
|
||
|
if b.is_extended_real and c.is_extended_real:
|
||
|
positive_cond = c/b > 0
|
||
|
if positive_cond is S.true:
|
||
|
return general_rule
|
||
|
coeff = a/(2*sqrt(-c)*sqrt(b))
|
||
|
constant = sqrt(-c/b)
|
||
|
r1 = 1/(symbol-constant)
|
||
|
r2 = 1/(symbol+constant)
|
||
|
log_steps = [ReciprocalRule(r1, symbol, symbol-constant),
|
||
|
ConstantTimesRule(-r2, symbol, -1, r2, ReciprocalRule(r2, symbol, symbol+constant))]
|
||
|
rewritten = sub = r1 - r2
|
||
|
negative_step = AddRule(sub, symbol, log_steps)
|
||
|
if coeff != 1:
|
||
|
rewritten = Mul(coeff, sub, evaluate=False)
|
||
|
negative_step = ConstantTimesRule(rewritten, symbol, coeff, sub, negative_step)
|
||
|
negative_step = RewriteRule(integrand, symbol, rewritten, negative_step)
|
||
|
if positive_cond is S.false:
|
||
|
return negative_step
|
||
|
return PiecewiseRule(integrand, symbol, [(general_rule, positive_cond), (negative_step, S.true)])
|
||
|
return general_rule
|
||
|
|
||
|
d = Wild('d', exclude=[symbol])
|
||
|
match2 = integrand.match(a / (b * symbol ** 2 + c * symbol + d))
|
||
|
if match2:
|
||
|
b, c = match2[b], match2[c]
|
||
|
if b.is_zero:
|
||
|
return
|
||
|
u = Dummy('u')
|
||
|
u_func = symbol + c/(2*b)
|
||
|
integrand2 = integrand.subs(symbol, u - c / (2*b))
|
||
|
next_step = integral_steps(integrand2, u)
|
||
|
if next_step:
|
||
|
return URule(integrand2, symbol, u, u_func, next_step)
|
||
|
else:
|
||
|
return
|
||
|
e = Wild('e', exclude=[symbol])
|
||
|
match3 = integrand.match((a* symbol + b) / (c * symbol ** 2 + d * symbol + e))
|
||
|
if match3:
|
||
|
a, b, c, d, e = match3[a], match3[b], match3[c], match3[d], match3[e]
|
||
|
if c.is_zero:
|
||
|
return
|
||
|
denominator = c * symbol**2 + d * symbol + e
|
||
|
const = a/(2*c)
|
||
|
numer1 = (2*c*symbol+d)
|
||
|
numer2 = - const*d + b
|
||
|
u = Dummy('u')
|
||
|
step1 = URule(integrand, symbol,
|
||
|
u, denominator, integral_steps(u**(-1), u))
|
||
|
if const != 1:
|
||
|
step1 = ConstantTimesRule(const*numer1/denominator, symbol,
|
||
|
const, numer1/denominator, step1)
|
||
|
if numer2.is_zero:
|
||
|
return step1
|
||
|
step2 = integral_steps(numer2/denominator, symbol)
|
||
|
substeps = AddRule(integrand, symbol, [step1, step2])
|
||
|
rewriten = const*numer1/denominator+numer2/denominator
|
||
|
return RewriteRule(integrand, symbol, rewriten, substeps)
|
||
|
|
||
|
return
|
||
|
|
||
|
|
||
|
def sqrt_linear_rule(integral: IntegralInfo):
|
||
|
"""
|
||
|
Substitute common (a+b*x)**(1/n)
|
||
|
"""
|
||
|
integrand, x = integral
|
||
|
a = Wild('a', exclude=[x])
|
||
|
b = Wild('b', exclude=[x, 0])
|
||
|
a0 = b0 = 0
|
||
|
bases, qs, bs = [], [], []
|
||
|
for pow_ in integrand.find(Pow): # collect all (a+b*x)**(p/q)
|
||
|
base, exp_ = pow_.base, pow_.exp
|
||
|
if exp_.is_Integer or x not in base.free_symbols: # skip 1/x and sqrt(2)
|
||
|
continue
|
||
|
if not exp_.is_Rational: # exclude x**pi
|
||
|
return
|
||
|
match = base.match(a+b*x)
|
||
|
if not match: # skip non-linear
|
||
|
continue # for sqrt(x+sqrt(x)), although base is non-linear, we can still substitute sqrt(x)
|
||
|
a1, b1 = match[a], match[b]
|
||
|
if a0*b1 != a1*b0 or not (b0/b1).is_nonnegative: # cannot transform sqrt(x) to sqrt(x+1) or sqrt(-x)
|
||
|
return
|
||
|
if b0 == 0 or (b0/b1 > 1) is S.true: # choose the latter of sqrt(2*x) and sqrt(x) as representative
|
||
|
a0, b0 = a1, b1
|
||
|
bases.append(base)
|
||
|
bs.append(b1)
|
||
|
qs.append(exp_.q)
|
||
|
if b0 == 0: # no such pattern found
|
||
|
return
|
||
|
q0: Integer = lcm_list(qs)
|
||
|
u_x = (a0 + b0*x)**(1/q0)
|
||
|
u = Dummy("u")
|
||
|
substituted = integrand.subs({base**(S.One/q): (b/b0)**(S.One/q)*u**(q0/q)
|
||
|
for base, b, q in zip(bases, bs, qs)}).subs(x, (u**q0-a0)/b0)
|
||
|
substep = integral_steps(substituted*u**(q0-1)*q0/b0, u)
|
||
|
if not substep.contains_dont_know():
|
||
|
step: Rule = URule(integrand, x, u, u_x, substep)
|
||
|
generic_cond = Ne(b0, 0)
|
||
|
if generic_cond is not S.true: # possible degenerate case
|
||
|
simplified = integrand.subs({b: 0 for b in bs})
|
||
|
degenerate_step = integral_steps(simplified, x)
|
||
|
step = PiecewiseRule(integrand, x, [(step, generic_cond), (degenerate_step, S.true)])
|
||
|
return step
|
||
|
|
||
|
|
||
|
def sqrt_quadratic_rule(integral: IntegralInfo, degenerate=True):
|
||
|
integrand, x = integral
|
||
|
a = Wild('a', exclude=[x])
|
||
|
b = Wild('b', exclude=[x])
|
||
|
c = Wild('c', exclude=[x, 0])
|
||
|
f = Wild('f')
|
||
|
n = Wild('n', properties=[lambda n: n.is_Integer and n.is_odd])
|
||
|
match = integrand.match(f*sqrt(a+b*x+c*x**2)**n)
|
||
|
if not match:
|
||
|
return
|
||
|
a, b, c, f, n = match[a], match[b], match[c], match[f], match[n]
|
||
|
f_poly = f.as_poly(x)
|
||
|
if f_poly is None:
|
||
|
return
|
||
|
|
||
|
generic_cond = Ne(c, 0)
|
||
|
if not degenerate or generic_cond is S.true:
|
||
|
degenerate_step = None
|
||
|
elif b.is_zero:
|
||
|
degenerate_step = integral_steps(f*sqrt(a)**n, x)
|
||
|
else:
|
||
|
degenerate_step = sqrt_linear_rule(IntegralInfo(f*sqrt(a+b*x)**n, x))
|
||
|
|
||
|
def sqrt_quadratic_denom_rule(numer_poly: Poly, integrand: Expr):
|
||
|
denom = sqrt(a+b*x+c*x**2)
|
||
|
deg = numer_poly.degree()
|
||
|
if deg <= 1:
|
||
|
# integrand == (d+e*x)/sqrt(a+b*x+c*x**2)
|
||
|
e, d = numer_poly.all_coeffs() if deg == 1 else (S.Zero, numer_poly.as_expr())
|
||
|
# rewrite numerator to A*(2*c*x+b) + B
|
||
|
A = e/(2*c)
|
||
|
B = d-A*b
|
||
|
pre_substitute = (2*c*x+b)/denom
|
||
|
constant_step: Rule | None = None
|
||
|
linear_step: Rule | None = None
|
||
|
if A != 0:
|
||
|
u = Dummy("u")
|
||
|
pow_rule = PowerRule(1/sqrt(u), u, u, -S.Half)
|
||
|
linear_step = URule(pre_substitute, x, u, a+b*x+c*x**2, pow_rule)
|
||
|
if A != 1:
|
||
|
linear_step = ConstantTimesRule(A*pre_substitute, x, A, pre_substitute, linear_step)
|
||
|
if B != 0:
|
||
|
constant_step = inverse_trig_rule(IntegralInfo(1/denom, x), degenerate=False)
|
||
|
if B != 1:
|
||
|
constant_step = ConstantTimesRule(B/denom, x, B, 1/denom, constant_step) # type: ignore
|
||
|
if linear_step and constant_step:
|
||
|
add = Add(A*pre_substitute, B/denom, evaluate=False)
|
||
|
step: Rule | None = RewriteRule(integrand, x, add, AddRule(add, x, [linear_step, constant_step]))
|
||
|
else:
|
||
|
step = linear_step or constant_step
|
||
|
else:
|
||
|
coeffs = numer_poly.all_coeffs()
|
||
|
step = SqrtQuadraticDenomRule(integrand, x, a, b, c, coeffs)
|
||
|
return step
|
||
|
|
||
|
if n > 0: # rewrite poly * sqrt(s)**(2*k-1) to poly*s**k / sqrt(s)
|
||
|
numer_poly = f_poly * (a+b*x+c*x**2)**((n+1)/2)
|
||
|
rewritten = numer_poly.as_expr()/sqrt(a+b*x+c*x**2)
|
||
|
substep = sqrt_quadratic_denom_rule(numer_poly, rewritten)
|
||
|
generic_step = RewriteRule(integrand, x, rewritten, substep)
|
||
|
elif n == -1:
|
||
|
generic_step = sqrt_quadratic_denom_rule(f_poly, integrand)
|
||
|
else:
|
||
|
return # todo: handle n < -1 case
|
||
|
return _add_degenerate_step(generic_cond, generic_step, degenerate_step)
|
||
|
|
||
|
|
||
|
def hyperbolic_rule(integral: tuple[Expr, Symbol]):
|
||
|
integrand, symbol = integral
|
||
|
if isinstance(integrand, HyperbolicFunction) and integrand.args[0] == symbol:
|
||
|
if integrand.func == sinh:
|
||
|
return SinhRule(integrand, symbol)
|
||
|
if integrand.func == cosh:
|
||
|
return CoshRule(integrand, symbol)
|
||
|
u = Dummy('u')
|
||
|
if integrand.func == tanh:
|
||
|
rewritten = sinh(symbol)/cosh(symbol)
|
||
|
return RewriteRule(integrand, symbol, rewritten,
|
||
|
URule(rewritten, symbol, u, cosh(symbol), ReciprocalRule(1/u, u, u)))
|
||
|
if integrand.func == coth:
|
||
|
rewritten = cosh(symbol)/sinh(symbol)
|
||
|
return RewriteRule(integrand, symbol, rewritten,
|
||
|
URule(rewritten, symbol, u, sinh(symbol), ReciprocalRule(1/u, u, u)))
|
||
|
else:
|
||
|
rewritten = integrand.rewrite(tanh)
|
||
|
if integrand.func == sech:
|
||
|
return RewriteRule(integrand, symbol, rewritten,
|
||
|
URule(rewritten, symbol, u, tanh(symbol/2),
|
||
|
ArctanRule(2/(u**2 + 1), u, S(2), S.One, S.One)))
|
||
|
if integrand.func == csch:
|
||
|
return RewriteRule(integrand, symbol, rewritten,
|
||
|
URule(rewritten, symbol, u, tanh(symbol/2),
|
||
|
ReciprocalRule(1/u, u, u)))
|
||
|
|
||
|
@cacheit
|
||
|
def make_wilds(symbol):
|
||
|
a = Wild('a', exclude=[symbol])
|
||
|
b = Wild('b', exclude=[symbol])
|
||
|
m = Wild('m', exclude=[symbol], properties=[lambda n: isinstance(n, Integer)])
|
||
|
n = Wild('n', exclude=[symbol], properties=[lambda n: isinstance(n, Integer)])
|
||
|
|
||
|
return a, b, m, n
|
||
|
|
||
|
@cacheit
|
||
|
def sincos_pattern(symbol):
|
||
|
a, b, m, n = make_wilds(symbol)
|
||
|
pattern = sin(a*symbol)**m * cos(b*symbol)**n
|
||
|
|
||
|
return pattern, a, b, m, n
|
||
|
|
||
|
@cacheit
|
||
|
def tansec_pattern(symbol):
|
||
|
a, b, m, n = make_wilds(symbol)
|
||
|
pattern = tan(a*symbol)**m * sec(b*symbol)**n
|
||
|
|
||
|
return pattern, a, b, m, n
|
||
|
|
||
|
@cacheit
|
||
|
def cotcsc_pattern(symbol):
|
||
|
a, b, m, n = make_wilds(symbol)
|
||
|
pattern = cot(a*symbol)**m * csc(b*symbol)**n
|
||
|
|
||
|
return pattern, a, b, m, n
|
||
|
|
||
|
@cacheit
|
||
|
def heaviside_pattern(symbol):
|
||
|
m = Wild('m', exclude=[symbol])
|
||
|
b = Wild('b', exclude=[symbol])
|
||
|
g = Wild('g')
|
||
|
pattern = Heaviside(m*symbol + b) * g
|
||
|
|
||
|
return pattern, m, b, g
|
||
|
|
||
|
def uncurry(func):
|
||
|
def uncurry_rl(args):
|
||
|
return func(*args)
|
||
|
return uncurry_rl
|
||
|
|
||
|
def trig_rewriter(rewrite):
|
||
|
def trig_rewriter_rl(args):
|
||
|
a, b, m, n, integrand, symbol = args
|
||
|
rewritten = rewrite(a, b, m, n, integrand, symbol)
|
||
|
if rewritten != integrand:
|
||
|
return RewriteRule(integrand, symbol, rewritten, integral_steps(rewritten, symbol))
|
||
|
return trig_rewriter_rl
|
||
|
|
||
|
sincos_botheven_condition = uncurry(
|
||
|
lambda a, b, m, n, i, s: m.is_even and n.is_even and
|
||
|
m.is_nonnegative and n.is_nonnegative)
|
||
|
|
||
|
sincos_botheven = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( (((1 - cos(2*a*symbol)) / 2) ** (m / 2)) *
|
||
|
(((1 + cos(2*b*symbol)) / 2) ** (n / 2)) ))
|
||
|
|
||
|
sincos_sinodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd and m >= 3)
|
||
|
|
||
|
sincos_sinodd = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( (1 - cos(a*symbol)**2)**((m - 1) / 2) *
|
||
|
sin(a*symbol) *
|
||
|
cos(b*symbol) ** n))
|
||
|
|
||
|
sincos_cosodd_condition = uncurry(lambda a, b, m, n, i, s: n.is_odd and n >= 3)
|
||
|
|
||
|
sincos_cosodd = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( (1 - sin(b*symbol)**2)**((n - 1) / 2) *
|
||
|
cos(b*symbol) *
|
||
|
sin(a*symbol) ** m))
|
||
|
|
||
|
tansec_seceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
|
||
|
tansec_seceven = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( (1 + tan(b*symbol)**2) ** (n/2 - 1) *
|
||
|
sec(b*symbol)**2 *
|
||
|
tan(a*symbol) ** m ))
|
||
|
|
||
|
tansec_tanodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
|
||
|
tansec_tanodd = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( (sec(a*symbol)**2 - 1) ** ((m - 1) / 2) *
|
||
|
tan(a*symbol) *
|
||
|
sec(b*symbol) ** n ))
|
||
|
|
||
|
tan_tansquared_condition = uncurry(lambda a, b, m, n, i, s: m == 2 and n == 0)
|
||
|
tan_tansquared = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( sec(a*symbol)**2 - 1))
|
||
|
|
||
|
cotcsc_csceven_condition = uncurry(lambda a, b, m, n, i, s: n.is_even and n >= 4)
|
||
|
cotcsc_csceven = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( (1 + cot(b*symbol)**2) ** (n/2 - 1) *
|
||
|
csc(b*symbol)**2 *
|
||
|
cot(a*symbol) ** m ))
|
||
|
|
||
|
cotcsc_cotodd_condition = uncurry(lambda a, b, m, n, i, s: m.is_odd)
|
||
|
cotcsc_cotodd = trig_rewriter(
|
||
|
lambda a, b, m, n, i, symbol: ( (csc(a*symbol)**2 - 1) ** ((m - 1) / 2) *
|
||
|
cot(a*symbol) *
|
||
|
csc(b*symbol) ** n ))
|
||
|
|
||
|
def trig_sincos_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
|
||
|
if any(integrand.has(f) for f in (sin, cos)):
|
||
|
pattern, a, b, m, n = sincos_pattern(symbol)
|
||
|
match = integrand.match(pattern)
|
||
|
if not match:
|
||
|
return
|
||
|
|
||
|
return multiplexer({
|
||
|
sincos_botheven_condition: sincos_botheven,
|
||
|
sincos_sinodd_condition: sincos_sinodd,
|
||
|
sincos_cosodd_condition: sincos_cosodd
|
||
|
})(tuple(
|
||
|
[match.get(i, S.Zero) for i in (a, b, m, n)] +
|
||
|
[integrand, symbol]))
|
||
|
|
||
|
def trig_tansec_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
|
||
|
integrand = integrand.subs({
|
||
|
1 / cos(symbol): sec(symbol)
|
||
|
})
|
||
|
|
||
|
if any(integrand.has(f) for f in (tan, sec)):
|
||
|
pattern, a, b, m, n = tansec_pattern(symbol)
|
||
|
match = integrand.match(pattern)
|
||
|
if not match:
|
||
|
return
|
||
|
|
||
|
return multiplexer({
|
||
|
tansec_tanodd_condition: tansec_tanodd,
|
||
|
tansec_seceven_condition: tansec_seceven,
|
||
|
tan_tansquared_condition: tan_tansquared
|
||
|
})(tuple(
|
||
|
[match.get(i, S.Zero) for i in (a, b, m, n)] +
|
||
|
[integrand, symbol]))
|
||
|
|
||
|
def trig_cotcsc_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
integrand = integrand.subs({
|
||
|
1 / sin(symbol): csc(symbol),
|
||
|
1 / tan(symbol): cot(symbol),
|
||
|
cos(symbol) / tan(symbol): cot(symbol)
|
||
|
})
|
||
|
|
||
|
if any(integrand.has(f) for f in (cot, csc)):
|
||
|
pattern, a, b, m, n = cotcsc_pattern(symbol)
|
||
|
match = integrand.match(pattern)
|
||
|
if not match:
|
||
|
return
|
||
|
|
||
|
return multiplexer({
|
||
|
cotcsc_cotodd_condition: cotcsc_cotodd,
|
||
|
cotcsc_csceven_condition: cotcsc_csceven
|
||
|
})(tuple(
|
||
|
[match.get(i, S.Zero) for i in (a, b, m, n)] +
|
||
|
[integrand, symbol]))
|
||
|
|
||
|
def trig_sindouble_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
a = Wild('a', exclude=[sin(2*symbol)])
|
||
|
match = integrand.match(sin(2*symbol)*a)
|
||
|
if match:
|
||
|
sin_double = 2*sin(symbol)*cos(symbol)/sin(2*symbol)
|
||
|
return integral_steps(integrand * sin_double, symbol)
|
||
|
|
||
|
def trig_powers_products_rule(integral):
|
||
|
return do_one(null_safe(trig_sincos_rule),
|
||
|
null_safe(trig_tansec_rule),
|
||
|
null_safe(trig_cotcsc_rule),
|
||
|
null_safe(trig_sindouble_rule))(integral)
|
||
|
|
||
|
def trig_substitution_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
A = Wild('a', exclude=[0, symbol])
|
||
|
B = Wild('b', exclude=[0, symbol])
|
||
|
theta = Dummy("theta")
|
||
|
target_pattern = A + B*symbol**2
|
||
|
|
||
|
matches = integrand.find(target_pattern)
|
||
|
for expr in matches:
|
||
|
match = expr.match(target_pattern)
|
||
|
a = match.get(A, S.Zero)
|
||
|
b = match.get(B, S.Zero)
|
||
|
|
||
|
a_positive = ((a.is_number and a > 0) or a.is_positive)
|
||
|
b_positive = ((b.is_number and b > 0) or b.is_positive)
|
||
|
a_negative = ((a.is_number and a < 0) or a.is_negative)
|
||
|
b_negative = ((b.is_number and b < 0) or b.is_negative)
|
||
|
x_func = None
|
||
|
if a_positive and b_positive:
|
||
|
# a**2 + b*x**2. Assume sec(theta) > 0, -pi/2 < theta < pi/2
|
||
|
x_func = (sqrt(a)/sqrt(b)) * tan(theta)
|
||
|
# Do not restrict the domain: tan(theta) takes on any real
|
||
|
# value on the interval -pi/2 < theta < pi/2 so x takes on
|
||
|
# any value
|
||
|
restriction = True
|
||
|
elif a_positive and b_negative:
|
||
|
# a**2 - b*x**2. Assume cos(theta) > 0, -pi/2 < theta < pi/2
|
||
|
constant = sqrt(a)/sqrt(-b)
|
||
|
x_func = constant * sin(theta)
|
||
|
restriction = And(symbol > -constant, symbol < constant)
|
||
|
elif a_negative and b_positive:
|
||
|
# b*x**2 - a**2. Assume sin(theta) > 0, 0 < theta < pi
|
||
|
constant = sqrt(-a)/sqrt(b)
|
||
|
x_func = constant * sec(theta)
|
||
|
restriction = And(symbol > -constant, symbol < constant)
|
||
|
if x_func:
|
||
|
# Manually simplify sqrt(trig(theta)**2) to trig(theta)
|
||
|
# Valid due to assumed domain restriction
|
||
|
substitutions = {}
|
||
|
for f in [sin, cos, tan,
|
||
|
sec, csc, cot]:
|
||
|
substitutions[sqrt(f(theta)**2)] = f(theta)
|
||
|
substitutions[sqrt(f(theta)**(-2))] = 1/f(theta)
|
||
|
|
||
|
replaced = integrand.subs(symbol, x_func).trigsimp()
|
||
|
replaced = manual_subs(replaced, substitutions)
|
||
|
if not replaced.has(symbol):
|
||
|
replaced *= manual_diff(x_func, theta)
|
||
|
replaced = replaced.trigsimp()
|
||
|
secants = replaced.find(1/cos(theta))
|
||
|
if secants:
|
||
|
replaced = replaced.xreplace({
|
||
|
1/cos(theta): sec(theta)
|
||
|
})
|
||
|
|
||
|
substep = integral_steps(replaced, theta)
|
||
|
if not substep.contains_dont_know():
|
||
|
return TrigSubstitutionRule(integrand, symbol,
|
||
|
theta, x_func, replaced, substep, restriction)
|
||
|
|
||
|
def heaviside_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
pattern, m, b, g = heaviside_pattern(symbol)
|
||
|
match = integrand.match(pattern)
|
||
|
if match and 0 != match[g]:
|
||
|
# f = Heaviside(m*x + b)*g
|
||
|
substep = integral_steps(match[g], symbol)
|
||
|
m, b = match[m], match[b]
|
||
|
return HeavisideRule(integrand, symbol, m*symbol + b, -b/m, substep)
|
||
|
|
||
|
|
||
|
def dirac_delta_rule(integral: IntegralInfo):
|
||
|
integrand, x = integral
|
||
|
if len(integrand.args) == 1:
|
||
|
n = S.Zero
|
||
|
else:
|
||
|
n = integrand.args[1]
|
||
|
if not n.is_Integer or n < 0:
|
||
|
return
|
||
|
a, b = Wild('a', exclude=[x]), Wild('b', exclude=[x, 0])
|
||
|
match = integrand.args[0].match(a+b*x)
|
||
|
if not match:
|
||
|
return
|
||
|
a, b = match[a], match[b]
|
||
|
generic_cond = Ne(b, 0)
|
||
|
if generic_cond is S.true:
|
||
|
degenerate_step = None
|
||
|
else:
|
||
|
degenerate_step = ConstantRule(DiracDelta(a, n), x)
|
||
|
generic_step = DiracDeltaRule(integrand, x, n, a, b)
|
||
|
return _add_degenerate_step(generic_cond, generic_step, degenerate_step)
|
||
|
|
||
|
|
||
|
def substitution_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
|
||
|
u_var = Dummy("u")
|
||
|
substitutions = find_substitutions(integrand, symbol, u_var)
|
||
|
count = 0
|
||
|
if substitutions:
|
||
|
debug("List of Substitution Rules")
|
||
|
ways = []
|
||
|
for u_func, c, substituted in substitutions:
|
||
|
subrule = integral_steps(substituted, u_var)
|
||
|
count = count + 1
|
||
|
debug("Rule {}: {}".format(count, subrule))
|
||
|
|
||
|
if subrule.contains_dont_know():
|
||
|
continue
|
||
|
|
||
|
if simplify(c - 1) != 0:
|
||
|
_, denom = c.as_numer_denom()
|
||
|
if subrule:
|
||
|
subrule = ConstantTimesRule(c * substituted, u_var, c, substituted, subrule)
|
||
|
|
||
|
if denom.free_symbols:
|
||
|
piecewise = []
|
||
|
could_be_zero = []
|
||
|
|
||
|
if isinstance(denom, Mul):
|
||
|
could_be_zero = denom.args
|
||
|
else:
|
||
|
could_be_zero.append(denom)
|
||
|
|
||
|
for expr in could_be_zero:
|
||
|
if not fuzzy_not(expr.is_zero):
|
||
|
substep = integral_steps(manual_subs(integrand, expr, 0), symbol)
|
||
|
|
||
|
if substep:
|
||
|
piecewise.append((
|
||
|
substep,
|
||
|
Eq(expr, 0)
|
||
|
))
|
||
|
piecewise.append((subrule, True))
|
||
|
subrule = PiecewiseRule(substituted, symbol, piecewise)
|
||
|
|
||
|
ways.append(URule(integrand, symbol, u_var, u_func, subrule))
|
||
|
|
||
|
if len(ways) > 1:
|
||
|
return AlternativeRule(integrand, symbol, ways)
|
||
|
elif ways:
|
||
|
return ways[0]
|
||
|
|
||
|
|
||
|
partial_fractions_rule = rewriter(
|
||
|
lambda integrand, symbol: integrand.is_rational_function(),
|
||
|
lambda integrand, symbol: integrand.apart(symbol))
|
||
|
|
||
|
cancel_rule = rewriter(
|
||
|
# lambda integrand, symbol: integrand.is_algebraic_expr(),
|
||
|
# lambda integrand, symbol: isinstance(integrand, Mul),
|
||
|
lambda integrand, symbol: True,
|
||
|
lambda integrand, symbol: integrand.cancel())
|
||
|
|
||
|
distribute_expand_rule = rewriter(
|
||
|
lambda integrand, symbol: (
|
||
|
all(arg.is_Pow or arg.is_polynomial(symbol) for arg in integrand.args)
|
||
|
or isinstance(integrand, Pow)
|
||
|
or isinstance(integrand, Mul)),
|
||
|
lambda integrand, symbol: integrand.expand())
|
||
|
|
||
|
trig_expand_rule = rewriter(
|
||
|
# If there are trig functions with different arguments, expand them
|
||
|
lambda integrand, symbol: (
|
||
|
len({a.args[0] for a in integrand.atoms(TrigonometricFunction)}) > 1),
|
||
|
lambda integrand, symbol: integrand.expand(trig=True))
|
||
|
|
||
|
def derivative_rule(integral):
|
||
|
integrand = integral[0]
|
||
|
diff_variables = integrand.variables
|
||
|
undifferentiated_function = integrand.expr
|
||
|
integrand_variables = undifferentiated_function.free_symbols
|
||
|
|
||
|
if integral.symbol in integrand_variables:
|
||
|
if integral.symbol in diff_variables:
|
||
|
return DerivativeRule(*integral)
|
||
|
else:
|
||
|
return DontKnowRule(integrand, integral.symbol)
|
||
|
else:
|
||
|
return ConstantRule(*integral)
|
||
|
|
||
|
def rewrites_rule(integral):
|
||
|
integrand, symbol = integral
|
||
|
|
||
|
if integrand.match(1/cos(symbol)):
|
||
|
rewritten = integrand.subs(1/cos(symbol), sec(symbol))
|
||
|
return RewriteRule(integrand, symbol, rewritten, integral_steps(rewritten, symbol))
|
||
|
|
||
|
def fallback_rule(integral):
|
||
|
return DontKnowRule(*integral)
|
||
|
|
||
|
# Cache is used to break cyclic integrals.
|
||
|
# Need to use the same dummy variable in cached expressions for them to match.
|
||
|
# Also record "u" of integration by parts, to avoid infinite repetition.
|
||
|
_integral_cache: dict[Expr, Expr | None] = {}
|
||
|
_parts_u_cache: dict[Expr, int] = defaultdict(int)
|
||
|
_cache_dummy = Dummy("z")
|
||
|
|
||
|
def integral_steps(integrand, symbol, **options):
|
||
|
"""Returns the steps needed to compute an integral.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function attempts to mirror what a student would do by hand as
|
||
|
closely as possible.
|
||
|
|
||
|
SymPy Gamma uses this to provide a step-by-step explanation of an
|
||
|
integral. The code it uses to format the results of this function can be
|
||
|
found at
|
||
|
https://github.com/sympy/sympy_gamma/blob/master/app/logic/intsteps.py.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import exp, sin
|
||
|
>>> from sympy.integrals.manualintegrate import integral_steps
|
||
|
>>> from sympy.abc import x
|
||
|
>>> print(repr(integral_steps(exp(x) / (1 + exp(2 * x)), x))) \
|
||
|
# doctest: +NORMALIZE_WHITESPACE
|
||
|
URule(integrand=exp(x)/(exp(2*x) + 1), variable=x, u_var=_u, u_func=exp(x),
|
||
|
substep=ArctanRule(integrand=1/(_u**2 + 1), variable=_u, a=1, b=1, c=1))
|
||
|
>>> print(repr(integral_steps(sin(x), x))) \
|
||
|
# doctest: +NORMALIZE_WHITESPACE
|
||
|
SinRule(integrand=sin(x), variable=x)
|
||
|
>>> print(repr(integral_steps((x**2 + 3)**2, x))) \
|
||
|
# doctest: +NORMALIZE_WHITESPACE
|
||
|
RewriteRule(integrand=(x**2 + 3)**2, variable=x, rewritten=x**4 + 6*x**2 + 9,
|
||
|
substep=AddRule(integrand=x**4 + 6*x**2 + 9, variable=x,
|
||
|
substeps=[PowerRule(integrand=x**4, variable=x, base=x, exp=4),
|
||
|
ConstantTimesRule(integrand=6*x**2, variable=x, constant=6, other=x**2,
|
||
|
substep=PowerRule(integrand=x**2, variable=x, base=x, exp=2)),
|
||
|
ConstantRule(integrand=9, variable=x)]))
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
rule : Rule
|
||
|
The first step; most rules have substeps that must also be
|
||
|
considered. These substeps can be evaluated using ``manualintegrate``
|
||
|
to obtain a result.
|
||
|
|
||
|
"""
|
||
|
cachekey = integrand.xreplace({symbol: _cache_dummy})
|
||
|
if cachekey in _integral_cache:
|
||
|
if _integral_cache[cachekey] is None:
|
||
|
# Stop this attempt, because it leads around in a loop
|
||
|
return DontKnowRule(integrand, symbol)
|
||
|
else:
|
||
|
# TODO: This is for future development, as currently
|
||
|
# _integral_cache gets no values other than None
|
||
|
return (_integral_cache[cachekey].xreplace(_cache_dummy, symbol),
|
||
|
symbol)
|
||
|
else:
|
||
|
_integral_cache[cachekey] = None
|
||
|
|
||
|
integral = IntegralInfo(integrand, symbol)
|
||
|
|
||
|
def key(integral):
|
||
|
integrand = integral.integrand
|
||
|
|
||
|
if symbol not in integrand.free_symbols:
|
||
|
return Number
|
||
|
for cls in (Symbol, TrigonometricFunction, OrthogonalPolynomial):
|
||
|
if isinstance(integrand, cls):
|
||
|
return cls
|
||
|
return type(integrand)
|
||
|
|
||
|
def integral_is_subclass(*klasses):
|
||
|
def _integral_is_subclass(integral):
|
||
|
k = key(integral)
|
||
|
return k and issubclass(k, klasses)
|
||
|
return _integral_is_subclass
|
||
|
|
||
|
result = do_one(
|
||
|
null_safe(special_function_rule),
|
||
|
null_safe(switch(key, {
|
||
|
Pow: do_one(null_safe(power_rule), null_safe(inverse_trig_rule),
|
||
|
null_safe(sqrt_linear_rule),
|
||
|
null_safe(quadratic_denom_rule)),
|
||
|
Symbol: power_rule,
|
||
|
exp: exp_rule,
|
||
|
Add: add_rule,
|
||
|
Mul: do_one(null_safe(mul_rule), null_safe(trig_product_rule),
|
||
|
null_safe(heaviside_rule), null_safe(quadratic_denom_rule),
|
||
|
null_safe(sqrt_linear_rule),
|
||
|
null_safe(sqrt_quadratic_rule)),
|
||
|
Derivative: derivative_rule,
|
||
|
TrigonometricFunction: trig_rule,
|
||
|
Heaviside: heaviside_rule,
|
||
|
DiracDelta: dirac_delta_rule,
|
||
|
OrthogonalPolynomial: orthogonal_poly_rule,
|
||
|
Number: constant_rule
|
||
|
})),
|
||
|
do_one(
|
||
|
null_safe(trig_rule),
|
||
|
null_safe(hyperbolic_rule),
|
||
|
null_safe(alternatives(
|
||
|
rewrites_rule,
|
||
|
substitution_rule,
|
||
|
condition(
|
||
|
integral_is_subclass(Mul, Pow),
|
||
|
partial_fractions_rule),
|
||
|
condition(
|
||
|
integral_is_subclass(Mul, Pow),
|
||
|
cancel_rule),
|
||
|
condition(
|
||
|
integral_is_subclass(Mul, log,
|
||
|
*inverse_trig_functions),
|
||
|
parts_rule),
|
||
|
condition(
|
||
|
integral_is_subclass(Mul, Pow),
|
||
|
distribute_expand_rule),
|
||
|
trig_powers_products_rule,
|
||
|
trig_expand_rule
|
||
|
)),
|
||
|
null_safe(condition(integral_is_subclass(Mul, Pow), nested_pow_rule)),
|
||
|
null_safe(trig_substitution_rule)
|
||
|
),
|
||
|
fallback_rule)(integral)
|
||
|
del _integral_cache[cachekey]
|
||
|
return result
|
||
|
|
||
|
|
||
|
def manualintegrate(f, var):
|
||
|
"""manualintegrate(f, var)
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Compute indefinite integral of a single variable using an algorithm that
|
||
|
resembles what a student would do by hand.
|
||
|
|
||
|
Unlike :func:`~.integrate`, var can only be a single symbol.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin, cos, tan, exp, log, integrate
|
||
|
>>> from sympy.integrals.manualintegrate import manualintegrate
|
||
|
>>> from sympy.abc import x
|
||
|
>>> manualintegrate(1 / x, x)
|
||
|
log(x)
|
||
|
>>> integrate(1/x)
|
||
|
log(x)
|
||
|
>>> manualintegrate(log(x), x)
|
||
|
x*log(x) - x
|
||
|
>>> integrate(log(x))
|
||
|
x*log(x) - x
|
||
|
>>> manualintegrate(exp(x) / (1 + exp(2 * x)), x)
|
||
|
atan(exp(x))
|
||
|
>>> integrate(exp(x) / (1 + exp(2 * x)))
|
||
|
RootSum(4*_z**2 + 1, Lambda(_i, _i*log(2*_i + exp(x))))
|
||
|
>>> manualintegrate(cos(x)**4 * sin(x), x)
|
||
|
-cos(x)**5/5
|
||
|
>>> integrate(cos(x)**4 * sin(x), x)
|
||
|
-cos(x)**5/5
|
||
|
>>> manualintegrate(cos(x)**4 * sin(x)**3, x)
|
||
|
cos(x)**7/7 - cos(x)**5/5
|
||
|
>>> integrate(cos(x)**4 * sin(x)**3, x)
|
||
|
cos(x)**7/7 - cos(x)**5/5
|
||
|
>>> manualintegrate(tan(x), x)
|
||
|
-log(cos(x))
|
||
|
>>> integrate(tan(x), x)
|
||
|
-log(cos(x))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.integrals.integrals.integrate
|
||
|
sympy.integrals.integrals.Integral.doit
|
||
|
sympy.integrals.integrals.Integral
|
||
|
"""
|
||
|
result = integral_steps(f, var).eval()
|
||
|
# Clear the cache of u-parts
|
||
|
_parts_u_cache.clear()
|
||
|
# If we got Piecewise with two parts, put generic first
|
||
|
if isinstance(result, Piecewise) and len(result.args) == 2:
|
||
|
cond = result.args[0][1]
|
||
|
if isinstance(cond, Eq) and result.args[1][1] == True:
|
||
|
result = result.func(
|
||
|
(result.args[1][0], Ne(*cond.args)),
|
||
|
(result.args[0][0], True))
|
||
|
return result
|