270 lines
8.1 KiB
Python
270 lines
8.1 KiB
Python
|
r"""
|
||
|
Efficient functions for generating Appell sequences.
|
||
|
|
||
|
An Appell sequence is a zero-indexed sequence of polynomials `p_i(x)`
|
||
|
satisfying `p_{i+1}'(x)=(i+1)p_i(x)` for all `i`. This definition leads
|
||
|
to the following iterative algorithm:
|
||
|
|
||
|
.. math :: p_0(x) = c_0,\ p_i(x) = i \int_0^x p_{i-1}(t)\,dt + c_i
|
||
|
|
||
|
The constant coefficients `c_i` are usually determined from the
|
||
|
just-evaluated integral and `i`.
|
||
|
|
||
|
Appell sequences satisfy the following identity from umbral calculus:
|
||
|
|
||
|
.. math :: p_n(x+y) = \sum_{k=0}^n \binom{n}{k} p_k(x) y^{n-k}
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Appell_sequence
|
||
|
.. [2] Peter Luschny, "An introduction to the Bernoulli function",
|
||
|
https://arxiv.org/abs/2009.06743
|
||
|
"""
|
||
|
from sympy.polys.densearith import dup_mul_ground, dup_sub_ground, dup_quo_ground
|
||
|
from sympy.polys.densetools import dup_eval, dup_integrate
|
||
|
from sympy.polys.domains import ZZ, QQ
|
||
|
from sympy.polys.polytools import named_poly
|
||
|
from sympy.utilities import public
|
||
|
|
||
|
def dup_bernoulli(n, K):
|
||
|
"""Low-level implementation of Bernoulli polynomials."""
|
||
|
if n < 1:
|
||
|
return [K.one]
|
||
|
p = [K.one, K(-1,2)]
|
||
|
for i in range(2, n+1):
|
||
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
||
|
if i % 2 == 0:
|
||
|
p = dup_sub_ground(p, dup_eval(p, K(1,2), K) * K(1<<(i-1), (1<<i)-1), K)
|
||
|
return p
|
||
|
|
||
|
@public
|
||
|
def bernoulli_poly(n, x=None, polys=False):
|
||
|
r"""Generates the Bernoulli polynomial `\operatorname{B}_n(x)`.
|
||
|
|
||
|
`\operatorname{B}_n(x)` is the unique polynomial satisfying
|
||
|
|
||
|
.. math :: \int_{x}^{x+1} \operatorname{B}_n(t) \,dt = x^n.
|
||
|
|
||
|
Based on this, we have for nonnegative integer `s` and integer
|
||
|
`a` and `b`
|
||
|
|
||
|
.. math :: \sum_{k=a}^{b} k^s = \frac{\operatorname{B}_{s+1}(b+1) -
|
||
|
\operatorname{B}_{s+1}(a)}{s+1}
|
||
|
|
||
|
which is related to Jakob Bernoulli's original motivation for introducing
|
||
|
the Bernoulli numbers, the values of these polynomials at `x = 1`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import summation
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.polys import bernoulli_poly
|
||
|
>>> bernoulli_poly(5, x)
|
||
|
x**5 - 5*x**4/2 + 5*x**3/3 - x/6
|
||
|
|
||
|
>>> def psum(p, a, b):
|
||
|
... return (bernoulli_poly(p+1,b+1) - bernoulli_poly(p+1,a)) / (p+1)
|
||
|
>>> psum(4, -6, 27)
|
||
|
3144337
|
||
|
>>> summation(x**4, (x, -6, 27))
|
||
|
3144337
|
||
|
|
||
|
>>> psum(1, 1, x).factor()
|
||
|
x*(x + 1)/2
|
||
|
>>> psum(2, 1, x).factor()
|
||
|
x*(x + 1)*(2*x + 1)/6
|
||
|
>>> psum(3, 1, x).factor()
|
||
|
x**2*(x + 1)**2/4
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : int
|
||
|
Degree of the polynomial.
|
||
|
x : optional
|
||
|
polys : bool, optional
|
||
|
If True, return a Poly, otherwise (default) return an expression.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.functions.combinatorial.numbers.bernoulli
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Bernoulli_polynomials
|
||
|
"""
|
||
|
return named_poly(n, dup_bernoulli, QQ, "Bernoulli polynomial", (x,), polys)
|
||
|
|
||
|
def dup_bernoulli_c(n, K):
|
||
|
"""Low-level implementation of central Bernoulli polynomials."""
|
||
|
p = [K.one]
|
||
|
for i in range(1, n+1):
|
||
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
||
|
if i % 2 == 0:
|
||
|
p = dup_sub_ground(p, dup_eval(p, K.one, K) * K((1<<(i-1))-1, (1<<i)-1), K)
|
||
|
return p
|
||
|
|
||
|
@public
|
||
|
def bernoulli_c_poly(n, x=None, polys=False):
|
||
|
r"""Generates the central Bernoulli polynomial `\operatorname{B}_n^c(x)`.
|
||
|
|
||
|
These are scaled and shifted versions of the plain Bernoulli polynomials,
|
||
|
done in such a way that `\operatorname{B}_n^c(x)` is an even or odd function
|
||
|
for even or odd `n` respectively:
|
||
|
|
||
|
.. math :: \operatorname{B}_n^c(x) = 2^n \operatorname{B}_n
|
||
|
\left(\frac{x+1}{2}\right)
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : int
|
||
|
Degree of the polynomial.
|
||
|
x : optional
|
||
|
polys : bool, optional
|
||
|
If True, return a Poly, otherwise (default) return an expression.
|
||
|
"""
|
||
|
return named_poly(n, dup_bernoulli_c, QQ, "central Bernoulli polynomial", (x,), polys)
|
||
|
|
||
|
def dup_genocchi(n, K):
|
||
|
"""Low-level implementation of Genocchi polynomials."""
|
||
|
if n < 1:
|
||
|
return [K.zero]
|
||
|
p = [-K.one]
|
||
|
for i in range(2, n+1):
|
||
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
||
|
if i % 2 == 0:
|
||
|
p = dup_sub_ground(p, dup_eval(p, K.one, K) // K(2), K)
|
||
|
return p
|
||
|
|
||
|
@public
|
||
|
def genocchi_poly(n, x=None, polys=False):
|
||
|
r"""Generates the Genocchi polynomial `\operatorname{G}_n(x)`.
|
||
|
|
||
|
`\operatorname{G}_n(x)` is twice the difference between the plain and
|
||
|
central Bernoulli polynomials, so has degree `n-1`:
|
||
|
|
||
|
.. math :: \operatorname{G}_n(x) = 2 (\operatorname{B}_n(x) -
|
||
|
\operatorname{B}_n^c(x))
|
||
|
|
||
|
The factor of 2 in the definition endows `\operatorname{G}_n(x)` with
|
||
|
integer coefficients.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : int
|
||
|
Degree of the polynomial plus one.
|
||
|
x : optional
|
||
|
polys : bool, optional
|
||
|
If True, return a Poly, otherwise (default) return an expression.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.functions.combinatorial.numbers.genocchi
|
||
|
"""
|
||
|
return named_poly(n, dup_genocchi, ZZ, "Genocchi polynomial", (x,), polys)
|
||
|
|
||
|
def dup_euler(n, K):
|
||
|
"""Low-level implementation of Euler polynomials."""
|
||
|
return dup_quo_ground(dup_genocchi(n+1, ZZ), K(-n-1), K)
|
||
|
|
||
|
@public
|
||
|
def euler_poly(n, x=None, polys=False):
|
||
|
r"""Generates the Euler polynomial `\operatorname{E}_n(x)`.
|
||
|
|
||
|
These are scaled and reindexed versions of the Genocchi polynomials:
|
||
|
|
||
|
.. math :: \operatorname{E}_n(x) = -\frac{\operatorname{G}_{n+1}(x)}{n+1}
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : int
|
||
|
Degree of the polynomial.
|
||
|
x : optional
|
||
|
polys : bool, optional
|
||
|
If True, return a Poly, otherwise (default) return an expression.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.functions.combinatorial.numbers.euler
|
||
|
"""
|
||
|
return named_poly(n, dup_euler, QQ, "Euler polynomial", (x,), polys)
|
||
|
|
||
|
def dup_andre(n, K):
|
||
|
"""Low-level implementation of Andre polynomials."""
|
||
|
p = [K.one]
|
||
|
for i in range(1, n+1):
|
||
|
p = dup_integrate(dup_mul_ground(p, K(i), K), 1, K)
|
||
|
if i % 2 == 0:
|
||
|
p = dup_sub_ground(p, dup_eval(p, K.one, K), K)
|
||
|
return p
|
||
|
|
||
|
@public
|
||
|
def andre_poly(n, x=None, polys=False):
|
||
|
r"""Generates the Andre polynomial `\mathcal{A}_n(x)`.
|
||
|
|
||
|
This is the Appell sequence where the constant coefficients form the sequence
|
||
|
of Euler numbers ``euler(n)``. As such they have integer coefficients
|
||
|
and parities matching the parity of `n`.
|
||
|
|
||
|
Luschny calls these the *Swiss-knife polynomials* because their values
|
||
|
at 0 and 1 can be simply transformed into both the Bernoulli and Euler
|
||
|
numbers. Here they are called the Andre polynomials because
|
||
|
`|\mathcal{A}_n(n\bmod 2)|` for `n \ge 0` generates what Luschny calls
|
||
|
the *Andre numbers*, A000111 in the OEIS.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import bernoulli, euler, genocchi
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.polys import andre_poly
|
||
|
>>> andre_poly(9, x)
|
||
|
x**9 - 36*x**7 + 630*x**5 - 5124*x**3 + 12465*x
|
||
|
|
||
|
>>> [andre_poly(n, 0) for n in range(11)]
|
||
|
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
|
||
|
>>> [euler(n) for n in range(11)]
|
||
|
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
|
||
|
>>> [andre_poly(n-1, 1) * n / (4**n - 2**n) for n in range(1, 11)]
|
||
|
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
|
||
|
>>> [bernoulli(n) for n in range(1, 11)]
|
||
|
[1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
|
||
|
>>> [-andre_poly(n-1, -1) * n / (-2)**(n-1) for n in range(1, 11)]
|
||
|
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155]
|
||
|
>>> [genocchi(n) for n in range(1, 11)]
|
||
|
[-1, -1, 0, 1, 0, -3, 0, 17, 0, -155]
|
||
|
|
||
|
>>> [abs(andre_poly(n, n%2)) for n in range(11)]
|
||
|
[1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
n : int
|
||
|
Degree of the polynomial.
|
||
|
x : optional
|
||
|
polys : bool, optional
|
||
|
If True, return a Poly, otherwise (default) return an expression.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.functions.combinatorial.numbers.andre
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Peter Luschny, "An introduction to the Bernoulli function",
|
||
|
https://arxiv.org/abs/2009.06743
|
||
|
"""
|
||
|
return named_poly(n, dup_andre, ZZ, "Andre polynomial", (x,), polys)
|