1801 lines
53 KiB
Python
1801 lines
53 KiB
Python
|
"""OO layer for several polynomial representations. """
|
||
|
|
||
|
|
||
|
from sympy.core.numbers import oo
|
||
|
from sympy.core.sympify import CantSympify
|
||
|
from sympy.polys.polyerrors import CoercionFailed, NotReversible, NotInvertible
|
||
|
from sympy.polys.polyutils import PicklableWithSlots
|
||
|
|
||
|
|
||
|
class GenericPoly(PicklableWithSlots):
|
||
|
"""Base class for low-level polynomial representations. """
|
||
|
|
||
|
def ground_to_ring(f):
|
||
|
"""Make the ground domain a ring. """
|
||
|
return f.set_domain(f.dom.get_ring())
|
||
|
|
||
|
def ground_to_field(f):
|
||
|
"""Make the ground domain a field. """
|
||
|
return f.set_domain(f.dom.get_field())
|
||
|
|
||
|
def ground_to_exact(f):
|
||
|
"""Make the ground domain exact. """
|
||
|
return f.set_domain(f.dom.get_exact())
|
||
|
|
||
|
@classmethod
|
||
|
def _perify_factors(per, result, include):
|
||
|
if include:
|
||
|
coeff, factors = result
|
||
|
|
||
|
factors = [ (per(g), k) for g, k in factors ]
|
||
|
|
||
|
if include:
|
||
|
return coeff, factors
|
||
|
else:
|
||
|
return factors
|
||
|
|
||
|
from sympy.polys.densebasic import (
|
||
|
dmp_validate,
|
||
|
dup_normal, dmp_normal,
|
||
|
dup_convert, dmp_convert,
|
||
|
dmp_from_sympy,
|
||
|
dup_strip,
|
||
|
dup_degree, dmp_degree_in,
|
||
|
dmp_degree_list,
|
||
|
dmp_negative_p,
|
||
|
dup_LC, dmp_ground_LC,
|
||
|
dup_TC, dmp_ground_TC,
|
||
|
dmp_ground_nth,
|
||
|
dmp_one, dmp_ground,
|
||
|
dmp_zero_p, dmp_one_p, dmp_ground_p,
|
||
|
dup_from_dict, dmp_from_dict,
|
||
|
dmp_to_dict,
|
||
|
dmp_deflate,
|
||
|
dmp_inject, dmp_eject,
|
||
|
dmp_terms_gcd,
|
||
|
dmp_list_terms, dmp_exclude,
|
||
|
dmp_slice_in, dmp_permute,
|
||
|
dmp_to_tuple,)
|
||
|
|
||
|
from sympy.polys.densearith import (
|
||
|
dmp_add_ground,
|
||
|
dmp_sub_ground,
|
||
|
dmp_mul_ground,
|
||
|
dmp_quo_ground,
|
||
|
dmp_exquo_ground,
|
||
|
dmp_abs,
|
||
|
dup_neg, dmp_neg,
|
||
|
dup_add, dmp_add,
|
||
|
dup_sub, dmp_sub,
|
||
|
dup_mul, dmp_mul,
|
||
|
dmp_sqr,
|
||
|
dup_pow, dmp_pow,
|
||
|
dmp_pdiv,
|
||
|
dmp_prem,
|
||
|
dmp_pquo,
|
||
|
dmp_pexquo,
|
||
|
dmp_div,
|
||
|
dup_rem, dmp_rem,
|
||
|
dmp_quo,
|
||
|
dmp_exquo,
|
||
|
dmp_add_mul, dmp_sub_mul,
|
||
|
dmp_max_norm,
|
||
|
dmp_l1_norm,
|
||
|
dmp_l2_norm_squared)
|
||
|
|
||
|
from sympy.polys.densetools import (
|
||
|
dmp_clear_denoms,
|
||
|
dmp_integrate_in,
|
||
|
dmp_diff_in,
|
||
|
dmp_eval_in,
|
||
|
dup_revert,
|
||
|
dmp_ground_trunc,
|
||
|
dmp_ground_content,
|
||
|
dmp_ground_primitive,
|
||
|
dmp_ground_monic,
|
||
|
dmp_compose,
|
||
|
dup_decompose,
|
||
|
dup_shift,
|
||
|
dup_transform,
|
||
|
dmp_lift)
|
||
|
|
||
|
from sympy.polys.euclidtools import (
|
||
|
dup_half_gcdex, dup_gcdex, dup_invert,
|
||
|
dmp_subresultants,
|
||
|
dmp_resultant,
|
||
|
dmp_discriminant,
|
||
|
dmp_inner_gcd,
|
||
|
dmp_gcd,
|
||
|
dmp_lcm,
|
||
|
dmp_cancel)
|
||
|
|
||
|
from sympy.polys.sqfreetools import (
|
||
|
dup_gff_list,
|
||
|
dmp_norm,
|
||
|
dmp_sqf_p,
|
||
|
dmp_sqf_norm,
|
||
|
dmp_sqf_part,
|
||
|
dmp_sqf_list, dmp_sqf_list_include)
|
||
|
|
||
|
from sympy.polys.factortools import (
|
||
|
dup_cyclotomic_p, dmp_irreducible_p,
|
||
|
dmp_factor_list, dmp_factor_list_include)
|
||
|
|
||
|
from sympy.polys.rootisolation import (
|
||
|
dup_isolate_real_roots_sqf,
|
||
|
dup_isolate_real_roots,
|
||
|
dup_isolate_all_roots_sqf,
|
||
|
dup_isolate_all_roots,
|
||
|
dup_refine_real_root,
|
||
|
dup_count_real_roots,
|
||
|
dup_count_complex_roots,
|
||
|
dup_sturm,
|
||
|
dup_cauchy_upper_bound,
|
||
|
dup_cauchy_lower_bound,
|
||
|
dup_mignotte_sep_bound_squared)
|
||
|
|
||
|
from sympy.polys.polyerrors import (
|
||
|
UnificationFailed,
|
||
|
PolynomialError)
|
||
|
|
||
|
|
||
|
def init_normal_DMP(rep, lev, dom):
|
||
|
return DMP(dmp_normal(rep, lev, dom), dom, lev)
|
||
|
|
||
|
|
||
|
class DMP(PicklableWithSlots, CantSympify):
|
||
|
"""Dense Multivariate Polynomials over `K`. """
|
||
|
|
||
|
__slots__ = ('rep', 'lev', 'dom', 'ring')
|
||
|
|
||
|
def __init__(self, rep, dom, lev=None, ring=None):
|
||
|
if lev is not None:
|
||
|
# Not possible to check with isinstance
|
||
|
if type(rep) is dict:
|
||
|
rep = dmp_from_dict(rep, lev, dom)
|
||
|
elif not isinstance(rep, list):
|
||
|
rep = dmp_ground(dom.convert(rep), lev)
|
||
|
else:
|
||
|
rep, lev = dmp_validate(rep)
|
||
|
|
||
|
self.rep = rep
|
||
|
self.lev = lev
|
||
|
self.dom = dom
|
||
|
self.ring = ring
|
||
|
|
||
|
def __repr__(f):
|
||
|
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.dom, f.ring)
|
||
|
|
||
|
def __hash__(f):
|
||
|
return hash((f.__class__.__name__, f.to_tuple(), f.lev, f.dom, f.ring))
|
||
|
|
||
|
def unify(f, g):
|
||
|
"""Unify representations of two multivariate polynomials. """
|
||
|
if not isinstance(g, DMP) or f.lev != g.lev:
|
||
|
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
|
||
|
|
||
|
if f.dom == g.dom and f.ring == g.ring:
|
||
|
return f.lev, f.dom, f.per, f.rep, g.rep
|
||
|
else:
|
||
|
lev, dom = f.lev, f.dom.unify(g.dom)
|
||
|
ring = f.ring
|
||
|
if g.ring is not None:
|
||
|
if ring is not None:
|
||
|
ring = ring.unify(g.ring)
|
||
|
else:
|
||
|
ring = g.ring
|
||
|
|
||
|
F = dmp_convert(f.rep, lev, f.dom, dom)
|
||
|
G = dmp_convert(g.rep, lev, g.dom, dom)
|
||
|
|
||
|
def per(rep, dom=dom, lev=lev, kill=False):
|
||
|
if kill:
|
||
|
if not lev:
|
||
|
return rep
|
||
|
else:
|
||
|
lev -= 1
|
||
|
|
||
|
return DMP(rep, dom, lev, ring)
|
||
|
|
||
|
return lev, dom, per, F, G
|
||
|
|
||
|
def per(f, rep, dom=None, kill=False, ring=None):
|
||
|
"""Create a DMP out of the given representation. """
|
||
|
lev = f.lev
|
||
|
|
||
|
if kill:
|
||
|
if not lev:
|
||
|
return rep
|
||
|
else:
|
||
|
lev -= 1
|
||
|
|
||
|
if dom is None:
|
||
|
dom = f.dom
|
||
|
|
||
|
if ring is None:
|
||
|
ring = f.ring
|
||
|
|
||
|
return DMP(rep, dom, lev, ring)
|
||
|
|
||
|
@classmethod
|
||
|
def zero(cls, lev, dom, ring=None):
|
||
|
return DMP(0, dom, lev, ring)
|
||
|
|
||
|
@classmethod
|
||
|
def one(cls, lev, dom, ring=None):
|
||
|
return DMP(1, dom, lev, ring)
|
||
|
|
||
|
@classmethod
|
||
|
def from_list(cls, rep, lev, dom):
|
||
|
"""Create an instance of ``cls`` given a list of native coefficients. """
|
||
|
return cls(dmp_convert(rep, lev, None, dom), dom, lev)
|
||
|
|
||
|
@classmethod
|
||
|
def from_sympy_list(cls, rep, lev, dom):
|
||
|
"""Create an instance of ``cls`` given a list of SymPy coefficients. """
|
||
|
return cls(dmp_from_sympy(rep, lev, dom), dom, lev)
|
||
|
|
||
|
def to_dict(f, zero=False):
|
||
|
"""Convert ``f`` to a dict representation with native coefficients. """
|
||
|
return dmp_to_dict(f.rep, f.lev, f.dom, zero=zero)
|
||
|
|
||
|
def to_sympy_dict(f, zero=False):
|
||
|
"""Convert ``f`` to a dict representation with SymPy coefficients. """
|
||
|
rep = dmp_to_dict(f.rep, f.lev, f.dom, zero=zero)
|
||
|
|
||
|
for k, v in rep.items():
|
||
|
rep[k] = f.dom.to_sympy(v)
|
||
|
|
||
|
return rep
|
||
|
|
||
|
def to_list(f):
|
||
|
"""Convert ``f`` to a list representation with native coefficients. """
|
||
|
return f.rep
|
||
|
|
||
|
def to_sympy_list(f):
|
||
|
"""Convert ``f`` to a list representation with SymPy coefficients. """
|
||
|
def sympify_nested_list(rep):
|
||
|
out = []
|
||
|
for val in rep:
|
||
|
if isinstance(val, list):
|
||
|
out.append(sympify_nested_list(val))
|
||
|
else:
|
||
|
out.append(f.dom.to_sympy(val))
|
||
|
return out
|
||
|
|
||
|
return sympify_nested_list(f.rep)
|
||
|
|
||
|
def to_tuple(f):
|
||
|
"""
|
||
|
Convert ``f`` to a tuple representation with native coefficients.
|
||
|
|
||
|
This is needed for hashing.
|
||
|
"""
|
||
|
return dmp_to_tuple(f.rep, f.lev)
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, rep, lev, dom):
|
||
|
"""Construct and instance of ``cls`` from a ``dict`` representation. """
|
||
|
return cls(dmp_from_dict(rep, lev, dom), dom, lev)
|
||
|
|
||
|
@classmethod
|
||
|
def from_monoms_coeffs(cls, monoms, coeffs, lev, dom, ring=None):
|
||
|
return DMP(dict(list(zip(monoms, coeffs))), dom, lev, ring)
|
||
|
|
||
|
def to_ring(f):
|
||
|
"""Make the ground domain a ring. """
|
||
|
return f.convert(f.dom.get_ring())
|
||
|
|
||
|
def to_field(f):
|
||
|
"""Make the ground domain a field. """
|
||
|
return f.convert(f.dom.get_field())
|
||
|
|
||
|
def to_exact(f):
|
||
|
"""Make the ground domain exact. """
|
||
|
return f.convert(f.dom.get_exact())
|
||
|
|
||
|
def convert(f, dom):
|
||
|
"""Convert the ground domain of ``f``. """
|
||
|
if f.dom == dom:
|
||
|
return f
|
||
|
else:
|
||
|
return DMP(dmp_convert(f.rep, f.lev, f.dom, dom), dom, f.lev)
|
||
|
|
||
|
def slice(f, m, n, j=0):
|
||
|
"""Take a continuous subsequence of terms of ``f``. """
|
||
|
return f.per(dmp_slice_in(f.rep, m, n, j, f.lev, f.dom))
|
||
|
|
||
|
def coeffs(f, order=None):
|
||
|
"""Returns all non-zero coefficients from ``f`` in lex order. """
|
||
|
return [ c for _, c in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ]
|
||
|
|
||
|
def monoms(f, order=None):
|
||
|
"""Returns all non-zero monomials from ``f`` in lex order. """
|
||
|
return [ m for m, _ in dmp_list_terms(f.rep, f.lev, f.dom, order=order) ]
|
||
|
|
||
|
def terms(f, order=None):
|
||
|
"""Returns all non-zero terms from ``f`` in lex order. """
|
||
|
return dmp_list_terms(f.rep, f.lev, f.dom, order=order)
|
||
|
|
||
|
def all_coeffs(f):
|
||
|
"""Returns all coefficients from ``f``. """
|
||
|
if not f.lev:
|
||
|
if not f:
|
||
|
return [f.dom.zero]
|
||
|
else:
|
||
|
return list(f.rep)
|
||
|
else:
|
||
|
raise PolynomialError('multivariate polynomials not supported')
|
||
|
|
||
|
def all_monoms(f):
|
||
|
"""Returns all monomials from ``f``. """
|
||
|
if not f.lev:
|
||
|
n = dup_degree(f.rep)
|
||
|
|
||
|
if n < 0:
|
||
|
return [(0,)]
|
||
|
else:
|
||
|
return [ (n - i,) for i, c in enumerate(f.rep) ]
|
||
|
else:
|
||
|
raise PolynomialError('multivariate polynomials not supported')
|
||
|
|
||
|
def all_terms(f):
|
||
|
"""Returns all terms from a ``f``. """
|
||
|
if not f.lev:
|
||
|
n = dup_degree(f.rep)
|
||
|
|
||
|
if n < 0:
|
||
|
return [((0,), f.dom.zero)]
|
||
|
else:
|
||
|
return [ ((n - i,), c) for i, c in enumerate(f.rep) ]
|
||
|
else:
|
||
|
raise PolynomialError('multivariate polynomials not supported')
|
||
|
|
||
|
def lift(f):
|
||
|
"""Convert algebraic coefficients to rationals. """
|
||
|
return f.per(dmp_lift(f.rep, f.lev, f.dom), dom=f.dom.dom)
|
||
|
|
||
|
def deflate(f):
|
||
|
"""Reduce degree of `f` by mapping `x_i^m` to `y_i`. """
|
||
|
J, F = dmp_deflate(f.rep, f.lev, f.dom)
|
||
|
return J, f.per(F)
|
||
|
|
||
|
def inject(f, front=False):
|
||
|
"""Inject ground domain generators into ``f``. """
|
||
|
F, lev = dmp_inject(f.rep, f.lev, f.dom, front=front)
|
||
|
return f.__class__(F, f.dom.dom, lev)
|
||
|
|
||
|
def eject(f, dom, front=False):
|
||
|
"""Eject selected generators into the ground domain. """
|
||
|
F = dmp_eject(f.rep, f.lev, dom, front=front)
|
||
|
return f.__class__(F, dom, f.lev - len(dom.symbols))
|
||
|
|
||
|
def exclude(f):
|
||
|
r"""
|
||
|
Remove useless generators from ``f``.
|
||
|
|
||
|
Returns the removed generators and the new excluded ``f``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyclasses import DMP
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> DMP([[[ZZ(1)]], [[ZZ(1)], [ZZ(2)]]], ZZ).exclude()
|
||
|
([2], DMP([[1], [1, 2]], ZZ, None))
|
||
|
|
||
|
"""
|
||
|
J, F, u = dmp_exclude(f.rep, f.lev, f.dom)
|
||
|
return J, f.__class__(F, f.dom, u)
|
||
|
|
||
|
def permute(f, P):
|
||
|
r"""
|
||
|
Returns a polynomial in `K[x_{P(1)}, ..., x_{P(n)}]`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyclasses import DMP
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 0, 2])
|
||
|
DMP([[[2], []], [[1, 0], []]], ZZ, None)
|
||
|
|
||
|
>>> DMP([[[ZZ(2)], [ZZ(1), ZZ(0)]], [[]]], ZZ).permute([1, 2, 0])
|
||
|
DMP([[[1], []], [[2, 0], []]], ZZ, None)
|
||
|
|
||
|
"""
|
||
|
return f.per(dmp_permute(f.rep, P, f.lev, f.dom))
|
||
|
|
||
|
def terms_gcd(f):
|
||
|
"""Remove GCD of terms from the polynomial ``f``. """
|
||
|
J, F = dmp_terms_gcd(f.rep, f.lev, f.dom)
|
||
|
return J, f.per(F)
|
||
|
|
||
|
def add_ground(f, c):
|
||
|
"""Add an element of the ground domain to ``f``. """
|
||
|
return f.per(dmp_add_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
|
||
|
|
||
|
def sub_ground(f, c):
|
||
|
"""Subtract an element of the ground domain from ``f``. """
|
||
|
return f.per(dmp_sub_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
|
||
|
|
||
|
def mul_ground(f, c):
|
||
|
"""Multiply ``f`` by a an element of the ground domain. """
|
||
|
return f.per(dmp_mul_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
|
||
|
|
||
|
def quo_ground(f, c):
|
||
|
"""Quotient of ``f`` by a an element of the ground domain. """
|
||
|
return f.per(dmp_quo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
|
||
|
|
||
|
def exquo_ground(f, c):
|
||
|
"""Exact quotient of ``f`` by a an element of the ground domain. """
|
||
|
return f.per(dmp_exquo_ground(f.rep, f.dom.convert(c), f.lev, f.dom))
|
||
|
|
||
|
def abs(f):
|
||
|
"""Make all coefficients in ``f`` positive. """
|
||
|
return f.per(dmp_abs(f.rep, f.lev, f.dom))
|
||
|
|
||
|
def neg(f):
|
||
|
"""Negate all coefficients in ``f``. """
|
||
|
return f.per(dmp_neg(f.rep, f.lev, f.dom))
|
||
|
|
||
|
def add(f, g):
|
||
|
"""Add two multivariate polynomials ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_add(F, G, lev, dom))
|
||
|
|
||
|
def sub(f, g):
|
||
|
"""Subtract two multivariate polynomials ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_sub(F, G, lev, dom))
|
||
|
|
||
|
def mul(f, g):
|
||
|
"""Multiply two multivariate polynomials ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_mul(F, G, lev, dom))
|
||
|
|
||
|
def sqr(f):
|
||
|
"""Square a multivariate polynomial ``f``. """
|
||
|
return f.per(dmp_sqr(f.rep, f.lev, f.dom))
|
||
|
|
||
|
def pow(f, n):
|
||
|
"""Raise ``f`` to a non-negative power ``n``. """
|
||
|
if isinstance(n, int):
|
||
|
return f.per(dmp_pow(f.rep, n, f.lev, f.dom))
|
||
|
else:
|
||
|
raise TypeError("``int`` expected, got %s" % type(n))
|
||
|
|
||
|
def pdiv(f, g):
|
||
|
"""Polynomial pseudo-division of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
q, r = dmp_pdiv(F, G, lev, dom)
|
||
|
return per(q), per(r)
|
||
|
|
||
|
def prem(f, g):
|
||
|
"""Polynomial pseudo-remainder of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_prem(F, G, lev, dom))
|
||
|
|
||
|
def pquo(f, g):
|
||
|
"""Polynomial pseudo-quotient of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_pquo(F, G, lev, dom))
|
||
|
|
||
|
def pexquo(f, g):
|
||
|
"""Polynomial exact pseudo-quotient of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_pexquo(F, G, lev, dom))
|
||
|
|
||
|
def div(f, g):
|
||
|
"""Polynomial division with remainder of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
q, r = dmp_div(F, G, lev, dom)
|
||
|
return per(q), per(r)
|
||
|
|
||
|
def rem(f, g):
|
||
|
"""Computes polynomial remainder of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_rem(F, G, lev, dom))
|
||
|
|
||
|
def quo(f, g):
|
||
|
"""Computes polynomial quotient of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_quo(F, G, lev, dom))
|
||
|
|
||
|
def exquo(f, g):
|
||
|
"""Computes polynomial exact quotient of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
res = per(dmp_exquo(F, G, lev, dom))
|
||
|
if f.ring and res not in f.ring:
|
||
|
from sympy.polys.polyerrors import ExactQuotientFailed
|
||
|
raise ExactQuotientFailed(f, g, f.ring)
|
||
|
return res
|
||
|
|
||
|
def degree(f, j=0):
|
||
|
"""Returns the leading degree of ``f`` in ``x_j``. """
|
||
|
if isinstance(j, int):
|
||
|
return dmp_degree_in(f.rep, j, f.lev)
|
||
|
else:
|
||
|
raise TypeError("``int`` expected, got %s" % type(j))
|
||
|
|
||
|
def degree_list(f):
|
||
|
"""Returns a list of degrees of ``f``. """
|
||
|
return dmp_degree_list(f.rep, f.lev)
|
||
|
|
||
|
def total_degree(f):
|
||
|
"""Returns the total degree of ``f``. """
|
||
|
return max(sum(m) for m in f.monoms())
|
||
|
|
||
|
def homogenize(f, s):
|
||
|
"""Return homogeneous polynomial of ``f``"""
|
||
|
td = f.total_degree()
|
||
|
result = {}
|
||
|
new_symbol = (s == len(f.terms()[0][0]))
|
||
|
for term in f.terms():
|
||
|
d = sum(term[0])
|
||
|
if d < td:
|
||
|
i = td - d
|
||
|
else:
|
||
|
i = 0
|
||
|
if new_symbol:
|
||
|
result[term[0] + (i,)] = term[1]
|
||
|
else:
|
||
|
l = list(term[0])
|
||
|
l[s] += i
|
||
|
result[tuple(l)] = term[1]
|
||
|
return DMP(result, f.dom, f.lev + int(new_symbol), f.ring)
|
||
|
|
||
|
def homogeneous_order(f):
|
||
|
"""Returns the homogeneous order of ``f``. """
|
||
|
if f.is_zero:
|
||
|
return -oo
|
||
|
|
||
|
monoms = f.monoms()
|
||
|
tdeg = sum(monoms[0])
|
||
|
|
||
|
for monom in monoms:
|
||
|
_tdeg = sum(monom)
|
||
|
|
||
|
if _tdeg != tdeg:
|
||
|
return None
|
||
|
|
||
|
return tdeg
|
||
|
|
||
|
def LC(f):
|
||
|
"""Returns the leading coefficient of ``f``. """
|
||
|
return dmp_ground_LC(f.rep, f.lev, f.dom)
|
||
|
|
||
|
def TC(f):
|
||
|
"""Returns the trailing coefficient of ``f``. """
|
||
|
return dmp_ground_TC(f.rep, f.lev, f.dom)
|
||
|
|
||
|
def nth(f, *N):
|
||
|
"""Returns the ``n``-th coefficient of ``f``. """
|
||
|
if all(isinstance(n, int) for n in N):
|
||
|
return dmp_ground_nth(f.rep, N, f.lev, f.dom)
|
||
|
else:
|
||
|
raise TypeError("a sequence of integers expected")
|
||
|
|
||
|
def max_norm(f):
|
||
|
"""Returns maximum norm of ``f``. """
|
||
|
return dmp_max_norm(f.rep, f.lev, f.dom)
|
||
|
|
||
|
def l1_norm(f):
|
||
|
"""Returns l1 norm of ``f``. """
|
||
|
return dmp_l1_norm(f.rep, f.lev, f.dom)
|
||
|
|
||
|
def l2_norm_squared(f):
|
||
|
"""Return squared l2 norm of ``f``. """
|
||
|
return dmp_l2_norm_squared(f.rep, f.lev, f.dom)
|
||
|
|
||
|
def clear_denoms(f):
|
||
|
"""Clear denominators, but keep the ground domain. """
|
||
|
coeff, F = dmp_clear_denoms(f.rep, f.lev, f.dom)
|
||
|
return coeff, f.per(F)
|
||
|
|
||
|
def integrate(f, m=1, j=0):
|
||
|
"""Computes the ``m``-th order indefinite integral of ``f`` in ``x_j``. """
|
||
|
if not isinstance(m, int):
|
||
|
raise TypeError("``int`` expected, got %s" % type(m))
|
||
|
|
||
|
if not isinstance(j, int):
|
||
|
raise TypeError("``int`` expected, got %s" % type(j))
|
||
|
|
||
|
return f.per(dmp_integrate_in(f.rep, m, j, f.lev, f.dom))
|
||
|
|
||
|
def diff(f, m=1, j=0):
|
||
|
"""Computes the ``m``-th order derivative of ``f`` in ``x_j``. """
|
||
|
if not isinstance(m, int):
|
||
|
raise TypeError("``int`` expected, got %s" % type(m))
|
||
|
|
||
|
if not isinstance(j, int):
|
||
|
raise TypeError("``int`` expected, got %s" % type(j))
|
||
|
|
||
|
return f.per(dmp_diff_in(f.rep, m, j, f.lev, f.dom))
|
||
|
|
||
|
def eval(f, a, j=0):
|
||
|
"""Evaluates ``f`` at the given point ``a`` in ``x_j``. """
|
||
|
if not isinstance(j, int):
|
||
|
raise TypeError("``int`` expected, got %s" % type(j))
|
||
|
|
||
|
return f.per(dmp_eval_in(f.rep,
|
||
|
f.dom.convert(a), j, f.lev, f.dom), kill=True)
|
||
|
|
||
|
def half_gcdex(f, g):
|
||
|
"""Half extended Euclidean algorithm, if univariate. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
|
||
|
if not lev:
|
||
|
s, h = dup_half_gcdex(F, G, dom)
|
||
|
return per(s), per(h)
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def gcdex(f, g):
|
||
|
"""Extended Euclidean algorithm, if univariate. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
|
||
|
if not lev:
|
||
|
s, t, h = dup_gcdex(F, G, dom)
|
||
|
return per(s), per(t), per(h)
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def invert(f, g):
|
||
|
"""Invert ``f`` modulo ``g``, if possible. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
|
||
|
if not lev:
|
||
|
return per(dup_invert(F, G, dom))
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def revert(f, n):
|
||
|
"""Compute ``f**(-1)`` mod ``x**n``. """
|
||
|
if not f.lev:
|
||
|
return f.per(dup_revert(f.rep, n, f.dom))
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def subresultants(f, g):
|
||
|
"""Computes subresultant PRS sequence of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
R = dmp_subresultants(F, G, lev, dom)
|
||
|
return list(map(per, R))
|
||
|
|
||
|
def resultant(f, g, includePRS=False):
|
||
|
"""Computes resultant of ``f`` and ``g`` via PRS. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
if includePRS:
|
||
|
res, R = dmp_resultant(F, G, lev, dom, includePRS=includePRS)
|
||
|
return per(res, kill=True), list(map(per, R))
|
||
|
return per(dmp_resultant(F, G, lev, dom), kill=True)
|
||
|
|
||
|
def discriminant(f):
|
||
|
"""Computes discriminant of ``f``. """
|
||
|
return f.per(dmp_discriminant(f.rep, f.lev, f.dom), kill=True)
|
||
|
|
||
|
def cofactors(f, g):
|
||
|
"""Returns GCD of ``f`` and ``g`` and their cofactors. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
h, cff, cfg = dmp_inner_gcd(F, G, lev, dom)
|
||
|
return per(h), per(cff), per(cfg)
|
||
|
|
||
|
def gcd(f, g):
|
||
|
"""Returns polynomial GCD of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_gcd(F, G, lev, dom))
|
||
|
|
||
|
def lcm(f, g):
|
||
|
"""Returns polynomial LCM of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_lcm(F, G, lev, dom))
|
||
|
|
||
|
def cancel(f, g, include=True):
|
||
|
"""Cancel common factors in a rational function ``f/g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
|
||
|
if include:
|
||
|
F, G = dmp_cancel(F, G, lev, dom, include=True)
|
||
|
else:
|
||
|
cF, cG, F, G = dmp_cancel(F, G, lev, dom, include=False)
|
||
|
|
||
|
F, G = per(F), per(G)
|
||
|
|
||
|
if include:
|
||
|
return F, G
|
||
|
else:
|
||
|
return cF, cG, F, G
|
||
|
|
||
|
def trunc(f, p):
|
||
|
"""Reduce ``f`` modulo a constant ``p``. """
|
||
|
return f.per(dmp_ground_trunc(f.rep, f.dom.convert(p), f.lev, f.dom))
|
||
|
|
||
|
def monic(f):
|
||
|
"""Divides all coefficients by ``LC(f)``. """
|
||
|
return f.per(dmp_ground_monic(f.rep, f.lev, f.dom))
|
||
|
|
||
|
def content(f):
|
||
|
"""Returns GCD of polynomial coefficients. """
|
||
|
return dmp_ground_content(f.rep, f.lev, f.dom)
|
||
|
|
||
|
def primitive(f):
|
||
|
"""Returns content and a primitive form of ``f``. """
|
||
|
cont, F = dmp_ground_primitive(f.rep, f.lev, f.dom)
|
||
|
return cont, f.per(F)
|
||
|
|
||
|
def compose(f, g):
|
||
|
"""Computes functional composition of ``f`` and ``g``. """
|
||
|
lev, dom, per, F, G = f.unify(g)
|
||
|
return per(dmp_compose(F, G, lev, dom))
|
||
|
|
||
|
def decompose(f):
|
||
|
"""Computes functional decomposition of ``f``. """
|
||
|
if not f.lev:
|
||
|
return list(map(f.per, dup_decompose(f.rep, f.dom)))
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def shift(f, a):
|
||
|
"""Efficiently compute Taylor shift ``f(x + a)``. """
|
||
|
if not f.lev:
|
||
|
return f.per(dup_shift(f.rep, f.dom.convert(a), f.dom))
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def transform(f, p, q):
|
||
|
"""Evaluate functional transformation ``q**n * f(p/q)``."""
|
||
|
if f.lev:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
lev, dom, per, P, Q = p.unify(q)
|
||
|
lev, dom, per, F, P = f.unify(per(P, dom, lev))
|
||
|
lev, dom, per, F, Q = per(F, dom, lev).unify(per(Q, dom, lev))
|
||
|
|
||
|
if not lev:
|
||
|
return per(dup_transform(F, P, Q, dom))
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def sturm(f):
|
||
|
"""Computes the Sturm sequence of ``f``. """
|
||
|
if not f.lev:
|
||
|
return list(map(f.per, dup_sturm(f.rep, f.dom)))
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def cauchy_upper_bound(f):
|
||
|
"""Computes the Cauchy upper bound on the roots of ``f``. """
|
||
|
if not f.lev:
|
||
|
return dup_cauchy_upper_bound(f.rep, f.dom)
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def cauchy_lower_bound(f):
|
||
|
"""Computes the Cauchy lower bound on the nonzero roots of ``f``. """
|
||
|
if not f.lev:
|
||
|
return dup_cauchy_lower_bound(f.rep, f.dom)
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def mignotte_sep_bound_squared(f):
|
||
|
"""Computes the squared Mignotte bound on root separations of ``f``. """
|
||
|
if not f.lev:
|
||
|
return dup_mignotte_sep_bound_squared(f.rep, f.dom)
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def gff_list(f):
|
||
|
"""Computes greatest factorial factorization of ``f``. """
|
||
|
if not f.lev:
|
||
|
return [ (f.per(g), k) for g, k in dup_gff_list(f.rep, f.dom) ]
|
||
|
else:
|
||
|
raise ValueError('univariate polynomial expected')
|
||
|
|
||
|
def norm(f):
|
||
|
"""Computes ``Norm(f)``."""
|
||
|
r = dmp_norm(f.rep, f.lev, f.dom)
|
||
|
return f.per(r, dom=f.dom.dom)
|
||
|
|
||
|
def sqf_norm(f):
|
||
|
"""Computes square-free norm of ``f``. """
|
||
|
s, g, r = dmp_sqf_norm(f.rep, f.lev, f.dom)
|
||
|
return s, f.per(g), f.per(r, dom=f.dom.dom)
|
||
|
|
||
|
def sqf_part(f):
|
||
|
"""Computes square-free part of ``f``. """
|
||
|
return f.per(dmp_sqf_part(f.rep, f.lev, f.dom))
|
||
|
|
||
|
def sqf_list(f, all=False):
|
||
|
"""Returns a list of square-free factors of ``f``. """
|
||
|
coeff, factors = dmp_sqf_list(f.rep, f.lev, f.dom, all)
|
||
|
return coeff, [ (f.per(g), k) for g, k in factors ]
|
||
|
|
||
|
def sqf_list_include(f, all=False):
|
||
|
"""Returns a list of square-free factors of ``f``. """
|
||
|
factors = dmp_sqf_list_include(f.rep, f.lev, f.dom, all)
|
||
|
return [ (f.per(g), k) for g, k in factors ]
|
||
|
|
||
|
def factor_list(f):
|
||
|
"""Returns a list of irreducible factors of ``f``. """
|
||
|
coeff, factors = dmp_factor_list(f.rep, f.lev, f.dom)
|
||
|
return coeff, [ (f.per(g), k) for g, k in factors ]
|
||
|
|
||
|
def factor_list_include(f):
|
||
|
"""Returns a list of irreducible factors of ``f``. """
|
||
|
factors = dmp_factor_list_include(f.rep, f.lev, f.dom)
|
||
|
return [ (f.per(g), k) for g, k in factors ]
|
||
|
|
||
|
def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
|
||
|
"""Compute isolating intervals for roots of ``f``. """
|
||
|
if not f.lev:
|
||
|
if not all:
|
||
|
if not sqf:
|
||
|
return dup_isolate_real_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
else:
|
||
|
return dup_isolate_real_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
else:
|
||
|
if not sqf:
|
||
|
return dup_isolate_all_roots(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
else:
|
||
|
return dup_isolate_all_roots_sqf(f.rep, f.dom, eps=eps, inf=inf, sup=sup, fast=fast)
|
||
|
else:
|
||
|
raise PolynomialError(
|
||
|
"Cannot isolate roots of a multivariate polynomial")
|
||
|
|
||
|
def refine_root(f, s, t, eps=None, steps=None, fast=False):
|
||
|
"""
|
||
|
Refine an isolating interval to the given precision.
|
||
|
|
||
|
``eps`` should be a rational number.
|
||
|
|
||
|
"""
|
||
|
if not f.lev:
|
||
|
return dup_refine_real_root(f.rep, s, t, f.dom, eps=eps, steps=steps, fast=fast)
|
||
|
else:
|
||
|
raise PolynomialError(
|
||
|
"Cannot refine a root of a multivariate polynomial")
|
||
|
|
||
|
def count_real_roots(f, inf=None, sup=None):
|
||
|
"""Return the number of real roots of ``f`` in ``[inf, sup]``. """
|
||
|
return dup_count_real_roots(f.rep, f.dom, inf=inf, sup=sup)
|
||
|
|
||
|
def count_complex_roots(f, inf=None, sup=None):
|
||
|
"""Return the number of complex roots of ``f`` in ``[inf, sup]``. """
|
||
|
return dup_count_complex_roots(f.rep, f.dom, inf=inf, sup=sup)
|
||
|
|
||
|
@property
|
||
|
def is_zero(f):
|
||
|
"""Returns ``True`` if ``f`` is a zero polynomial. """
|
||
|
return dmp_zero_p(f.rep, f.lev)
|
||
|
|
||
|
@property
|
||
|
def is_one(f):
|
||
|
"""Returns ``True`` if ``f`` is a unit polynomial. """
|
||
|
return dmp_one_p(f.rep, f.lev, f.dom)
|
||
|
|
||
|
@property
|
||
|
def is_ground(f):
|
||
|
"""Returns ``True`` if ``f`` is an element of the ground domain. """
|
||
|
return dmp_ground_p(f.rep, None, f.lev)
|
||
|
|
||
|
@property
|
||
|
def is_sqf(f):
|
||
|
"""Returns ``True`` if ``f`` is a square-free polynomial. """
|
||
|
return dmp_sqf_p(f.rep, f.lev, f.dom)
|
||
|
|
||
|
@property
|
||
|
def is_monic(f):
|
||
|
"""Returns ``True`` if the leading coefficient of ``f`` is one. """
|
||
|
return f.dom.is_one(dmp_ground_LC(f.rep, f.lev, f.dom))
|
||
|
|
||
|
@property
|
||
|
def is_primitive(f):
|
||
|
"""Returns ``True`` if the GCD of the coefficients of ``f`` is one. """
|
||
|
return f.dom.is_one(dmp_ground_content(f.rep, f.lev, f.dom))
|
||
|
|
||
|
@property
|
||
|
def is_linear(f):
|
||
|
"""Returns ``True`` if ``f`` is linear in all its variables. """
|
||
|
return all(sum(monom) <= 1 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys())
|
||
|
|
||
|
@property
|
||
|
def is_quadratic(f):
|
||
|
"""Returns ``True`` if ``f`` is quadratic in all its variables. """
|
||
|
return all(sum(monom) <= 2 for monom in dmp_to_dict(f.rep, f.lev, f.dom).keys())
|
||
|
|
||
|
@property
|
||
|
def is_monomial(f):
|
||
|
"""Returns ``True`` if ``f`` is zero or has only one term. """
|
||
|
return len(f.to_dict()) <= 1
|
||
|
|
||
|
@property
|
||
|
def is_homogeneous(f):
|
||
|
"""Returns ``True`` if ``f`` is a homogeneous polynomial. """
|
||
|
return f.homogeneous_order() is not None
|
||
|
|
||
|
@property
|
||
|
def is_irreducible(f):
|
||
|
"""Returns ``True`` if ``f`` has no factors over its domain. """
|
||
|
return dmp_irreducible_p(f.rep, f.lev, f.dom)
|
||
|
|
||
|
@property
|
||
|
def is_cyclotomic(f):
|
||
|
"""Returns ``True`` if ``f`` is a cyclotomic polynomial. """
|
||
|
if not f.lev:
|
||
|
return dup_cyclotomic_p(f.rep, f.dom)
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
def __abs__(f):
|
||
|
return f.abs()
|
||
|
|
||
|
def __neg__(f):
|
||
|
return f.neg()
|
||
|
|
||
|
def __add__(f, g):
|
||
|
if not isinstance(g, DMP):
|
||
|
try:
|
||
|
g = f.per(dmp_ground(f.dom.convert(g), f.lev))
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
g = f.ring.convert(g)
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
return NotImplemented
|
||
|
|
||
|
return f.add(g)
|
||
|
|
||
|
def __radd__(f, g):
|
||
|
return f.__add__(g)
|
||
|
|
||
|
def __sub__(f, g):
|
||
|
if not isinstance(g, DMP):
|
||
|
try:
|
||
|
g = f.per(dmp_ground(f.dom.convert(g), f.lev))
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
g = f.ring.convert(g)
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
return NotImplemented
|
||
|
|
||
|
return f.sub(g)
|
||
|
|
||
|
def __rsub__(f, g):
|
||
|
return (-f).__add__(g)
|
||
|
|
||
|
def __mul__(f, g):
|
||
|
if isinstance(g, DMP):
|
||
|
return f.mul(g)
|
||
|
else:
|
||
|
try:
|
||
|
return f.mul_ground(g)
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
return f.mul(f.ring.convert(g))
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
pass
|
||
|
return NotImplemented
|
||
|
|
||
|
def __truediv__(f, g):
|
||
|
if isinstance(g, DMP):
|
||
|
return f.exquo(g)
|
||
|
else:
|
||
|
try:
|
||
|
return f.mul_ground(g)
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
return f.exquo(f.ring.convert(g))
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
pass
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rtruediv__(f, g):
|
||
|
if isinstance(g, DMP):
|
||
|
return g.exquo(f)
|
||
|
elif f.ring is not None:
|
||
|
try:
|
||
|
return f.ring.convert(g).exquo(f)
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
pass
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rmul__(f, g):
|
||
|
return f.__mul__(g)
|
||
|
|
||
|
def __pow__(f, n):
|
||
|
return f.pow(n)
|
||
|
|
||
|
def __divmod__(f, g):
|
||
|
return f.div(g)
|
||
|
|
||
|
def __mod__(f, g):
|
||
|
return f.rem(g)
|
||
|
|
||
|
def __floordiv__(f, g):
|
||
|
if isinstance(g, DMP):
|
||
|
return f.quo(g)
|
||
|
else:
|
||
|
try:
|
||
|
return f.quo_ground(g)
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
|
||
|
def __eq__(f, g):
|
||
|
try:
|
||
|
_, _, _, F, G = f.unify(g)
|
||
|
|
||
|
if f.lev == g.lev:
|
||
|
return F == G
|
||
|
except UnificationFailed:
|
||
|
pass
|
||
|
|
||
|
return False
|
||
|
|
||
|
def __ne__(f, g):
|
||
|
return not f == g
|
||
|
|
||
|
def eq(f, g, strict=False):
|
||
|
if not strict:
|
||
|
return f == g
|
||
|
else:
|
||
|
return f._strict_eq(g)
|
||
|
|
||
|
def ne(f, g, strict=False):
|
||
|
return not f.eq(g, strict=strict)
|
||
|
|
||
|
def _strict_eq(f, g):
|
||
|
return isinstance(g, f.__class__) and f.lev == g.lev \
|
||
|
and f.dom == g.dom \
|
||
|
and f.rep == g.rep
|
||
|
|
||
|
def __lt__(f, g):
|
||
|
_, _, _, F, G = f.unify(g)
|
||
|
return F < G
|
||
|
|
||
|
def __le__(f, g):
|
||
|
_, _, _, F, G = f.unify(g)
|
||
|
return F <= G
|
||
|
|
||
|
def __gt__(f, g):
|
||
|
_, _, _, F, G = f.unify(g)
|
||
|
return F > G
|
||
|
|
||
|
def __ge__(f, g):
|
||
|
_, _, _, F, G = f.unify(g)
|
||
|
return F >= G
|
||
|
|
||
|
def __bool__(f):
|
||
|
return not dmp_zero_p(f.rep, f.lev)
|
||
|
|
||
|
|
||
|
def init_normal_DMF(num, den, lev, dom):
|
||
|
return DMF(dmp_normal(num, lev, dom),
|
||
|
dmp_normal(den, lev, dom), dom, lev)
|
||
|
|
||
|
|
||
|
class DMF(PicklableWithSlots, CantSympify):
|
||
|
"""Dense Multivariate Fractions over `K`. """
|
||
|
|
||
|
__slots__ = ('num', 'den', 'lev', 'dom', 'ring')
|
||
|
|
||
|
def __init__(self, rep, dom, lev=None, ring=None):
|
||
|
num, den, lev = self._parse(rep, dom, lev)
|
||
|
num, den = dmp_cancel(num, den, lev, dom)
|
||
|
|
||
|
self.num = num
|
||
|
self.den = den
|
||
|
self.lev = lev
|
||
|
self.dom = dom
|
||
|
self.ring = ring
|
||
|
|
||
|
@classmethod
|
||
|
def new(cls, rep, dom, lev=None, ring=None):
|
||
|
num, den, lev = cls._parse(rep, dom, lev)
|
||
|
|
||
|
obj = object.__new__(cls)
|
||
|
|
||
|
obj.num = num
|
||
|
obj.den = den
|
||
|
obj.lev = lev
|
||
|
obj.dom = dom
|
||
|
obj.ring = ring
|
||
|
|
||
|
return obj
|
||
|
|
||
|
@classmethod
|
||
|
def _parse(cls, rep, dom, lev=None):
|
||
|
if isinstance(rep, tuple):
|
||
|
num, den = rep
|
||
|
|
||
|
if lev is not None:
|
||
|
if isinstance(num, dict):
|
||
|
num = dmp_from_dict(num, lev, dom)
|
||
|
|
||
|
if isinstance(den, dict):
|
||
|
den = dmp_from_dict(den, lev, dom)
|
||
|
else:
|
||
|
num, num_lev = dmp_validate(num)
|
||
|
den, den_lev = dmp_validate(den)
|
||
|
|
||
|
if num_lev == den_lev:
|
||
|
lev = num_lev
|
||
|
else:
|
||
|
raise ValueError('inconsistent number of levels')
|
||
|
|
||
|
if dmp_zero_p(den, lev):
|
||
|
raise ZeroDivisionError('fraction denominator')
|
||
|
|
||
|
if dmp_zero_p(num, lev):
|
||
|
den = dmp_one(lev, dom)
|
||
|
else:
|
||
|
if dmp_negative_p(den, lev, dom):
|
||
|
num = dmp_neg(num, lev, dom)
|
||
|
den = dmp_neg(den, lev, dom)
|
||
|
else:
|
||
|
num = rep
|
||
|
|
||
|
if lev is not None:
|
||
|
if isinstance(num, dict):
|
||
|
num = dmp_from_dict(num, lev, dom)
|
||
|
elif not isinstance(num, list):
|
||
|
num = dmp_ground(dom.convert(num), lev)
|
||
|
else:
|
||
|
num, lev = dmp_validate(num)
|
||
|
|
||
|
den = dmp_one(lev, dom)
|
||
|
|
||
|
return num, den, lev
|
||
|
|
||
|
def __repr__(f):
|
||
|
return "%s((%s, %s), %s, %s)" % (f.__class__.__name__, f.num, f.den,
|
||
|
f.dom, f.ring)
|
||
|
|
||
|
def __hash__(f):
|
||
|
return hash((f.__class__.__name__, dmp_to_tuple(f.num, f.lev),
|
||
|
dmp_to_tuple(f.den, f.lev), f.lev, f.dom, f.ring))
|
||
|
|
||
|
def poly_unify(f, g):
|
||
|
"""Unify a multivariate fraction and a polynomial. """
|
||
|
if not isinstance(g, DMP) or f.lev != g.lev:
|
||
|
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
|
||
|
|
||
|
if f.dom == g.dom and f.ring == g.ring:
|
||
|
return (f.lev, f.dom, f.per, (f.num, f.den), g.rep)
|
||
|
else:
|
||
|
lev, dom = f.lev, f.dom.unify(g.dom)
|
||
|
ring = f.ring
|
||
|
if g.ring is not None:
|
||
|
if ring is not None:
|
||
|
ring = ring.unify(g.ring)
|
||
|
else:
|
||
|
ring = g.ring
|
||
|
|
||
|
F = (dmp_convert(f.num, lev, f.dom, dom),
|
||
|
dmp_convert(f.den, lev, f.dom, dom))
|
||
|
|
||
|
G = dmp_convert(g.rep, lev, g.dom, dom)
|
||
|
|
||
|
def per(num, den, cancel=True, kill=False, lev=lev):
|
||
|
if kill:
|
||
|
if not lev:
|
||
|
return num/den
|
||
|
else:
|
||
|
lev = lev - 1
|
||
|
|
||
|
if cancel:
|
||
|
num, den = dmp_cancel(num, den, lev, dom)
|
||
|
|
||
|
return f.__class__.new((num, den), dom, lev, ring=ring)
|
||
|
|
||
|
return lev, dom, per, F, G
|
||
|
|
||
|
def frac_unify(f, g):
|
||
|
"""Unify representations of two multivariate fractions. """
|
||
|
if not isinstance(g, DMF) or f.lev != g.lev:
|
||
|
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
|
||
|
|
||
|
if f.dom == g.dom and f.ring == g.ring:
|
||
|
return (f.lev, f.dom, f.per, (f.num, f.den),
|
||
|
(g.num, g.den))
|
||
|
else:
|
||
|
lev, dom = f.lev, f.dom.unify(g.dom)
|
||
|
ring = f.ring
|
||
|
if g.ring is not None:
|
||
|
if ring is not None:
|
||
|
ring = ring.unify(g.ring)
|
||
|
else:
|
||
|
ring = g.ring
|
||
|
|
||
|
F = (dmp_convert(f.num, lev, f.dom, dom),
|
||
|
dmp_convert(f.den, lev, f.dom, dom))
|
||
|
|
||
|
G = (dmp_convert(g.num, lev, g.dom, dom),
|
||
|
dmp_convert(g.den, lev, g.dom, dom))
|
||
|
|
||
|
def per(num, den, cancel=True, kill=False, lev=lev):
|
||
|
if kill:
|
||
|
if not lev:
|
||
|
return num/den
|
||
|
else:
|
||
|
lev = lev - 1
|
||
|
|
||
|
if cancel:
|
||
|
num, den = dmp_cancel(num, den, lev, dom)
|
||
|
|
||
|
return f.__class__.new((num, den), dom, lev, ring=ring)
|
||
|
|
||
|
return lev, dom, per, F, G
|
||
|
|
||
|
def per(f, num, den, cancel=True, kill=False, ring=None):
|
||
|
"""Create a DMF out of the given representation. """
|
||
|
lev, dom = f.lev, f.dom
|
||
|
|
||
|
if kill:
|
||
|
if not lev:
|
||
|
return num/den
|
||
|
else:
|
||
|
lev -= 1
|
||
|
|
||
|
if cancel:
|
||
|
num, den = dmp_cancel(num, den, lev, dom)
|
||
|
|
||
|
if ring is None:
|
||
|
ring = f.ring
|
||
|
|
||
|
return f.__class__.new((num, den), dom, lev, ring=ring)
|
||
|
|
||
|
def half_per(f, rep, kill=False):
|
||
|
"""Create a DMP out of the given representation. """
|
||
|
lev = f.lev
|
||
|
|
||
|
if kill:
|
||
|
if not lev:
|
||
|
return rep
|
||
|
else:
|
||
|
lev -= 1
|
||
|
|
||
|
return DMP(rep, f.dom, lev)
|
||
|
|
||
|
@classmethod
|
||
|
def zero(cls, lev, dom, ring=None):
|
||
|
return cls.new(0, dom, lev, ring=ring)
|
||
|
|
||
|
@classmethod
|
||
|
def one(cls, lev, dom, ring=None):
|
||
|
return cls.new(1, dom, lev, ring=ring)
|
||
|
|
||
|
def numer(f):
|
||
|
"""Returns the numerator of ``f``. """
|
||
|
return f.half_per(f.num)
|
||
|
|
||
|
def denom(f):
|
||
|
"""Returns the denominator of ``f``. """
|
||
|
return f.half_per(f.den)
|
||
|
|
||
|
def cancel(f):
|
||
|
"""Remove common factors from ``f.num`` and ``f.den``. """
|
||
|
return f.per(f.num, f.den)
|
||
|
|
||
|
def neg(f):
|
||
|
"""Negate all coefficients in ``f``. """
|
||
|
return f.per(dmp_neg(f.num, f.lev, f.dom), f.den, cancel=False)
|
||
|
|
||
|
def add(f, g):
|
||
|
"""Add two multivariate fractions ``f`` and ``g``. """
|
||
|
if isinstance(g, DMP):
|
||
|
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
|
||
|
num, den = dmp_add_mul(F_num, F_den, G, lev, dom), F_den
|
||
|
else:
|
||
|
lev, dom, per, F, G = f.frac_unify(g)
|
||
|
(F_num, F_den), (G_num, G_den) = F, G
|
||
|
|
||
|
num = dmp_add(dmp_mul(F_num, G_den, lev, dom),
|
||
|
dmp_mul(F_den, G_num, lev, dom), lev, dom)
|
||
|
den = dmp_mul(F_den, G_den, lev, dom)
|
||
|
|
||
|
return per(num, den)
|
||
|
|
||
|
def sub(f, g):
|
||
|
"""Subtract two multivariate fractions ``f`` and ``g``. """
|
||
|
if isinstance(g, DMP):
|
||
|
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
|
||
|
num, den = dmp_sub_mul(F_num, F_den, G, lev, dom), F_den
|
||
|
else:
|
||
|
lev, dom, per, F, G = f.frac_unify(g)
|
||
|
(F_num, F_den), (G_num, G_den) = F, G
|
||
|
|
||
|
num = dmp_sub(dmp_mul(F_num, G_den, lev, dom),
|
||
|
dmp_mul(F_den, G_num, lev, dom), lev, dom)
|
||
|
den = dmp_mul(F_den, G_den, lev, dom)
|
||
|
|
||
|
return per(num, den)
|
||
|
|
||
|
def mul(f, g):
|
||
|
"""Multiply two multivariate fractions ``f`` and ``g``. """
|
||
|
if isinstance(g, DMP):
|
||
|
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
|
||
|
num, den = dmp_mul(F_num, G, lev, dom), F_den
|
||
|
else:
|
||
|
lev, dom, per, F, G = f.frac_unify(g)
|
||
|
(F_num, F_den), (G_num, G_den) = F, G
|
||
|
|
||
|
num = dmp_mul(F_num, G_num, lev, dom)
|
||
|
den = dmp_mul(F_den, G_den, lev, dom)
|
||
|
|
||
|
return per(num, den)
|
||
|
|
||
|
def pow(f, n):
|
||
|
"""Raise ``f`` to a non-negative power ``n``. """
|
||
|
if isinstance(n, int):
|
||
|
num, den = f.num, f.den
|
||
|
if n < 0:
|
||
|
num, den, n = den, num, -n
|
||
|
return f.per(dmp_pow(num, n, f.lev, f.dom),
|
||
|
dmp_pow(den, n, f.lev, f.dom), cancel=False)
|
||
|
else:
|
||
|
raise TypeError("``int`` expected, got %s" % type(n))
|
||
|
|
||
|
def quo(f, g):
|
||
|
"""Computes quotient of fractions ``f`` and ``g``. """
|
||
|
if isinstance(g, DMP):
|
||
|
lev, dom, per, (F_num, F_den), G = f.poly_unify(g)
|
||
|
num, den = F_num, dmp_mul(F_den, G, lev, dom)
|
||
|
else:
|
||
|
lev, dom, per, F, G = f.frac_unify(g)
|
||
|
(F_num, F_den), (G_num, G_den) = F, G
|
||
|
|
||
|
num = dmp_mul(F_num, G_den, lev, dom)
|
||
|
den = dmp_mul(F_den, G_num, lev, dom)
|
||
|
|
||
|
res = per(num, den)
|
||
|
if f.ring is not None and res not in f.ring:
|
||
|
from sympy.polys.polyerrors import ExactQuotientFailed
|
||
|
raise ExactQuotientFailed(f, g, f.ring)
|
||
|
return res
|
||
|
|
||
|
exquo = quo
|
||
|
|
||
|
def invert(f, check=True):
|
||
|
"""Computes inverse of a fraction ``f``. """
|
||
|
if check and f.ring is not None and not f.ring.is_unit(f):
|
||
|
raise NotReversible(f, f.ring)
|
||
|
res = f.per(f.den, f.num, cancel=False)
|
||
|
return res
|
||
|
|
||
|
@property
|
||
|
def is_zero(f):
|
||
|
"""Returns ``True`` if ``f`` is a zero fraction. """
|
||
|
return dmp_zero_p(f.num, f.lev)
|
||
|
|
||
|
@property
|
||
|
def is_one(f):
|
||
|
"""Returns ``True`` if ``f`` is a unit fraction. """
|
||
|
return dmp_one_p(f.num, f.lev, f.dom) and \
|
||
|
dmp_one_p(f.den, f.lev, f.dom)
|
||
|
|
||
|
def __neg__(f):
|
||
|
return f.neg()
|
||
|
|
||
|
def __add__(f, g):
|
||
|
if isinstance(g, (DMP, DMF)):
|
||
|
return f.add(g)
|
||
|
|
||
|
try:
|
||
|
return f.add(f.half_per(g))
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
return f.add(f.ring.convert(g))
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
pass
|
||
|
return NotImplemented
|
||
|
|
||
|
def __radd__(f, g):
|
||
|
return f.__add__(g)
|
||
|
|
||
|
def __sub__(f, g):
|
||
|
if isinstance(g, (DMP, DMF)):
|
||
|
return f.sub(g)
|
||
|
|
||
|
try:
|
||
|
return f.sub(f.half_per(g))
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
return f.sub(f.ring.convert(g))
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
pass
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rsub__(f, g):
|
||
|
return (-f).__add__(g)
|
||
|
|
||
|
def __mul__(f, g):
|
||
|
if isinstance(g, (DMP, DMF)):
|
||
|
return f.mul(g)
|
||
|
|
||
|
try:
|
||
|
return f.mul(f.half_per(g))
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
return f.mul(f.ring.convert(g))
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
pass
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rmul__(f, g):
|
||
|
return f.__mul__(g)
|
||
|
|
||
|
def __pow__(f, n):
|
||
|
return f.pow(n)
|
||
|
|
||
|
def __truediv__(f, g):
|
||
|
if isinstance(g, (DMP, DMF)):
|
||
|
return f.quo(g)
|
||
|
|
||
|
try:
|
||
|
return f.quo(f.half_per(g))
|
||
|
except TypeError:
|
||
|
return NotImplemented
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
if f.ring is not None:
|
||
|
try:
|
||
|
return f.quo(f.ring.convert(g))
|
||
|
except (CoercionFailed, NotImplementedError):
|
||
|
pass
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rtruediv__(self, g):
|
||
|
r = self.invert(check=False)*g
|
||
|
if self.ring and r not in self.ring:
|
||
|
from sympy.polys.polyerrors import ExactQuotientFailed
|
||
|
raise ExactQuotientFailed(g, self, self.ring)
|
||
|
return r
|
||
|
|
||
|
def __eq__(f, g):
|
||
|
try:
|
||
|
if isinstance(g, DMP):
|
||
|
_, _, _, (F_num, F_den), G = f.poly_unify(g)
|
||
|
|
||
|
if f.lev == g.lev:
|
||
|
return dmp_one_p(F_den, f.lev, f.dom) and F_num == G
|
||
|
else:
|
||
|
_, _, _, F, G = f.frac_unify(g)
|
||
|
|
||
|
if f.lev == g.lev:
|
||
|
return F == G
|
||
|
except UnificationFailed:
|
||
|
pass
|
||
|
|
||
|
return False
|
||
|
|
||
|
def __ne__(f, g):
|
||
|
try:
|
||
|
if isinstance(g, DMP):
|
||
|
_, _, _, (F_num, F_den), G = f.poly_unify(g)
|
||
|
|
||
|
if f.lev == g.lev:
|
||
|
return not (dmp_one_p(F_den, f.lev, f.dom) and F_num == G)
|
||
|
else:
|
||
|
_, _, _, F, G = f.frac_unify(g)
|
||
|
|
||
|
if f.lev == g.lev:
|
||
|
return F != G
|
||
|
except UnificationFailed:
|
||
|
pass
|
||
|
|
||
|
return True
|
||
|
|
||
|
def __lt__(f, g):
|
||
|
_, _, _, F, G = f.frac_unify(g)
|
||
|
return F < G
|
||
|
|
||
|
def __le__(f, g):
|
||
|
_, _, _, F, G = f.frac_unify(g)
|
||
|
return F <= G
|
||
|
|
||
|
def __gt__(f, g):
|
||
|
_, _, _, F, G = f.frac_unify(g)
|
||
|
return F > G
|
||
|
|
||
|
def __ge__(f, g):
|
||
|
_, _, _, F, G = f.frac_unify(g)
|
||
|
return F >= G
|
||
|
|
||
|
def __bool__(f):
|
||
|
return not dmp_zero_p(f.num, f.lev)
|
||
|
|
||
|
|
||
|
def init_normal_ANP(rep, mod, dom):
|
||
|
return ANP(dup_normal(rep, dom),
|
||
|
dup_normal(mod, dom), dom)
|
||
|
|
||
|
|
||
|
class ANP(PicklableWithSlots, CantSympify):
|
||
|
"""Dense Algebraic Number Polynomials over a field. """
|
||
|
|
||
|
__slots__ = ('rep', 'mod', 'dom')
|
||
|
|
||
|
def __init__(self, rep, mod, dom):
|
||
|
# Not possible to check with isinstance
|
||
|
if type(rep) is dict:
|
||
|
self.rep = dup_from_dict(rep, dom)
|
||
|
else:
|
||
|
if isinstance(rep, list):
|
||
|
rep = [dom.convert(a) for a in rep]
|
||
|
else:
|
||
|
rep = [dom.convert(rep)]
|
||
|
|
||
|
self.rep = dup_strip(rep)
|
||
|
|
||
|
if isinstance(mod, DMP):
|
||
|
self.mod = mod.rep
|
||
|
else:
|
||
|
if isinstance(mod, dict):
|
||
|
self.mod = dup_from_dict(mod, dom)
|
||
|
else:
|
||
|
self.mod = dup_strip(mod)
|
||
|
|
||
|
self.dom = dom
|
||
|
|
||
|
def __repr__(f):
|
||
|
return "%s(%s, %s, %s)" % (f.__class__.__name__, f.rep, f.mod, f.dom)
|
||
|
|
||
|
def __hash__(f):
|
||
|
return hash((f.__class__.__name__, f.to_tuple(), dmp_to_tuple(f.mod, 0), f.dom))
|
||
|
|
||
|
def unify(f, g):
|
||
|
"""Unify representations of two algebraic numbers. """
|
||
|
if not isinstance(g, ANP) or f.mod != g.mod:
|
||
|
raise UnificationFailed("Cannot unify %s with %s" % (f, g))
|
||
|
|
||
|
if f.dom == g.dom:
|
||
|
return f.dom, f.per, f.rep, g.rep, f.mod
|
||
|
else:
|
||
|
dom = f.dom.unify(g.dom)
|
||
|
|
||
|
F = dup_convert(f.rep, f.dom, dom)
|
||
|
G = dup_convert(g.rep, g.dom, dom)
|
||
|
|
||
|
if dom != f.dom and dom != g.dom:
|
||
|
mod = dup_convert(f.mod, f.dom, dom)
|
||
|
else:
|
||
|
if dom == f.dom:
|
||
|
mod = f.mod
|
||
|
else:
|
||
|
mod = g.mod
|
||
|
|
||
|
per = lambda rep: ANP(rep, mod, dom)
|
||
|
|
||
|
return dom, per, F, G, mod
|
||
|
|
||
|
def per(f, rep, mod=None, dom=None):
|
||
|
return ANP(rep, mod or f.mod, dom or f.dom)
|
||
|
|
||
|
@classmethod
|
||
|
def zero(cls, mod, dom):
|
||
|
return ANP(0, mod, dom)
|
||
|
|
||
|
@classmethod
|
||
|
def one(cls, mod, dom):
|
||
|
return ANP(1, mod, dom)
|
||
|
|
||
|
def to_dict(f):
|
||
|
"""Convert ``f`` to a dict representation with native coefficients. """
|
||
|
return dmp_to_dict(f.rep, 0, f.dom)
|
||
|
|
||
|
def to_sympy_dict(f):
|
||
|
"""Convert ``f`` to a dict representation with SymPy coefficients. """
|
||
|
rep = dmp_to_dict(f.rep, 0, f.dom)
|
||
|
|
||
|
for k, v in rep.items():
|
||
|
rep[k] = f.dom.to_sympy(v)
|
||
|
|
||
|
return rep
|
||
|
|
||
|
def to_list(f):
|
||
|
"""Convert ``f`` to a list representation with native coefficients. """
|
||
|
return f.rep
|
||
|
|
||
|
def to_sympy_list(f):
|
||
|
"""Convert ``f`` to a list representation with SymPy coefficients. """
|
||
|
return [ f.dom.to_sympy(c) for c in f.rep ]
|
||
|
|
||
|
def to_tuple(f):
|
||
|
"""
|
||
|
Convert ``f`` to a tuple representation with native coefficients.
|
||
|
|
||
|
This is needed for hashing.
|
||
|
"""
|
||
|
return dmp_to_tuple(f.rep, 0)
|
||
|
|
||
|
@classmethod
|
||
|
def from_list(cls, rep, mod, dom):
|
||
|
return ANP(dup_strip(list(map(dom.convert, rep))), mod, dom)
|
||
|
|
||
|
def neg(f):
|
||
|
return f.per(dup_neg(f.rep, f.dom))
|
||
|
|
||
|
def add(f, g):
|
||
|
dom, per, F, G, mod = f.unify(g)
|
||
|
return per(dup_add(F, G, dom))
|
||
|
|
||
|
def sub(f, g):
|
||
|
dom, per, F, G, mod = f.unify(g)
|
||
|
return per(dup_sub(F, G, dom))
|
||
|
|
||
|
def mul(f, g):
|
||
|
dom, per, F, G, mod = f.unify(g)
|
||
|
return per(dup_rem(dup_mul(F, G, dom), mod, dom))
|
||
|
|
||
|
def pow(f, n):
|
||
|
"""Raise ``f`` to a non-negative power ``n``. """
|
||
|
if isinstance(n, int):
|
||
|
if n < 0:
|
||
|
F, n = dup_invert(f.rep, f.mod, f.dom), -n
|
||
|
else:
|
||
|
F = f.rep
|
||
|
|
||
|
return f.per(dup_rem(dup_pow(F, n, f.dom), f.mod, f.dom))
|
||
|
else:
|
||
|
raise TypeError("``int`` expected, got %s" % type(n))
|
||
|
|
||
|
def div(f, g):
|
||
|
dom, per, F, G, mod = f.unify(g)
|
||
|
return (per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom)), f.zero(mod, dom))
|
||
|
|
||
|
def rem(f, g):
|
||
|
dom, _, _, G, mod = f.unify(g)
|
||
|
|
||
|
s, h = dup_half_gcdex(G, mod, dom)
|
||
|
|
||
|
if h == [dom.one]:
|
||
|
return f.zero(mod, dom)
|
||
|
else:
|
||
|
raise NotInvertible("zero divisor")
|
||
|
|
||
|
def quo(f, g):
|
||
|
dom, per, F, G, mod = f.unify(g)
|
||
|
return per(dup_rem(dup_mul(F, dup_invert(G, mod, dom), dom), mod, dom))
|
||
|
|
||
|
exquo = quo
|
||
|
|
||
|
def LC(f):
|
||
|
"""Returns the leading coefficient of ``f``. """
|
||
|
return dup_LC(f.rep, f.dom)
|
||
|
|
||
|
def TC(f):
|
||
|
"""Returns the trailing coefficient of ``f``. """
|
||
|
return dup_TC(f.rep, f.dom)
|
||
|
|
||
|
@property
|
||
|
def is_zero(f):
|
||
|
"""Returns ``True`` if ``f`` is a zero algebraic number. """
|
||
|
return not f
|
||
|
|
||
|
@property
|
||
|
def is_one(f):
|
||
|
"""Returns ``True`` if ``f`` is a unit algebraic number. """
|
||
|
return f.rep == [f.dom.one]
|
||
|
|
||
|
@property
|
||
|
def is_ground(f):
|
||
|
"""Returns ``True`` if ``f`` is an element of the ground domain. """
|
||
|
return not f.rep or len(f.rep) == 1
|
||
|
|
||
|
def __pos__(f):
|
||
|
return f
|
||
|
|
||
|
def __neg__(f):
|
||
|
return f.neg()
|
||
|
|
||
|
def __add__(f, g):
|
||
|
if isinstance(g, ANP):
|
||
|
return f.add(g)
|
||
|
else:
|
||
|
try:
|
||
|
return f.add(f.per(g))
|
||
|
except (CoercionFailed, TypeError):
|
||
|
return NotImplemented
|
||
|
|
||
|
def __radd__(f, g):
|
||
|
return f.__add__(g)
|
||
|
|
||
|
def __sub__(f, g):
|
||
|
if isinstance(g, ANP):
|
||
|
return f.sub(g)
|
||
|
else:
|
||
|
try:
|
||
|
return f.sub(f.per(g))
|
||
|
except (CoercionFailed, TypeError):
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rsub__(f, g):
|
||
|
return (-f).__add__(g)
|
||
|
|
||
|
def __mul__(f, g):
|
||
|
if isinstance(g, ANP):
|
||
|
return f.mul(g)
|
||
|
else:
|
||
|
try:
|
||
|
return f.mul(f.per(g))
|
||
|
except (CoercionFailed, TypeError):
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rmul__(f, g):
|
||
|
return f.__mul__(g)
|
||
|
|
||
|
def __pow__(f, n):
|
||
|
return f.pow(n)
|
||
|
|
||
|
def __divmod__(f, g):
|
||
|
return f.div(g)
|
||
|
|
||
|
def __mod__(f, g):
|
||
|
return f.rem(g)
|
||
|
|
||
|
def __truediv__(f, g):
|
||
|
if isinstance(g, ANP):
|
||
|
return f.quo(g)
|
||
|
else:
|
||
|
try:
|
||
|
return f.quo(f.per(g))
|
||
|
except (CoercionFailed, TypeError):
|
||
|
return NotImplemented
|
||
|
|
||
|
def __eq__(f, g):
|
||
|
try:
|
||
|
_, _, F, G, _ = f.unify(g)
|
||
|
|
||
|
return F == G
|
||
|
except UnificationFailed:
|
||
|
return False
|
||
|
|
||
|
def __ne__(f, g):
|
||
|
try:
|
||
|
_, _, F, G, _ = f.unify(g)
|
||
|
|
||
|
return F != G
|
||
|
except UnificationFailed:
|
||
|
return True
|
||
|
|
||
|
def __lt__(f, g):
|
||
|
_, _, F, G, _ = f.unify(g)
|
||
|
return F < G
|
||
|
|
||
|
def __le__(f, g):
|
||
|
_, _, F, G, _ = f.unify(g)
|
||
|
return F <= G
|
||
|
|
||
|
def __gt__(f, g):
|
||
|
_, _, F, G, _ = f.unify(g)
|
||
|
return F > G
|
||
|
|
||
|
def __ge__(f, g):
|
||
|
_, _, F, G, _ = f.unify(g)
|
||
|
return F >= G
|
||
|
|
||
|
def __bool__(f):
|
||
|
return bool(f.rep)
|