Traktor/myenv/Lib/site-packages/sympy/plotting/pygletplot/plot_mode.py

401 lines
14 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
from .plot_interval import PlotInterval
from .plot_object import PlotObject
from .util import parse_option_string
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.geometry.entity import GeometryEntity
from sympy.utilities.iterables import is_sequence
class PlotMode(PlotObject):
"""
Grandparent class for plotting
modes. Serves as interface for
registration, lookup, and init
of modes.
To create a new plot mode,
inherit from PlotModeBase
or one of its children, such
as PlotSurface or PlotCurve.
"""
## Class-level attributes
## used to register and lookup
## plot modes. See PlotModeBase
## for descriptions and usage.
i_vars, d_vars = '', ''
intervals = []
aliases = []
is_default = False
## Draw is the only method here which
## is meant to be overridden in child
## classes, and PlotModeBase provides
## a base implementation.
def draw(self):
raise NotImplementedError()
## Everything else in this file has to
## do with registration and retrieval
## of plot modes. This is where I've
## hidden much of the ugliness of automatic
## plot mode divination...
## Plot mode registry data structures
_mode_alias_list = []
_mode_map = {
1: {1: {}, 2: {}},
2: {1: {}, 2: {}},
3: {1: {}, 2: {}},
} # [d][i][alias_str]: class
_mode_default_map = {
1: {},
2: {},
3: {},
} # [d][i]: class
_i_var_max, _d_var_max = 2, 3
def __new__(cls, *args, **kwargs):
"""
This is the function which interprets
arguments given to Plot.__init__ and
Plot.__setattr__. Returns an initialized
instance of the appropriate child class.
"""
newargs, newkwargs = PlotMode._extract_options(args, kwargs)
mode_arg = newkwargs.get('mode', '')
# Interpret the arguments
d_vars, intervals = PlotMode._interpret_args(newargs)
i_vars = PlotMode._find_i_vars(d_vars, intervals)
i, d = max([len(i_vars), len(intervals)]), len(d_vars)
# Find the appropriate mode
subcls = PlotMode._get_mode(mode_arg, i, d)
# Create the object
o = object.__new__(subcls)
# Do some setup for the mode instance
o.d_vars = d_vars
o._fill_i_vars(i_vars)
o._fill_intervals(intervals)
o.options = newkwargs
return o
@staticmethod
def _get_mode(mode_arg, i_var_count, d_var_count):
"""
Tries to return an appropriate mode class.
Intended to be called only by __new__.
mode_arg
Can be a string or a class. If it is a
PlotMode subclass, it is simply returned.
If it is a string, it can an alias for
a mode or an empty string. In the latter
case, we try to find a default mode for
the i_var_count and d_var_count.
i_var_count
The number of independent variables
needed to evaluate the d_vars.
d_var_count
The number of dependent variables;
usually the number of functions to
be evaluated in plotting.
For example, a Cartesian function y = f(x) has
one i_var (x) and one d_var (y). A parametric
form x,y,z = f(u,v), f(u,v), f(u,v) has two
two i_vars (u,v) and three d_vars (x,y,z).
"""
# if the mode_arg is simply a PlotMode class,
# check that the mode supports the numbers
# of independent and dependent vars, then
# return it
try:
m = None
if issubclass(mode_arg, PlotMode):
m = mode_arg
except TypeError:
pass
if m:
if not m._was_initialized:
raise ValueError(("To use unregistered plot mode %s "
"you must first call %s._init_mode().")
% (m.__name__, m.__name__))
if d_var_count != m.d_var_count:
raise ValueError(("%s can only plot functions "
"with %i dependent variables.")
% (m.__name__,
m.d_var_count))
if i_var_count > m.i_var_count:
raise ValueError(("%s cannot plot functions "
"with more than %i independent "
"variables.")
% (m.__name__,
m.i_var_count))
return m
# If it is a string, there are two possibilities.
if isinstance(mode_arg, str):
i, d = i_var_count, d_var_count
if i > PlotMode._i_var_max:
raise ValueError(var_count_error(True, True))
if d > PlotMode._d_var_max:
raise ValueError(var_count_error(False, True))
# If the string is '', try to find a suitable
# default mode
if not mode_arg:
return PlotMode._get_default_mode(i, d)
# Otherwise, interpret the string as a mode
# alias (e.g. 'cartesian', 'parametric', etc)
else:
return PlotMode._get_aliased_mode(mode_arg, i, d)
else:
raise ValueError("PlotMode argument must be "
"a class or a string")
@staticmethod
def _get_default_mode(i, d, i_vars=-1):
if i_vars == -1:
i_vars = i
try:
return PlotMode._mode_default_map[d][i]
except KeyError:
# Keep looking for modes in higher i var counts
# which support the given d var count until we
# reach the max i_var count.
if i < PlotMode._i_var_max:
return PlotMode._get_default_mode(i + 1, d, i_vars)
else:
raise ValueError(("Couldn't find a default mode "
"for %i independent and %i "
"dependent variables.") % (i_vars, d))
@staticmethod
def _get_aliased_mode(alias, i, d, i_vars=-1):
if i_vars == -1:
i_vars = i
if alias not in PlotMode._mode_alias_list:
raise ValueError(("Couldn't find a mode called"
" %s. Known modes: %s.")
% (alias, ", ".join(PlotMode._mode_alias_list)))
try:
return PlotMode._mode_map[d][i][alias]
except TypeError:
# Keep looking for modes in higher i var counts
# which support the given d var count and alias
# until we reach the max i_var count.
if i < PlotMode._i_var_max:
return PlotMode._get_aliased_mode(alias, i + 1, d, i_vars)
else:
raise ValueError(("Couldn't find a %s mode "
"for %i independent and %i "
"dependent variables.")
% (alias, i_vars, d))
@classmethod
def _register(cls):
"""
Called once for each user-usable plot mode.
For Cartesian2D, it is invoked after the
class definition: Cartesian2D._register()
"""
name = cls.__name__
cls._init_mode()
try:
i, d = cls.i_var_count, cls.d_var_count
# Add the mode to _mode_map under all
# given aliases
for a in cls.aliases:
if a not in PlotMode._mode_alias_list:
# Also track valid aliases, so
# we can quickly know when given
# an invalid one in _get_mode.
PlotMode._mode_alias_list.append(a)
PlotMode._mode_map[d][i][a] = cls
if cls.is_default:
# If this mode was marked as the
# default for this d,i combination,
# also set that.
PlotMode._mode_default_map[d][i] = cls
except Exception as e:
raise RuntimeError(("Failed to register "
"plot mode %s. Reason: %s")
% (name, (str(e))))
@classmethod
def _init_mode(cls):
"""
Initializes the plot mode based on
the 'mode-specific parameters' above.
Only intended to be called by
PlotMode._register(). To use a mode without
registering it, you can directly call
ModeSubclass._init_mode().
"""
def symbols_list(symbol_str):
return [Symbol(s) for s in symbol_str]
# Convert the vars strs into
# lists of symbols.
cls.i_vars = symbols_list(cls.i_vars)
cls.d_vars = symbols_list(cls.d_vars)
# Var count is used often, calculate
# it once here
cls.i_var_count = len(cls.i_vars)
cls.d_var_count = len(cls.d_vars)
if cls.i_var_count > PlotMode._i_var_max:
raise ValueError(var_count_error(True, False))
if cls.d_var_count > PlotMode._d_var_max:
raise ValueError(var_count_error(False, False))
# Try to use first alias as primary_alias
if len(cls.aliases) > 0:
cls.primary_alias = cls.aliases[0]
else:
cls.primary_alias = cls.__name__
di = cls.intervals
if len(di) != cls.i_var_count:
raise ValueError("Plot mode must provide a "
"default interval for each i_var.")
for i in range(cls.i_var_count):
# default intervals must be given [min,max,steps]
# (no var, but they must be in the same order as i_vars)
if len(di[i]) != 3:
raise ValueError("length should be equal to 3")
# Initialize an incomplete interval,
# to later be filled with a var when
# the mode is instantiated.
di[i] = PlotInterval(None, *di[i])
# To prevent people from using modes
# without these required fields set up.
cls._was_initialized = True
_was_initialized = False
## Initializer Helper Methods
@staticmethod
def _find_i_vars(functions, intervals):
i_vars = []
# First, collect i_vars in the
# order they are given in any
# intervals.
for i in intervals:
if i.v is None:
continue
elif i.v in i_vars:
raise ValueError(("Multiple intervals given "
"for %s.") % (str(i.v)))
i_vars.append(i.v)
# Then, find any remaining
# i_vars in given functions
# (aka d_vars)
for f in functions:
for a in f.free_symbols:
if a not in i_vars:
i_vars.append(a)
return i_vars
def _fill_i_vars(self, i_vars):
# copy default i_vars
self.i_vars = [Symbol(str(i)) for i in self.i_vars]
# replace with given i_vars
for i in range(len(i_vars)):
self.i_vars[i] = i_vars[i]
def _fill_intervals(self, intervals):
# copy default intervals
self.intervals = [PlotInterval(i) for i in self.intervals]
# track i_vars used so far
v_used = []
# fill copy of default
# intervals with given info
for i in range(len(intervals)):
self.intervals[i].fill_from(intervals[i])
if self.intervals[i].v is not None:
v_used.append(self.intervals[i].v)
# Find any orphan intervals and
# assign them i_vars
for i in range(len(self.intervals)):
if self.intervals[i].v is None:
u = [v for v in self.i_vars if v not in v_used]
if len(u) == 0:
raise ValueError("length should not be equal to 0")
self.intervals[i].v = u[0]
v_used.append(u[0])
@staticmethod
def _interpret_args(args):
interval_wrong_order = "PlotInterval %s was given before any function(s)."
interpret_error = "Could not interpret %s as a function or interval."
functions, intervals = [], []
if isinstance(args[0], GeometryEntity):
for coords in list(args[0].arbitrary_point()):
functions.append(coords)
intervals.append(PlotInterval.try_parse(args[0].plot_interval()))
else:
for a in args:
i = PlotInterval.try_parse(a)
if i is not None:
if len(functions) == 0:
raise ValueError(interval_wrong_order % (str(i)))
else:
intervals.append(i)
else:
if is_sequence(a, include=str):
raise ValueError(interpret_error % (str(a)))
try:
f = sympify(a)
functions.append(f)
except TypeError:
raise ValueError(interpret_error % str(a))
return functions, intervals
@staticmethod
def _extract_options(args, kwargs):
newkwargs, newargs = {}, []
for a in args:
if isinstance(a, str):
newkwargs = dict(newkwargs, **parse_option_string(a))
else:
newargs.append(a)
newkwargs = dict(newkwargs, **kwargs)
return newargs, newkwargs
def var_count_error(is_independent, is_plotting):
"""
Used to format an error message which differs
slightly in 4 places.
"""
if is_plotting:
v = "Plotting"
else:
v = "Registering plot modes"
if is_independent:
n, s = PlotMode._i_var_max, "independent"
else:
n, s = PlotMode._d_var_max, "dependent"
return ("%s with more than %i %s variables "
"is not supported.") % (v, n, s)