316 lines
13 KiB
Python
316 lines
13 KiB
Python
|
"""For more tests on satisfiability, see test_dimacs"""
|
||
|
|
||
|
from sympy.assumptions.ask import Q
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.logic.boolalg import And, Implies, Equivalent, true, false
|
||
|
from sympy.logic.inference import literal_symbol, \
|
||
|
pl_true, satisfiable, valid, entails, PropKB
|
||
|
from sympy.logic.algorithms.dpll import dpll, dpll_satisfiable, \
|
||
|
find_pure_symbol, find_unit_clause, unit_propagate, \
|
||
|
find_pure_symbol_int_repr, find_unit_clause_int_repr, \
|
||
|
unit_propagate_int_repr
|
||
|
from sympy.logic.algorithms.dpll2 import dpll_satisfiable as dpll2_satisfiable
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
|
||
|
def test_literal():
|
||
|
A, B = symbols('A,B')
|
||
|
assert literal_symbol(True) is True
|
||
|
assert literal_symbol(False) is False
|
||
|
assert literal_symbol(A) is A
|
||
|
assert literal_symbol(~A) is A
|
||
|
|
||
|
|
||
|
def test_find_pure_symbol():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert find_pure_symbol([A], [A]) == (A, True)
|
||
|
assert find_pure_symbol([A, B], [~A | B, ~B | A]) == (None, None)
|
||
|
assert find_pure_symbol([A, B, C], [ A | ~B, ~B | ~C, C | A]) == (A, True)
|
||
|
assert find_pure_symbol([A, B, C], [~A | B, B | ~C, C | A]) == (B, True)
|
||
|
assert find_pure_symbol([A, B, C], [~A | ~B, ~B | ~C, C | A]) == (B, False)
|
||
|
assert find_pure_symbol(
|
||
|
[A, B, C], [~A | B, ~B | ~C, C | A]) == (None, None)
|
||
|
|
||
|
|
||
|
def test_find_pure_symbol_int_repr():
|
||
|
assert find_pure_symbol_int_repr([1], [{1}]) == (1, True)
|
||
|
assert find_pure_symbol_int_repr([1, 2],
|
||
|
[{-1, 2}, {-2, 1}]) == (None, None)
|
||
|
assert find_pure_symbol_int_repr([1, 2, 3],
|
||
|
[{1, -2}, {-2, -3}, {3, 1}]) == (1, True)
|
||
|
assert find_pure_symbol_int_repr([1, 2, 3],
|
||
|
[{-1, 2}, {2, -3}, {3, 1}]) == (2, True)
|
||
|
assert find_pure_symbol_int_repr([1, 2, 3],
|
||
|
[{-1, -2}, {-2, -3}, {3, 1}]) == (2, False)
|
||
|
assert find_pure_symbol_int_repr([1, 2, 3],
|
||
|
[{-1, 2}, {-2, -3}, {3, 1}]) == (None, None)
|
||
|
|
||
|
|
||
|
def test_unit_clause():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert find_unit_clause([A], {}) == (A, True)
|
||
|
assert find_unit_clause([A, ~A], {}) == (A, True) # Wrong ??
|
||
|
assert find_unit_clause([A | B], {A: True}) == (B, True)
|
||
|
assert find_unit_clause([A | B], {B: True}) == (A, True)
|
||
|
assert find_unit_clause(
|
||
|
[A | B | C, B | ~C, A | ~B], {A: True}) == (B, False)
|
||
|
assert find_unit_clause([A | B | C, B | ~C, A | B], {A: True}) == (B, True)
|
||
|
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
|
||
|
|
||
|
|
||
|
def test_unit_clause_int_repr():
|
||
|
assert find_unit_clause_int_repr(map(set, [[1]]), {}) == (1, True)
|
||
|
assert find_unit_clause_int_repr(map(set, [[1], [-1]]), {}) == (1, True)
|
||
|
assert find_unit_clause_int_repr([{1, 2}], {1: True}) == (2, True)
|
||
|
assert find_unit_clause_int_repr([{1, 2}], {2: True}) == (1, True)
|
||
|
assert find_unit_clause_int_repr(map(set,
|
||
|
[[1, 2, 3], [2, -3], [1, -2]]), {1: True}) == (2, False)
|
||
|
assert find_unit_clause_int_repr(map(set,
|
||
|
[[1, 2, 3], [3, -3], [1, 2]]), {1: True}) == (2, True)
|
||
|
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert find_unit_clause([A | B | C, B | ~C, A ], {}) == (A, True)
|
||
|
|
||
|
|
||
|
def test_unit_propagate():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert unit_propagate([A | B], A) == []
|
||
|
assert unit_propagate([A | B, ~A | C, ~C | B, A], A) == [C, ~C | B, A]
|
||
|
|
||
|
|
||
|
def test_unit_propagate_int_repr():
|
||
|
assert unit_propagate_int_repr([{1, 2}], 1) == []
|
||
|
assert unit_propagate_int_repr(map(set,
|
||
|
[[1, 2], [-1, 3], [-3, 2], [1]]), 1) == [{3}, {-3, 2}]
|
||
|
|
||
|
|
||
|
def test_dpll():
|
||
|
"""This is also tested in test_dimacs"""
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert dpll([A | B], [A, B], {A: True, B: True}) == {A: True, B: True}
|
||
|
|
||
|
|
||
|
def test_dpll_satisfiable():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert dpll_satisfiable( A & ~A ) is False
|
||
|
assert dpll_satisfiable( A & ~B ) == {A: True, B: False}
|
||
|
assert dpll_satisfiable(
|
||
|
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
|
||
|
assert dpll_satisfiable(
|
||
|
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
||
|
assert dpll_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False},
|
||
|
{A: True, C: True}, {B: True, C: True})
|
||
|
assert dpll_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
||
|
assert dpll_satisfiable( (A | B) & (A >> B) ) == {B: True}
|
||
|
assert dpll_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
||
|
assert dpll_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
||
|
|
||
|
|
||
|
def test_dpll2_satisfiable():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert dpll2_satisfiable( A & ~A ) is False
|
||
|
assert dpll2_satisfiable( A & ~B ) == {A: True, B: False}
|
||
|
assert dpll2_satisfiable(
|
||
|
A | B ) in ({A: True}, {B: True}, {A: True, B: True})
|
||
|
assert dpll2_satisfiable(
|
||
|
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
||
|
assert dpll2_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
|
||
|
{A: True, B: True, C: True})
|
||
|
assert dpll2_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
||
|
assert dpll2_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
|
||
|
{B: True, A: True})
|
||
|
assert dpll2_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
||
|
assert dpll2_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
||
|
|
||
|
|
||
|
def test_minisat22_satisfiable():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
minisat22_satisfiable = lambda expr: satisfiable(expr, algorithm="minisat22")
|
||
|
assert minisat22_satisfiable( A & ~A ) is False
|
||
|
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
|
||
|
assert minisat22_satisfiable(
|
||
|
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
|
||
|
assert minisat22_satisfiable(
|
||
|
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
||
|
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
|
||
|
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
|
||
|
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
||
|
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
|
||
|
{B: True, A: True})
|
||
|
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
||
|
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
||
|
|
||
|
def test_minisat22_minimal_satisfiable():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
minisat22_satisfiable = lambda expr, minimal=True: satisfiable(expr, algorithm="minisat22", minimal=True)
|
||
|
assert minisat22_satisfiable( A & ~A ) is False
|
||
|
assert minisat22_satisfiable( A & ~B ) == {A: True, B: False}
|
||
|
assert minisat22_satisfiable(
|
||
|
A | B ) in ({A: True}, {B: False}, {A: False, B: True}, {A: True, B: True}, {A: True, B: False})
|
||
|
assert minisat22_satisfiable(
|
||
|
(~A | B) & (~B | A) ) in ({A: True, B: True}, {A: False, B: False})
|
||
|
assert minisat22_satisfiable( (A | B) & (~B | C) ) in ({A: True, B: False, C: True},
|
||
|
{A: True, B: True, C: True}, {A: False, B: True, C: True}, {A: True, B: False, C: False})
|
||
|
assert minisat22_satisfiable( A & B & C ) == {A: True, B: True, C: True}
|
||
|
assert minisat22_satisfiable( (A | B) & (A >> B) ) in ({B: True, A: False},
|
||
|
{B: True, A: True})
|
||
|
assert minisat22_satisfiable( Equivalent(A, B) & A ) == {A: True, B: True}
|
||
|
assert minisat22_satisfiable( Equivalent(A, B) & ~A ) == {A: False, B: False}
|
||
|
g = satisfiable((A | B | C),algorithm="minisat22",minimal=True,all_models=True)
|
||
|
sol = next(g)
|
||
|
first_solution = {key for key, value in sol.items() if value}
|
||
|
sol=next(g)
|
||
|
second_solution = {key for key, value in sol.items() if value}
|
||
|
sol=next(g)
|
||
|
third_solution = {key for key, value in sol.items() if value}
|
||
|
assert not first_solution <= second_solution
|
||
|
assert not second_solution <= third_solution
|
||
|
assert not first_solution <= third_solution
|
||
|
|
||
|
def test_satisfiable():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert satisfiable(A & (A >> B) & ~B) is False
|
||
|
|
||
|
|
||
|
def test_valid():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert valid(A >> (B >> A)) is True
|
||
|
assert valid((A >> (B >> C)) >> ((A >> B) >> (A >> C))) is True
|
||
|
assert valid((~B >> ~A) >> (A >> B)) is True
|
||
|
assert valid(A | B | C) is False
|
||
|
assert valid(A >> B) is False
|
||
|
|
||
|
|
||
|
def test_pl_true():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert pl_true(True) is True
|
||
|
assert pl_true( A & B, {A: True, B: True}) is True
|
||
|
assert pl_true( A | B, {A: True}) is True
|
||
|
assert pl_true( A | B, {B: True}) is True
|
||
|
assert pl_true( A | B, {A: None, B: True}) is True
|
||
|
assert pl_true( A >> B, {A: False}) is True
|
||
|
assert pl_true( A | B | ~C, {A: False, B: True, C: True}) is True
|
||
|
assert pl_true(Equivalent(A, B), {A: False, B: False}) is True
|
||
|
|
||
|
# test for false
|
||
|
assert pl_true(False) is False
|
||
|
assert pl_true( A & B, {A: False, B: False}) is False
|
||
|
assert pl_true( A & B, {A: False}) is False
|
||
|
assert pl_true( A & B, {B: False}) is False
|
||
|
assert pl_true( A | B, {A: False, B: False}) is False
|
||
|
|
||
|
#test for None
|
||
|
assert pl_true(B, {B: None}) is None
|
||
|
assert pl_true( A & B, {A: True, B: None}) is None
|
||
|
assert pl_true( A >> B, {A: True, B: None}) is None
|
||
|
assert pl_true(Equivalent(A, B), {A: None}) is None
|
||
|
assert pl_true(Equivalent(A, B), {A: True, B: None}) is None
|
||
|
|
||
|
# Test for deep
|
||
|
assert pl_true(A | B, {A: False}, deep=True) is None
|
||
|
assert pl_true(~A & ~B, {A: False}, deep=True) is None
|
||
|
assert pl_true(A | B, {A: False, B: False}, deep=True) is False
|
||
|
assert pl_true(A & B & (~A | ~B), {A: True}, deep=True) is False
|
||
|
assert pl_true((C >> A) >> (B >> A), {C: True}, deep=True) is True
|
||
|
|
||
|
|
||
|
def test_pl_true_wrong_input():
|
||
|
from sympy.core.numbers import pi
|
||
|
raises(ValueError, lambda: pl_true('John Cleese'))
|
||
|
raises(ValueError, lambda: pl_true(42 + pi + pi ** 2))
|
||
|
raises(ValueError, lambda: pl_true(42))
|
||
|
|
||
|
|
||
|
def test_entails():
|
||
|
A, B, C = symbols('A, B, C')
|
||
|
assert entails(A, [A >> B, ~B]) is False
|
||
|
assert entails(B, [Equivalent(A, B), A]) is True
|
||
|
assert entails((A >> B) >> (~A >> ~B)) is False
|
||
|
assert entails((A >> B) >> (~B >> ~A)) is True
|
||
|
|
||
|
|
||
|
def test_PropKB():
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
kb = PropKB()
|
||
|
assert kb.ask(A >> B) is False
|
||
|
assert kb.ask(A >> (B >> A)) is True
|
||
|
kb.tell(A >> B)
|
||
|
kb.tell(B >> C)
|
||
|
assert kb.ask(A) is False
|
||
|
assert kb.ask(B) is False
|
||
|
assert kb.ask(C) is False
|
||
|
assert kb.ask(~A) is False
|
||
|
assert kb.ask(~B) is False
|
||
|
assert kb.ask(~C) is False
|
||
|
assert kb.ask(A >> C) is True
|
||
|
kb.tell(A)
|
||
|
assert kb.ask(A) is True
|
||
|
assert kb.ask(B) is True
|
||
|
assert kb.ask(C) is True
|
||
|
assert kb.ask(~C) is False
|
||
|
kb.retract(A)
|
||
|
assert kb.ask(C) is False
|
||
|
|
||
|
|
||
|
def test_propKB_tolerant():
|
||
|
""""tolerant to bad input"""
|
||
|
kb = PropKB()
|
||
|
A, B, C = symbols('A,B,C')
|
||
|
assert kb.ask(B) is False
|
||
|
|
||
|
def test_satisfiable_non_symbols():
|
||
|
x, y = symbols('x y')
|
||
|
assumptions = Q.zero(x*y)
|
||
|
facts = Implies(Q.zero(x*y), Q.zero(x) | Q.zero(y))
|
||
|
query = ~Q.zero(x) & ~Q.zero(y)
|
||
|
refutations = [
|
||
|
{Q.zero(x): True, Q.zero(x*y): True},
|
||
|
{Q.zero(y): True, Q.zero(x*y): True},
|
||
|
{Q.zero(x): True, Q.zero(y): True, Q.zero(x*y): True},
|
||
|
{Q.zero(x): True, Q.zero(y): False, Q.zero(x*y): True},
|
||
|
{Q.zero(x): False, Q.zero(y): True, Q.zero(x*y): True}]
|
||
|
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll')
|
||
|
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll') in refutations
|
||
|
assert not satisfiable(And(assumptions, facts, query), algorithm='dpll2')
|
||
|
assert satisfiable(And(assumptions, facts, ~query), algorithm='dpll2') in refutations
|
||
|
|
||
|
def test_satisfiable_bool():
|
||
|
from sympy.core.singleton import S
|
||
|
assert satisfiable(true) == {true: true}
|
||
|
assert satisfiable(S.true) == {true: true}
|
||
|
assert satisfiable(false) is False
|
||
|
assert satisfiable(S.false) is False
|
||
|
|
||
|
|
||
|
def test_satisfiable_all_models():
|
||
|
from sympy.abc import A, B
|
||
|
assert next(satisfiable(False, all_models=True)) is False
|
||
|
assert list(satisfiable((A >> ~A) & A, all_models=True)) == [False]
|
||
|
assert list(satisfiable(True, all_models=True)) == [{true: true}]
|
||
|
|
||
|
models = [{A: True, B: False}, {A: False, B: True}]
|
||
|
result = satisfiable(A ^ B, all_models=True)
|
||
|
models.remove(next(result))
|
||
|
models.remove(next(result))
|
||
|
raises(StopIteration, lambda: next(result))
|
||
|
assert not models
|
||
|
|
||
|
assert list(satisfiable(Equivalent(A, B), all_models=True)) == \
|
||
|
[{A: False, B: False}, {A: True, B: True}]
|
||
|
|
||
|
models = [{A: False, B: False}, {A: False, B: True}, {A: True, B: True}]
|
||
|
for model in satisfiable(A >> B, all_models=True):
|
||
|
models.remove(model)
|
||
|
assert not models
|
||
|
|
||
|
# This is a santiy test to check that only the required number
|
||
|
# of solutions are generated. The expr below has 2**100 - 1 models
|
||
|
# which would time out the test if all are generated at once.
|
||
|
from sympy.utilities.iterables import numbered_symbols
|
||
|
from sympy.logic.boolalg import Or
|
||
|
sym = numbered_symbols()
|
||
|
X = [next(sym) for i in range(100)]
|
||
|
result = satisfiable(Or(*X), all_models=True)
|
||
|
for i in range(10):
|
||
|
assert next(result)
|