322 lines
8.3 KiB
Python
322 lines
8.3 KiB
Python
|
"""High-level polynomials manipulation functions. """
|
||
|
|
||
|
|
||
|
from sympy.core import S, Basic, symbols, Dummy
|
||
|
from sympy.polys.polyerrors import (
|
||
|
PolificationFailed, ComputationFailed,
|
||
|
MultivariatePolynomialError, OptionError)
|
||
|
from sympy.polys.polyoptions import allowed_flags, build_options
|
||
|
from sympy.polys.polytools import poly_from_expr, Poly
|
||
|
from sympy.polys.specialpolys import (
|
||
|
symmetric_poly, interpolating_poly)
|
||
|
from sympy.polys.rings import sring
|
||
|
from sympy.utilities import numbered_symbols, take, public
|
||
|
|
||
|
@public
|
||
|
def symmetrize(F, *gens, **args):
|
||
|
r"""
|
||
|
Rewrite a polynomial in terms of elementary symmetric polynomials.
|
||
|
|
||
|
A symmetric polynomial is a multivariate polynomial that remains invariant
|
||
|
under any variable permutation, i.e., if `f = f(x_1, x_2, \dots, x_n)`,
|
||
|
then `f = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})`, where
|
||
|
`(i_1, i_2, \dots, i_n)` is a permutation of `(1, 2, \dots, n)` (an
|
||
|
element of the group `S_n`).
|
||
|
|
||
|
Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that
|
||
|
``f = f1 + f2 + ... + fn``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyfuncs import symmetrize
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> symmetrize(x**2 + y**2)
|
||
|
(-2*x*y + (x + y)**2, 0)
|
||
|
|
||
|
>>> symmetrize(x**2 + y**2, formal=True)
|
||
|
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)])
|
||
|
|
||
|
>>> symmetrize(x**2 - y**2)
|
||
|
(-2*x*y + (x + y)**2, -2*y**2)
|
||
|
|
||
|
>>> symmetrize(x**2 - y**2, formal=True)
|
||
|
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)])
|
||
|
|
||
|
"""
|
||
|
allowed_flags(args, ['formal', 'symbols'])
|
||
|
|
||
|
iterable = True
|
||
|
|
||
|
if not hasattr(F, '__iter__'):
|
||
|
iterable = False
|
||
|
F = [F]
|
||
|
|
||
|
R, F = sring(F, *gens, **args)
|
||
|
gens = R.symbols
|
||
|
|
||
|
opt = build_options(gens, args)
|
||
|
symbols = opt.symbols
|
||
|
symbols = [next(symbols) for i in range(len(gens))]
|
||
|
|
||
|
result = []
|
||
|
|
||
|
for f in F:
|
||
|
p, r, m = f.symmetrize()
|
||
|
result.append((p.as_expr(*symbols), r.as_expr(*gens)))
|
||
|
|
||
|
polys = [(s, g.as_expr()) for s, (_, g) in zip(symbols, m)]
|
||
|
|
||
|
if not opt.formal:
|
||
|
for i, (sym, non_sym) in enumerate(result):
|
||
|
result[i] = (sym.subs(polys), non_sym)
|
||
|
|
||
|
if not iterable:
|
||
|
result, = result
|
||
|
|
||
|
if not opt.formal:
|
||
|
return result
|
||
|
else:
|
||
|
if iterable:
|
||
|
return result, polys
|
||
|
else:
|
||
|
return result + (polys,)
|
||
|
|
||
|
|
||
|
@public
|
||
|
def horner(f, *gens, **args):
|
||
|
"""
|
||
|
Rewrite a polynomial in Horner form.
|
||
|
|
||
|
Among other applications, evaluation of a polynomial at a point is optimal
|
||
|
when it is applied using the Horner scheme ([1]).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyfuncs import horner
|
||
|
>>> from sympy.abc import x, y, a, b, c, d, e
|
||
|
|
||
|
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5)
|
||
|
x*(x*(x*(9*x + 8) + 7) + 6) + 5
|
||
|
|
||
|
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e)
|
||
|
e + x*(d + x*(c + x*(a*x + b)))
|
||
|
|
||
|
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y
|
||
|
|
||
|
>>> horner(f, wrt=x)
|
||
|
x*(x*y*(4*y + 2) + y*(2*y + 1))
|
||
|
|
||
|
>>> horner(f, wrt=y)
|
||
|
y*(x*y*(4*x + 2) + x*(2*x + 1))
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
[1] - https://en.wikipedia.org/wiki/Horner_scheme
|
||
|
|
||
|
"""
|
||
|
allowed_flags(args, [])
|
||
|
|
||
|
try:
|
||
|
F, opt = poly_from_expr(f, *gens, **args)
|
||
|
except PolificationFailed as exc:
|
||
|
return exc.expr
|
||
|
|
||
|
form, gen = S.Zero, F.gen
|
||
|
|
||
|
if F.is_univariate:
|
||
|
for coeff in F.all_coeffs():
|
||
|
form = form*gen + coeff
|
||
|
else:
|
||
|
F, gens = Poly(F, gen), gens[1:]
|
||
|
|
||
|
for coeff in F.all_coeffs():
|
||
|
form = form*gen + horner(coeff, *gens, **args)
|
||
|
|
||
|
return form
|
||
|
|
||
|
|
||
|
@public
|
||
|
def interpolate(data, x):
|
||
|
"""
|
||
|
Construct an interpolating polynomial for the data points
|
||
|
evaluated at point x (which can be symbolic or numeric).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyfuncs import interpolate
|
||
|
>>> from sympy.abc import a, b, x
|
||
|
|
||
|
A list is interpreted as though it were paired with a range starting
|
||
|
from 1:
|
||
|
|
||
|
>>> interpolate([1, 4, 9, 16], x)
|
||
|
x**2
|
||
|
|
||
|
This can be made explicit by giving a list of coordinates:
|
||
|
|
||
|
>>> interpolate([(1, 1), (2, 4), (3, 9)], x)
|
||
|
x**2
|
||
|
|
||
|
The (x, y) coordinates can also be given as keys and values of a
|
||
|
dictionary (and the points need not be equispaced):
|
||
|
|
||
|
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x)
|
||
|
x**2 + 1
|
||
|
>>> interpolate({-1: 2, 1: 2, 2: 5}, x)
|
||
|
x**2 + 1
|
||
|
|
||
|
If the interpolation is going to be used only once then the
|
||
|
value of interest can be passed instead of passing a symbol:
|
||
|
|
||
|
>>> interpolate([1, 4, 9], 5)
|
||
|
25
|
||
|
|
||
|
Symbolic coordinates are also supported:
|
||
|
|
||
|
>>> [(i,interpolate((a, b), i)) for i in range(1, 4)]
|
||
|
[(1, a), (2, b), (3, -a + 2*b)]
|
||
|
"""
|
||
|
n = len(data)
|
||
|
|
||
|
if isinstance(data, dict):
|
||
|
if x in data:
|
||
|
return S(data[x])
|
||
|
X, Y = list(zip(*data.items()))
|
||
|
else:
|
||
|
if isinstance(data[0], tuple):
|
||
|
X, Y = list(zip(*data))
|
||
|
if x in X:
|
||
|
return S(Y[X.index(x)])
|
||
|
else:
|
||
|
if x in range(1, n + 1):
|
||
|
return S(data[x - 1])
|
||
|
Y = list(data)
|
||
|
X = list(range(1, n + 1))
|
||
|
|
||
|
try:
|
||
|
return interpolating_poly(n, x, X, Y).expand()
|
||
|
except ValueError:
|
||
|
d = Dummy()
|
||
|
return interpolating_poly(n, d, X, Y).expand().subs(d, x)
|
||
|
|
||
|
|
||
|
@public
|
||
|
def rational_interpolate(data, degnum, X=symbols('x')):
|
||
|
"""
|
||
|
Returns a rational interpolation, where the data points are element of
|
||
|
any integral domain.
|
||
|
|
||
|
The first argument contains the data (as a list of coordinates). The
|
||
|
``degnum`` argument is the degree in the numerator of the rational
|
||
|
function. Setting it too high will decrease the maximal degree in the
|
||
|
denominator for the same amount of data.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyfuncs import rational_interpolate
|
||
|
|
||
|
>>> data = [(1, -210), (2, -35), (3, 105), (4, 231), (5, 350), (6, 465)]
|
||
|
>>> rational_interpolate(data, 2)
|
||
|
(105*x**2 - 525)/(x + 1)
|
||
|
|
||
|
Values do not need to be integers:
|
||
|
|
||
|
>>> from sympy import sympify
|
||
|
>>> x = [1, 2, 3, 4, 5, 6]
|
||
|
>>> y = sympify("[-1, 0, 2, 22/5, 7, 68/7]")
|
||
|
>>> rational_interpolate(zip(x, y), 2)
|
||
|
(3*x**2 - 7*x + 2)/(x + 1)
|
||
|
|
||
|
The symbol for the variable can be changed if needed:
|
||
|
>>> from sympy import symbols
|
||
|
>>> z = symbols('z')
|
||
|
>>> rational_interpolate(data, 2, X=z)
|
||
|
(105*z**2 - 525)/(z + 1)
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Algorithm is adapted from:
|
||
|
http://axiom-wiki.newsynthesis.org/RationalInterpolation
|
||
|
|
||
|
"""
|
||
|
from sympy.matrices.dense import ones
|
||
|
|
||
|
xdata, ydata = list(zip(*data))
|
||
|
|
||
|
k = len(xdata) - degnum - 1
|
||
|
if k < 0:
|
||
|
raise OptionError("Too few values for the required degree.")
|
||
|
c = ones(degnum + k + 1, degnum + k + 2)
|
||
|
for j in range(max(degnum, k)):
|
||
|
for i in range(degnum + k + 1):
|
||
|
c[i, j + 1] = c[i, j]*xdata[i]
|
||
|
for j in range(k + 1):
|
||
|
for i in range(degnum + k + 1):
|
||
|
c[i, degnum + k + 1 - j] = -c[i, k - j]*ydata[i]
|
||
|
r = c.nullspace()[0]
|
||
|
return (sum(r[i] * X**i for i in range(degnum + 1))
|
||
|
/ sum(r[i + degnum + 1] * X**i for i in range(k + 1)))
|
||
|
|
||
|
|
||
|
@public
|
||
|
def viete(f, roots=None, *gens, **args):
|
||
|
"""
|
||
|
Generate Viete's formulas for ``f``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyfuncs import viete
|
||
|
>>> from sympy import symbols
|
||
|
|
||
|
>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3')
|
||
|
|
||
|
>>> viete(a*x**2 + b*x + c, [r1, r2], x)
|
||
|
[(r1 + r2, -b/a), (r1*r2, c/a)]
|
||
|
|
||
|
"""
|
||
|
allowed_flags(args, [])
|
||
|
|
||
|
if isinstance(roots, Basic):
|
||
|
gens, roots = (roots,) + gens, None
|
||
|
|
||
|
try:
|
||
|
f, opt = poly_from_expr(f, *gens, **args)
|
||
|
except PolificationFailed as exc:
|
||
|
raise ComputationFailed('viete', 1, exc)
|
||
|
|
||
|
if f.is_multivariate:
|
||
|
raise MultivariatePolynomialError(
|
||
|
"multivariate polynomials are not allowed")
|
||
|
|
||
|
n = f.degree()
|
||
|
|
||
|
if n < 1:
|
||
|
raise ValueError(
|
||
|
"Cannot derive Viete's formulas for a constant polynomial")
|
||
|
|
||
|
if roots is None:
|
||
|
roots = numbered_symbols('r', start=1)
|
||
|
|
||
|
roots = take(roots, n)
|
||
|
|
||
|
if n != len(roots):
|
||
|
raise ValueError("required %s roots, got %s" % (n, len(roots)))
|
||
|
|
||
|
lc, coeffs = f.LC(), f.all_coeffs()
|
||
|
result, sign = [], -1
|
||
|
|
||
|
for i, coeff in enumerate(coeffs[1:]):
|
||
|
poly = symmetric_poly(i + 1, roots)
|
||
|
coeff = sign*(coeff/lc)
|
||
|
result.append((poly, coeff))
|
||
|
sign = -sign
|
||
|
|
||
|
return result
|