630 lines
20 KiB
Python
630 lines
20 KiB
Python
|
from .vector import Vector, _check_vector
|
||
|
from .frame import _check_frame
|
||
|
from warnings import warn
|
||
|
|
||
|
__all__ = ['Point']
|
||
|
|
||
|
|
||
|
class Point:
|
||
|
"""This object represents a point in a dynamic system.
|
||
|
|
||
|
It stores the: position, velocity, and acceleration of a point.
|
||
|
The position is a vector defined as the vector distance from a parent
|
||
|
point to this point.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : string
|
||
|
The display name of the Point
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> O = Point('O')
|
||
|
>>> P = Point('P')
|
||
|
>>> u1, u2, u3 = dynamicsymbols('u1 u2 u3')
|
||
|
>>> O.set_vel(N, u1 * N.x + u2 * N.y + u3 * N.z)
|
||
|
>>> O.acc(N)
|
||
|
u1'*N.x + u2'*N.y + u3'*N.z
|
||
|
|
||
|
``symbols()`` can be used to create multiple Points in a single step, for
|
||
|
example:
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> from sympy import symbols
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> u1, u2 = dynamicsymbols('u1 u2')
|
||
|
>>> A, B = symbols('A B', cls=Point)
|
||
|
>>> type(A)
|
||
|
<class 'sympy.physics.vector.point.Point'>
|
||
|
>>> A.set_vel(N, u1 * N.x + u2 * N.y)
|
||
|
>>> B.set_vel(N, u2 * N.x + u1 * N.y)
|
||
|
>>> A.acc(N) - B.acc(N)
|
||
|
(u1' - u2')*N.x + (-u1' + u2')*N.y
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(self, name):
|
||
|
"""Initialization of a Point object. """
|
||
|
self.name = name
|
||
|
self._pos_dict = {}
|
||
|
self._vel_dict = {}
|
||
|
self._acc_dict = {}
|
||
|
self._pdlist = [self._pos_dict, self._vel_dict, self._acc_dict]
|
||
|
|
||
|
def __str__(self):
|
||
|
return self.name
|
||
|
|
||
|
__repr__ = __str__
|
||
|
|
||
|
def _check_point(self, other):
|
||
|
if not isinstance(other, Point):
|
||
|
raise TypeError('A Point must be supplied')
|
||
|
|
||
|
def _pdict_list(self, other, num):
|
||
|
"""Returns a list of points that gives the shortest path with respect
|
||
|
to position, velocity, or acceleration from this point to the provided
|
||
|
point.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
other : Point
|
||
|
A point that may be related to this point by position, velocity, or
|
||
|
acceleration.
|
||
|
num : integer
|
||
|
0 for searching the position tree, 1 for searching the velocity
|
||
|
tree, and 2 for searching the acceleration tree.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
list of Points
|
||
|
A sequence of points from self to other.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
It is not clear if num = 1 or num = 2 actually works because the keys
|
||
|
to ``_vel_dict`` and ``_acc_dict`` are :class:`ReferenceFrame` objects
|
||
|
which do not have the ``_pdlist`` attribute.
|
||
|
|
||
|
"""
|
||
|
outlist = [[self]]
|
||
|
oldlist = [[]]
|
||
|
while outlist != oldlist:
|
||
|
oldlist = outlist[:]
|
||
|
for i, v in enumerate(outlist):
|
||
|
templist = v[-1]._pdlist[num].keys()
|
||
|
for i2, v2 in enumerate(templist):
|
||
|
if not v.__contains__(v2):
|
||
|
littletemplist = v + [v2]
|
||
|
if not outlist.__contains__(littletemplist):
|
||
|
outlist.append(littletemplist)
|
||
|
for i, v in enumerate(oldlist):
|
||
|
if v[-1] != other:
|
||
|
outlist.remove(v)
|
||
|
outlist.sort(key=len)
|
||
|
if len(outlist) != 0:
|
||
|
return outlist[0]
|
||
|
raise ValueError('No Connecting Path found between ' + other.name +
|
||
|
' and ' + self.name)
|
||
|
|
||
|
def a1pt_theory(self, otherpoint, outframe, interframe):
|
||
|
"""Sets the acceleration of this point with the 1-point theory.
|
||
|
|
||
|
The 1-point theory for point acceleration looks like this:
|
||
|
|
||
|
^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B
|
||
|
x r^OP) + 2 ^N omega^B x ^B v^P
|
||
|
|
||
|
where O is a point fixed in B, P is a point moving in B, and B is
|
||
|
rotating in frame N.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
otherpoint : Point
|
||
|
The first point of the 1-point theory (O)
|
||
|
outframe : ReferenceFrame
|
||
|
The frame we want this point's acceleration defined in (N)
|
||
|
fixedframe : ReferenceFrame
|
||
|
The intermediate frame in this calculation (B)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame
|
||
|
>>> from sympy.physics.vector import dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> q = dynamicsymbols('q')
|
||
|
>>> q2 = dynamicsymbols('q2')
|
||
|
>>> qd = dynamicsymbols('q', 1)
|
||
|
>>> q2d = dynamicsymbols('q2', 1)
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> B = ReferenceFrame('B')
|
||
|
>>> B.set_ang_vel(N, 5 * B.y)
|
||
|
>>> O = Point('O')
|
||
|
>>> P = O.locatenew('P', q * B.x)
|
||
|
>>> P.set_vel(B, qd * B.x + q2d * B.y)
|
||
|
>>> O.set_vel(N, 0)
|
||
|
>>> P.a1pt_theory(O, N, B)
|
||
|
(-25*q + q'')*B.x + q2''*B.y - 10*q'*B.z
|
||
|
|
||
|
"""
|
||
|
|
||
|
_check_frame(outframe)
|
||
|
_check_frame(interframe)
|
||
|
self._check_point(otherpoint)
|
||
|
dist = self.pos_from(otherpoint)
|
||
|
v = self.vel(interframe)
|
||
|
a1 = otherpoint.acc(outframe)
|
||
|
a2 = self.acc(interframe)
|
||
|
omega = interframe.ang_vel_in(outframe)
|
||
|
alpha = interframe.ang_acc_in(outframe)
|
||
|
self.set_acc(outframe, a2 + 2 * (omega ^ v) + a1 + (alpha ^ dist) +
|
||
|
(omega ^ (omega ^ dist)))
|
||
|
return self.acc(outframe)
|
||
|
|
||
|
def a2pt_theory(self, otherpoint, outframe, fixedframe):
|
||
|
"""Sets the acceleration of this point with the 2-point theory.
|
||
|
|
||
|
The 2-point theory for point acceleration looks like this:
|
||
|
|
||
|
^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP)
|
||
|
|
||
|
where O and P are both points fixed in frame B, which is rotating in
|
||
|
frame N.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
otherpoint : Point
|
||
|
The first point of the 2-point theory (O)
|
||
|
outframe : ReferenceFrame
|
||
|
The frame we want this point's acceleration defined in (N)
|
||
|
fixedframe : ReferenceFrame
|
||
|
The frame in which both points are fixed (B)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> q = dynamicsymbols('q')
|
||
|
>>> qd = dynamicsymbols('q', 1)
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> B = N.orientnew('B', 'Axis', [q, N.z])
|
||
|
>>> O = Point('O')
|
||
|
>>> P = O.locatenew('P', 10 * B.x)
|
||
|
>>> O.set_vel(N, 5 * N.x)
|
||
|
>>> P.a2pt_theory(O, N, B)
|
||
|
- 10*q'**2*B.x + 10*q''*B.y
|
||
|
|
||
|
"""
|
||
|
|
||
|
_check_frame(outframe)
|
||
|
_check_frame(fixedframe)
|
||
|
self._check_point(otherpoint)
|
||
|
dist = self.pos_from(otherpoint)
|
||
|
a = otherpoint.acc(outframe)
|
||
|
omega = fixedframe.ang_vel_in(outframe)
|
||
|
alpha = fixedframe.ang_acc_in(outframe)
|
||
|
self.set_acc(outframe, a + (alpha ^ dist) + (omega ^ (omega ^ dist)))
|
||
|
return self.acc(outframe)
|
||
|
|
||
|
def acc(self, frame):
|
||
|
"""The acceleration Vector of this Point in a ReferenceFrame.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which the returned acceleration vector will be defined
|
||
|
in.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> p1 = Point('p1')
|
||
|
>>> p1.set_acc(N, 10 * N.x)
|
||
|
>>> p1.acc(N)
|
||
|
10*N.x
|
||
|
|
||
|
"""
|
||
|
|
||
|
_check_frame(frame)
|
||
|
if not (frame in self._acc_dict):
|
||
|
if self.vel(frame) != 0:
|
||
|
return (self._vel_dict[frame]).dt(frame)
|
||
|
else:
|
||
|
return Vector(0)
|
||
|
return self._acc_dict[frame]
|
||
|
|
||
|
def locatenew(self, name, value):
|
||
|
"""Creates a new point with a position defined from this point.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : str
|
||
|
The name for the new point
|
||
|
value : Vector
|
||
|
The position of the new point relative to this point
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, Point
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> P1 = Point('P1')
|
||
|
>>> P2 = P1.locatenew('P2', 10 * N.x)
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isinstance(name, str):
|
||
|
raise TypeError('Must supply a valid name')
|
||
|
if value == 0:
|
||
|
value = Vector(0)
|
||
|
value = _check_vector(value)
|
||
|
p = Point(name)
|
||
|
p.set_pos(self, value)
|
||
|
self.set_pos(p, -value)
|
||
|
return p
|
||
|
|
||
|
def pos_from(self, otherpoint):
|
||
|
"""Returns a Vector distance between this Point and the other Point.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
otherpoint : Point
|
||
|
The otherpoint we are locating this one relative to
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> p1 = Point('p1')
|
||
|
>>> p2 = Point('p2')
|
||
|
>>> p1.set_pos(p2, 10 * N.x)
|
||
|
>>> p1.pos_from(p2)
|
||
|
10*N.x
|
||
|
|
||
|
"""
|
||
|
|
||
|
outvec = Vector(0)
|
||
|
plist = self._pdict_list(otherpoint, 0)
|
||
|
for i in range(len(plist) - 1):
|
||
|
outvec += plist[i]._pos_dict[plist[i + 1]]
|
||
|
return outvec
|
||
|
|
||
|
def set_acc(self, frame, value):
|
||
|
"""Used to set the acceleration of this Point in a ReferenceFrame.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which this point's acceleration is defined
|
||
|
value : Vector
|
||
|
The vector value of this point's acceleration in the frame
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> p1 = Point('p1')
|
||
|
>>> p1.set_acc(N, 10 * N.x)
|
||
|
>>> p1.acc(N)
|
||
|
10*N.x
|
||
|
|
||
|
"""
|
||
|
|
||
|
if value == 0:
|
||
|
value = Vector(0)
|
||
|
value = _check_vector(value)
|
||
|
_check_frame(frame)
|
||
|
self._acc_dict.update({frame: value})
|
||
|
|
||
|
def set_pos(self, otherpoint, value):
|
||
|
"""Used to set the position of this point w.r.t. another point.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
otherpoint : Point
|
||
|
The other point which this point's location is defined relative to
|
||
|
value : Vector
|
||
|
The vector which defines the location of this point
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> p1 = Point('p1')
|
||
|
>>> p2 = Point('p2')
|
||
|
>>> p1.set_pos(p2, 10 * N.x)
|
||
|
>>> p1.pos_from(p2)
|
||
|
10*N.x
|
||
|
|
||
|
"""
|
||
|
|
||
|
if value == 0:
|
||
|
value = Vector(0)
|
||
|
value = _check_vector(value)
|
||
|
self._check_point(otherpoint)
|
||
|
self._pos_dict.update({otherpoint: value})
|
||
|
otherpoint._pos_dict.update({self: -value})
|
||
|
|
||
|
def set_vel(self, frame, value):
|
||
|
"""Sets the velocity Vector of this Point in a ReferenceFrame.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which this point's velocity is defined
|
||
|
value : Vector
|
||
|
The vector value of this point's velocity in the frame
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> p1 = Point('p1')
|
||
|
>>> p1.set_vel(N, 10 * N.x)
|
||
|
>>> p1.vel(N)
|
||
|
10*N.x
|
||
|
|
||
|
"""
|
||
|
|
||
|
if value == 0:
|
||
|
value = Vector(0)
|
||
|
value = _check_vector(value)
|
||
|
_check_frame(frame)
|
||
|
self._vel_dict.update({frame: value})
|
||
|
|
||
|
def v1pt_theory(self, otherpoint, outframe, interframe):
|
||
|
"""Sets the velocity of this point with the 1-point theory.
|
||
|
|
||
|
The 1-point theory for point velocity looks like this:
|
||
|
|
||
|
^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP
|
||
|
|
||
|
where O is a point fixed in B, P is a point moving in B, and B is
|
||
|
rotating in frame N.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
otherpoint : Point
|
||
|
The first point of the 1-point theory (O)
|
||
|
outframe : ReferenceFrame
|
||
|
The frame we want this point's velocity defined in (N)
|
||
|
interframe : ReferenceFrame
|
||
|
The intermediate frame in this calculation (B)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame
|
||
|
>>> from sympy.physics.vector import dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> q = dynamicsymbols('q')
|
||
|
>>> q2 = dynamicsymbols('q2')
|
||
|
>>> qd = dynamicsymbols('q', 1)
|
||
|
>>> q2d = dynamicsymbols('q2', 1)
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> B = ReferenceFrame('B')
|
||
|
>>> B.set_ang_vel(N, 5 * B.y)
|
||
|
>>> O = Point('O')
|
||
|
>>> P = O.locatenew('P', q * B.x)
|
||
|
>>> P.set_vel(B, qd * B.x + q2d * B.y)
|
||
|
>>> O.set_vel(N, 0)
|
||
|
>>> P.v1pt_theory(O, N, B)
|
||
|
q'*B.x + q2'*B.y - 5*q*B.z
|
||
|
|
||
|
"""
|
||
|
|
||
|
_check_frame(outframe)
|
||
|
_check_frame(interframe)
|
||
|
self._check_point(otherpoint)
|
||
|
dist = self.pos_from(otherpoint)
|
||
|
v1 = self.vel(interframe)
|
||
|
v2 = otherpoint.vel(outframe)
|
||
|
omega = interframe.ang_vel_in(outframe)
|
||
|
self.set_vel(outframe, v1 + v2 + (omega ^ dist))
|
||
|
return self.vel(outframe)
|
||
|
|
||
|
def v2pt_theory(self, otherpoint, outframe, fixedframe):
|
||
|
"""Sets the velocity of this point with the 2-point theory.
|
||
|
|
||
|
The 2-point theory for point velocity looks like this:
|
||
|
|
||
|
^N v^P = ^N v^O + ^N omega^B x r^OP
|
||
|
|
||
|
where O and P are both points fixed in frame B, which is rotating in
|
||
|
frame N.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
otherpoint : Point
|
||
|
The first point of the 2-point theory (O)
|
||
|
outframe : ReferenceFrame
|
||
|
The frame we want this point's velocity defined in (N)
|
||
|
fixedframe : ReferenceFrame
|
||
|
The frame in which both points are fixed (B)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
|
||
|
>>> from sympy.physics.vector import init_vprinting
|
||
|
>>> init_vprinting(pretty_print=False)
|
||
|
>>> q = dynamicsymbols('q')
|
||
|
>>> qd = dynamicsymbols('q', 1)
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> B = N.orientnew('B', 'Axis', [q, N.z])
|
||
|
>>> O = Point('O')
|
||
|
>>> P = O.locatenew('P', 10 * B.x)
|
||
|
>>> O.set_vel(N, 5 * N.x)
|
||
|
>>> P.v2pt_theory(O, N, B)
|
||
|
5*N.x + 10*q'*B.y
|
||
|
|
||
|
"""
|
||
|
|
||
|
_check_frame(outframe)
|
||
|
_check_frame(fixedframe)
|
||
|
self._check_point(otherpoint)
|
||
|
dist = self.pos_from(otherpoint)
|
||
|
v = otherpoint.vel(outframe)
|
||
|
omega = fixedframe.ang_vel_in(outframe)
|
||
|
self.set_vel(outframe, v + (omega ^ dist))
|
||
|
return self.vel(outframe)
|
||
|
|
||
|
def vel(self, frame):
|
||
|
"""The velocity Vector of this Point in the ReferenceFrame.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
frame : ReferenceFrame
|
||
|
The frame in which the returned velocity vector will be defined in
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> p1 = Point('p1')
|
||
|
>>> p1.set_vel(N, 10 * N.x)
|
||
|
>>> p1.vel(N)
|
||
|
10*N.x
|
||
|
|
||
|
Velocities will be automatically calculated if possible, otherwise a
|
||
|
``ValueError`` will be returned. If it is possible to calculate
|
||
|
multiple different velocities from the relative points, the points
|
||
|
defined most directly relative to this point will be used. In the case
|
||
|
of inconsistent relative positions of points, incorrect velocities may
|
||
|
be returned. It is up to the user to define prior relative positions
|
||
|
and velocities of points in a self-consistent way.
|
||
|
|
||
|
>>> p = Point('p')
|
||
|
>>> q = dynamicsymbols('q')
|
||
|
>>> p.set_vel(N, 10 * N.x)
|
||
|
>>> p2 = Point('p2')
|
||
|
>>> p2.set_pos(p, q*N.x)
|
||
|
>>> p2.vel(N)
|
||
|
(Derivative(q(t), t) + 10)*N.x
|
||
|
|
||
|
"""
|
||
|
|
||
|
_check_frame(frame)
|
||
|
if not (frame in self._vel_dict):
|
||
|
valid_neighbor_found = False
|
||
|
is_cyclic = False
|
||
|
visited = []
|
||
|
queue = [self]
|
||
|
candidate_neighbor = []
|
||
|
while queue: # BFS to find nearest point
|
||
|
node = queue.pop(0)
|
||
|
if node not in visited:
|
||
|
visited.append(node)
|
||
|
for neighbor, neighbor_pos in node._pos_dict.items():
|
||
|
if neighbor in visited:
|
||
|
continue
|
||
|
try:
|
||
|
# Checks if pos vector is valid
|
||
|
neighbor_pos.express(frame)
|
||
|
except ValueError:
|
||
|
continue
|
||
|
if neighbor in queue:
|
||
|
is_cyclic = True
|
||
|
try:
|
||
|
# Checks if point has its vel defined in req frame
|
||
|
neighbor_velocity = neighbor._vel_dict[frame]
|
||
|
except KeyError:
|
||
|
queue.append(neighbor)
|
||
|
continue
|
||
|
candidate_neighbor.append(neighbor)
|
||
|
if not valid_neighbor_found:
|
||
|
self.set_vel(frame, self.pos_from(neighbor).dt(frame) + neighbor_velocity)
|
||
|
valid_neighbor_found = True
|
||
|
if is_cyclic:
|
||
|
warn('Kinematic loops are defined among the positions of '
|
||
|
'points. This is likely not desired and may cause errors '
|
||
|
'in your calculations.')
|
||
|
if len(candidate_neighbor) > 1:
|
||
|
warn('Velocity automatically calculated based on point ' +
|
||
|
candidate_neighbor[0].name +
|
||
|
' but it is also possible from points(s):' +
|
||
|
str(candidate_neighbor[1:]) +
|
||
|
'. Velocities from these points are not necessarily the '
|
||
|
'same. This may cause errors in your calculations.')
|
||
|
if valid_neighbor_found:
|
||
|
return self._vel_dict[frame]
|
||
|
else:
|
||
|
raise ValueError('Velocity of point ' + self.name +
|
||
|
' has not been'
|
||
|
' defined in ReferenceFrame ' + frame.name)
|
||
|
|
||
|
return self._vel_dict[frame]
|
||
|
|
||
|
def partial_velocity(self, frame, *gen_speeds):
|
||
|
"""Returns the partial velocities of the linear velocity vector of this
|
||
|
point in the given frame with respect to one or more provided
|
||
|
generalized speeds.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
frame : ReferenceFrame
|
||
|
The frame with which the velocity is defined in.
|
||
|
gen_speeds : functions of time
|
||
|
The generalized speeds.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
partial_velocities : tuple of Vector
|
||
|
The partial velocity vectors corresponding to the provided
|
||
|
generalized speeds.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.physics.vector import ReferenceFrame, Point
|
||
|
>>> from sympy.physics.vector import dynamicsymbols
|
||
|
>>> N = ReferenceFrame('N')
|
||
|
>>> A = ReferenceFrame('A')
|
||
|
>>> p = Point('p')
|
||
|
>>> u1, u2 = dynamicsymbols('u1, u2')
|
||
|
>>> p.set_vel(N, u1 * N.x + u2 * A.y)
|
||
|
>>> p.partial_velocity(N, u1)
|
||
|
N.x
|
||
|
>>> p.partial_velocity(N, u1, u2)
|
||
|
(N.x, A.y)
|
||
|
|
||
|
"""
|
||
|
partials = [self.vel(frame).diff(speed, frame, var_in_dcm=False) for
|
||
|
speed in gen_speeds]
|
||
|
|
||
|
if len(partials) == 1:
|
||
|
return partials[0]
|
||
|
else:
|
||
|
return tuple(partials)
|