336 lines
11 KiB
Python
336 lines
11 KiB
Python
|
from sympy.core import cacheit, Dummy, Ne, Integer, Rational, S, Wild
|
||
|
from sympy.functions import binomial, sin, cos, Piecewise, Abs
|
||
|
from .integrals import integrate
|
||
|
|
||
|
# TODO sin(a*x)*cos(b*x) -> sin((a+b)x) + sin((a-b)x) ?
|
||
|
|
||
|
# creating, each time, Wild's and sin/cos/Mul is expensive. Also, our match &
|
||
|
# subs are very slow when not cached, and if we create Wild each time, we
|
||
|
# effectively block caching.
|
||
|
#
|
||
|
# so we cache the pattern
|
||
|
|
||
|
# need to use a function instead of lamda since hash of lambda changes on
|
||
|
# each call to _pat_sincos
|
||
|
def _integer_instance(n):
|
||
|
return isinstance(n, Integer)
|
||
|
|
||
|
@cacheit
|
||
|
def _pat_sincos(x):
|
||
|
a = Wild('a', exclude=[x])
|
||
|
n, m = [Wild(s, exclude=[x], properties=[_integer_instance])
|
||
|
for s in 'nm']
|
||
|
pat = sin(a*x)**n * cos(a*x)**m
|
||
|
return pat, a, n, m
|
||
|
|
||
|
_u = Dummy('u')
|
||
|
|
||
|
|
||
|
def trigintegrate(f, x, conds='piecewise'):
|
||
|
"""
|
||
|
Integrate f = Mul(trig) over x.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sin, cos, tan, sec
|
||
|
>>> from sympy.integrals.trigonometry import trigintegrate
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> trigintegrate(sin(x)*cos(x), x)
|
||
|
sin(x)**2/2
|
||
|
|
||
|
>>> trigintegrate(sin(x)**2, x)
|
||
|
x/2 - sin(x)*cos(x)/2
|
||
|
|
||
|
>>> trigintegrate(tan(x)*sec(x), x)
|
||
|
1/cos(x)
|
||
|
|
||
|
>>> trigintegrate(sin(x)*tan(x), x)
|
||
|
-log(sin(x) - 1)/2 + log(sin(x) + 1)/2 - sin(x)
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikibooks.org/wiki/Calculus/Integration_techniques
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.integrals.integrals.Integral.doit
|
||
|
sympy.integrals.integrals.Integral
|
||
|
"""
|
||
|
pat, a, n, m = _pat_sincos(x)
|
||
|
|
||
|
f = f.rewrite('sincos')
|
||
|
M = f.match(pat)
|
||
|
|
||
|
if M is None:
|
||
|
return
|
||
|
|
||
|
n, m = M[n], M[m]
|
||
|
if n.is_zero and m.is_zero:
|
||
|
return x
|
||
|
zz = x if n.is_zero else S.Zero
|
||
|
|
||
|
a = M[a]
|
||
|
|
||
|
if n.is_odd or m.is_odd:
|
||
|
u = _u
|
||
|
n_, m_ = n.is_odd, m.is_odd
|
||
|
|
||
|
# take smallest n or m -- to choose simplest substitution
|
||
|
if n_ and m_:
|
||
|
|
||
|
# Make sure to choose the positive one
|
||
|
# otherwise an incorrect integral can occur.
|
||
|
if n < 0 and m > 0:
|
||
|
m_ = True
|
||
|
n_ = False
|
||
|
elif m < 0 and n > 0:
|
||
|
n_ = True
|
||
|
m_ = False
|
||
|
# Both are negative so choose the smallest n or m
|
||
|
# in absolute value for simplest substitution.
|
||
|
elif (n < 0 and m < 0):
|
||
|
n_ = n > m
|
||
|
m_ = not (n > m)
|
||
|
|
||
|
# Both n and m are odd and positive
|
||
|
else:
|
||
|
n_ = (n < m) # NB: careful here, one of the
|
||
|
m_ = not (n < m) # conditions *must* be true
|
||
|
|
||
|
# n m u=C (n-1)/2 m
|
||
|
# S(x) * C(x) dx --> -(1-u^2) * u du
|
||
|
if n_:
|
||
|
ff = -(1 - u**2)**((n - 1)/2) * u**m
|
||
|
uu = cos(a*x)
|
||
|
|
||
|
# n m u=S n (m-1)/2
|
||
|
# S(x) * C(x) dx --> u * (1-u^2) du
|
||
|
elif m_:
|
||
|
ff = u**n * (1 - u**2)**((m - 1)/2)
|
||
|
uu = sin(a*x)
|
||
|
|
||
|
fi = integrate(ff, u) # XXX cyclic deps
|
||
|
fx = fi.subs(u, uu)
|
||
|
if conds == 'piecewise':
|
||
|
return Piecewise((fx / a, Ne(a, 0)), (zz, True))
|
||
|
return fx / a
|
||
|
|
||
|
# n & m are both even
|
||
|
#
|
||
|
# 2k 2m 2l 2l
|
||
|
# we transform S (x) * C (x) into terms with only S (x) or C (x)
|
||
|
#
|
||
|
# example:
|
||
|
# 100 4 100 2 2 100 4 2
|
||
|
# S (x) * C (x) = S (x) * (1-S (x)) = S (x) * (1 + S (x) - 2*S (x))
|
||
|
#
|
||
|
# 104 102 100
|
||
|
# = S (x) - 2*S (x) + S (x)
|
||
|
# 2k
|
||
|
# then S is integrated with recursive formula
|
||
|
|
||
|
# take largest n or m -- to choose simplest substitution
|
||
|
n_ = (Abs(n) > Abs(m))
|
||
|
m_ = (Abs(m) > Abs(n))
|
||
|
res = S.Zero
|
||
|
|
||
|
if n_:
|
||
|
# 2k 2 k i 2i
|
||
|
# C = (1 - S ) = sum(i, (-) * B(k, i) * S )
|
||
|
if m > 0:
|
||
|
for i in range(0, m//2 + 1):
|
||
|
res += (S.NegativeOne**i * binomial(m//2, i) *
|
||
|
_sin_pow_integrate(n + 2*i, x))
|
||
|
|
||
|
elif m == 0:
|
||
|
res = _sin_pow_integrate(n, x)
|
||
|
else:
|
||
|
|
||
|
# m < 0 , |n| > |m|
|
||
|
# /
|
||
|
# |
|
||
|
# | m n
|
||
|
# | cos (x) sin (x) dx =
|
||
|
# |
|
||
|
# |
|
||
|
#/
|
||
|
# /
|
||
|
# |
|
||
|
# -1 m+1 n-1 n - 1 | m+2 n-2
|
||
|
# ________ cos (x) sin (x) + _______ | cos (x) sin (x) dx
|
||
|
# |
|
||
|
# m + 1 m + 1 |
|
||
|
# /
|
||
|
|
||
|
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
|
||
|
Rational(n - 1, m + 1) *
|
||
|
trigintegrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
|
||
|
|
||
|
elif m_:
|
||
|
# 2k 2 k i 2i
|
||
|
# S = (1 - C ) = sum(i, (-) * B(k, i) * C )
|
||
|
if n > 0:
|
||
|
|
||
|
# / /
|
||
|
# | |
|
||
|
# | m n | -m n
|
||
|
# | cos (x)*sin (x) dx or | cos (x) * sin (x) dx
|
||
|
# | |
|
||
|
# / /
|
||
|
#
|
||
|
# |m| > |n| ; m, n >0 ; m, n belong to Z - {0}
|
||
|
# n 2
|
||
|
# sin (x) term is expanded here in terms of cos (x),
|
||
|
# and then integrated.
|
||
|
#
|
||
|
|
||
|
for i in range(0, n//2 + 1):
|
||
|
res += (S.NegativeOne**i * binomial(n//2, i) *
|
||
|
_cos_pow_integrate(m + 2*i, x))
|
||
|
|
||
|
elif n == 0:
|
||
|
|
||
|
# /
|
||
|
# |
|
||
|
# | 1
|
||
|
# | _ _ _
|
||
|
# | m
|
||
|
# | cos (x)
|
||
|
# /
|
||
|
#
|
||
|
|
||
|
res = _cos_pow_integrate(m, x)
|
||
|
else:
|
||
|
|
||
|
# n < 0 , |m| > |n|
|
||
|
# /
|
||
|
# |
|
||
|
# | m n
|
||
|
# | cos (x) sin (x) dx =
|
||
|
# |
|
||
|
# |
|
||
|
#/
|
||
|
# /
|
||
|
# |
|
||
|
# 1 m-1 n+1 m - 1 | m-2 n+2
|
||
|
# _______ cos (x) sin (x) + _______ | cos (x) sin (x) dx
|
||
|
# |
|
||
|
# n + 1 n + 1 |
|
||
|
# /
|
||
|
|
||
|
res = (Rational(1, n + 1) * cos(x)**(m - 1)*sin(x)**(n + 1) +
|
||
|
Rational(m - 1, n + 1) *
|
||
|
trigintegrate(cos(x)**(m - 2)*sin(x)**(n + 2), x))
|
||
|
|
||
|
else:
|
||
|
if m == n:
|
||
|
##Substitute sin(2x)/2 for sin(x)cos(x) and then Integrate.
|
||
|
res = integrate((sin(2*x)*S.Half)**m, x)
|
||
|
elif (m == -n):
|
||
|
if n < 0:
|
||
|
# Same as the scheme described above.
|
||
|
# the function argument to integrate in the end will
|
||
|
# be 1, this cannot be integrated by trigintegrate.
|
||
|
# Hence use sympy.integrals.integrate.
|
||
|
res = (Rational(1, n + 1) * cos(x)**(m - 1) * sin(x)**(n + 1) +
|
||
|
Rational(m - 1, n + 1) *
|
||
|
integrate(cos(x)**(m - 2) * sin(x)**(n + 2), x))
|
||
|
else:
|
||
|
res = (Rational(-1, m + 1) * cos(x)**(m + 1) * sin(x)**(n - 1) +
|
||
|
Rational(n - 1, m + 1) *
|
||
|
integrate(cos(x)**(m + 2)*sin(x)**(n - 2), x))
|
||
|
if conds == 'piecewise':
|
||
|
return Piecewise((res.subs(x, a*x) / a, Ne(a, 0)), (zz, True))
|
||
|
return res.subs(x, a*x) / a
|
||
|
|
||
|
|
||
|
def _sin_pow_integrate(n, x):
|
||
|
if n > 0:
|
||
|
if n == 1:
|
||
|
#Recursion break
|
||
|
return -cos(x)
|
||
|
|
||
|
# n > 0
|
||
|
# / /
|
||
|
# | |
|
||
|
# | n -1 n-1 n - 1 | n-2
|
||
|
# | sin (x) dx = ______ cos (x) sin (x) + _______ | sin (x) dx
|
||
|
# | |
|
||
|
# | n n |
|
||
|
#/ /
|
||
|
#
|
||
|
#
|
||
|
|
||
|
return (Rational(-1, n) * cos(x) * sin(x)**(n - 1) +
|
||
|
Rational(n - 1, n) * _sin_pow_integrate(n - 2, x))
|
||
|
|
||
|
if n < 0:
|
||
|
if n == -1:
|
||
|
##Make sure this does not come back here again.
|
||
|
##Recursion breaks here or at n==0.
|
||
|
return trigintegrate(1/sin(x), x)
|
||
|
|
||
|
# n < 0
|
||
|
# / /
|
||
|
# | |
|
||
|
# | n 1 n+1 n + 2 | n+2
|
||
|
# | sin (x) dx = _______ cos (x) sin (x) + _______ | sin (x) dx
|
||
|
# | |
|
||
|
# | n + 1 n + 1 |
|
||
|
#/ /
|
||
|
#
|
||
|
|
||
|
return (Rational(1, n + 1) * cos(x) * sin(x)**(n + 1) +
|
||
|
Rational(n + 2, n + 1) * _sin_pow_integrate(n + 2, x))
|
||
|
|
||
|
else:
|
||
|
#n == 0
|
||
|
#Recursion break.
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _cos_pow_integrate(n, x):
|
||
|
if n > 0:
|
||
|
if n == 1:
|
||
|
#Recursion break.
|
||
|
return sin(x)
|
||
|
|
||
|
# n > 0
|
||
|
# / /
|
||
|
# | |
|
||
|
# | n 1 n-1 n - 1 | n-2
|
||
|
# | sin (x) dx = ______ sin (x) cos (x) + _______ | cos (x) dx
|
||
|
# | |
|
||
|
# | n n |
|
||
|
#/ /
|
||
|
#
|
||
|
|
||
|
return (Rational(1, n) * sin(x) * cos(x)**(n - 1) +
|
||
|
Rational(n - 1, n) * _cos_pow_integrate(n - 2, x))
|
||
|
|
||
|
if n < 0:
|
||
|
if n == -1:
|
||
|
##Recursion break
|
||
|
return trigintegrate(1/cos(x), x)
|
||
|
|
||
|
# n < 0
|
||
|
# / /
|
||
|
# | |
|
||
|
# | n -1 n+1 n + 2 | n+2
|
||
|
# | cos (x) dx = _______ sin (x) cos (x) + _______ | cos (x) dx
|
||
|
# | |
|
||
|
# | n + 1 n + 1 |
|
||
|
#/ /
|
||
|
#
|
||
|
|
||
|
return (Rational(-1, n + 1) * sin(x) * cos(x)**(n + 1) +
|
||
|
Rational(n + 2, n + 1) * _cos_pow_integrate(n + 2, x))
|
||
|
else:
|
||
|
# n == 0
|
||
|
#Recursion Break.
|
||
|
return x
|