2596 lines
71 KiB
Python
2596 lines
71 KiB
Python
|
"""Sparse polynomial rings. """
|
||
|
|
||
|
from __future__ import annotations
|
||
|
from typing import Any
|
||
|
|
||
|
from operator import add, mul, lt, le, gt, ge
|
||
|
from functools import reduce
|
||
|
from types import GeneratorType
|
||
|
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.numbers import igcd, oo
|
||
|
from sympy.core.symbol import Symbol, symbols as _symbols
|
||
|
from sympy.core.sympify import CantSympify, sympify
|
||
|
from sympy.ntheory.multinomial import multinomial_coefficients
|
||
|
from sympy.polys.compatibility import IPolys
|
||
|
from sympy.polys.constructor import construct_domain
|
||
|
from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict
|
||
|
from sympy.polys.domains.domainelement import DomainElement
|
||
|
from sympy.polys.domains.polynomialring import PolynomialRing
|
||
|
from sympy.polys.heuristicgcd import heugcd
|
||
|
from sympy.polys.monomials import MonomialOps
|
||
|
from sympy.polys.orderings import lex
|
||
|
from sympy.polys.polyerrors import (
|
||
|
CoercionFailed, GeneratorsError,
|
||
|
ExactQuotientFailed, MultivariatePolynomialError)
|
||
|
from sympy.polys.polyoptions import (Domain as DomainOpt,
|
||
|
Order as OrderOpt, build_options)
|
||
|
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
|
||
|
_parallel_dict_from_expr)
|
||
|
from sympy.printing.defaults import DefaultPrinting
|
||
|
from sympy.utilities import public, subsets
|
||
|
from sympy.utilities.iterables import is_sequence
|
||
|
from sympy.utilities.magic import pollute
|
||
|
|
||
|
@public
|
||
|
def ring(symbols, domain, order=lex):
|
||
|
"""Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
symbols : str
|
||
|
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
|
||
|
domain : :class:`~.Domain` or coercible
|
||
|
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.orderings import lex
|
||
|
|
||
|
>>> R, x, y, z = ring("x,y,z", ZZ, lex)
|
||
|
>>> R
|
||
|
Polynomial ring in x, y, z over ZZ with lex order
|
||
|
>>> x + y + z
|
||
|
x + y + z
|
||
|
>>> type(_)
|
||
|
<class 'sympy.polys.rings.PolyElement'>
|
||
|
|
||
|
"""
|
||
|
_ring = PolyRing(symbols, domain, order)
|
||
|
return (_ring,) + _ring.gens
|
||
|
|
||
|
@public
|
||
|
def xring(symbols, domain, order=lex):
|
||
|
"""Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
symbols : str
|
||
|
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
|
||
|
domain : :class:`~.Domain` or coercible
|
||
|
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import xring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.orderings import lex
|
||
|
|
||
|
>>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
|
||
|
>>> R
|
||
|
Polynomial ring in x, y, z over ZZ with lex order
|
||
|
>>> x + y + z
|
||
|
x + y + z
|
||
|
>>> type(_)
|
||
|
<class 'sympy.polys.rings.PolyElement'>
|
||
|
|
||
|
"""
|
||
|
_ring = PolyRing(symbols, domain, order)
|
||
|
return (_ring, _ring.gens)
|
||
|
|
||
|
@public
|
||
|
def vring(symbols, domain, order=lex):
|
||
|
"""Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
symbols : str
|
||
|
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
|
||
|
domain : :class:`~.Domain` or coercible
|
||
|
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import vring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.orderings import lex
|
||
|
|
||
|
>>> vring("x,y,z", ZZ, lex)
|
||
|
Polynomial ring in x, y, z over ZZ with lex order
|
||
|
>>> x + y + z # noqa:
|
||
|
x + y + z
|
||
|
>>> type(_)
|
||
|
<class 'sympy.polys.rings.PolyElement'>
|
||
|
|
||
|
"""
|
||
|
_ring = PolyRing(symbols, domain, order)
|
||
|
pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
|
||
|
return _ring
|
||
|
|
||
|
@public
|
||
|
def sring(exprs, *symbols, **options):
|
||
|
"""Construct a ring deriving generators and domain from options and input expressions.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
|
||
|
symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
|
||
|
options : keyword arguments understood by :class:`~.Options`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sring, symbols
|
||
|
|
||
|
>>> x, y, z = symbols("x,y,z")
|
||
|
>>> R, f = sring(x + 2*y + 3*z)
|
||
|
>>> R
|
||
|
Polynomial ring in x, y, z over ZZ with lex order
|
||
|
>>> f
|
||
|
x + 2*y + 3*z
|
||
|
>>> type(_)
|
||
|
<class 'sympy.polys.rings.PolyElement'>
|
||
|
|
||
|
"""
|
||
|
single = False
|
||
|
|
||
|
if not is_sequence(exprs):
|
||
|
exprs, single = [exprs], True
|
||
|
|
||
|
exprs = list(map(sympify, exprs))
|
||
|
opt = build_options(symbols, options)
|
||
|
|
||
|
# TODO: rewrite this so that it doesn't use expand() (see poly()).
|
||
|
reps, opt = _parallel_dict_from_expr(exprs, opt)
|
||
|
|
||
|
if opt.domain is None:
|
||
|
coeffs = sum([ list(rep.values()) for rep in reps ], [])
|
||
|
|
||
|
opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt)
|
||
|
|
||
|
coeff_map = dict(zip(coeffs, coeffs_dom))
|
||
|
reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps]
|
||
|
|
||
|
_ring = PolyRing(opt.gens, opt.domain, opt.order)
|
||
|
polys = list(map(_ring.from_dict, reps))
|
||
|
|
||
|
if single:
|
||
|
return (_ring, polys[0])
|
||
|
else:
|
||
|
return (_ring, polys)
|
||
|
|
||
|
def _parse_symbols(symbols):
|
||
|
if isinstance(symbols, str):
|
||
|
return _symbols(symbols, seq=True) if symbols else ()
|
||
|
elif isinstance(symbols, Expr):
|
||
|
return (symbols,)
|
||
|
elif is_sequence(symbols):
|
||
|
if all(isinstance(s, str) for s in symbols):
|
||
|
return _symbols(symbols)
|
||
|
elif all(isinstance(s, Expr) for s in symbols):
|
||
|
return symbols
|
||
|
|
||
|
raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")
|
||
|
|
||
|
_ring_cache: dict[Any, Any] = {}
|
||
|
|
||
|
class PolyRing(DefaultPrinting, IPolys):
|
||
|
"""Multivariate distributed polynomial ring. """
|
||
|
|
||
|
def __new__(cls, symbols, domain, order=lex):
|
||
|
symbols = tuple(_parse_symbols(symbols))
|
||
|
ngens = len(symbols)
|
||
|
domain = DomainOpt.preprocess(domain)
|
||
|
order = OrderOpt.preprocess(order)
|
||
|
|
||
|
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
|
||
|
obj = _ring_cache.get(_hash_tuple)
|
||
|
|
||
|
if obj is None:
|
||
|
if domain.is_Composite and set(symbols) & set(domain.symbols):
|
||
|
raise GeneratorsError("polynomial ring and it's ground domain share generators")
|
||
|
|
||
|
obj = object.__new__(cls)
|
||
|
obj._hash_tuple = _hash_tuple
|
||
|
obj._hash = hash(_hash_tuple)
|
||
|
obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
|
||
|
obj.symbols = symbols
|
||
|
obj.ngens = ngens
|
||
|
obj.domain = domain
|
||
|
obj.order = order
|
||
|
|
||
|
obj.zero_monom = (0,)*ngens
|
||
|
obj.gens = obj._gens()
|
||
|
obj._gens_set = set(obj.gens)
|
||
|
|
||
|
obj._one = [(obj.zero_monom, domain.one)]
|
||
|
|
||
|
if ngens:
|
||
|
# These expect monomials in at least one variable
|
||
|
codegen = MonomialOps(ngens)
|
||
|
obj.monomial_mul = codegen.mul()
|
||
|
obj.monomial_pow = codegen.pow()
|
||
|
obj.monomial_mulpow = codegen.mulpow()
|
||
|
obj.monomial_ldiv = codegen.ldiv()
|
||
|
obj.monomial_div = codegen.div()
|
||
|
obj.monomial_lcm = codegen.lcm()
|
||
|
obj.monomial_gcd = codegen.gcd()
|
||
|
else:
|
||
|
monunit = lambda a, b: ()
|
||
|
obj.monomial_mul = monunit
|
||
|
obj.monomial_pow = monunit
|
||
|
obj.monomial_mulpow = lambda a, b, c: ()
|
||
|
obj.monomial_ldiv = monunit
|
||
|
obj.monomial_div = monunit
|
||
|
obj.monomial_lcm = monunit
|
||
|
obj.monomial_gcd = monunit
|
||
|
|
||
|
|
||
|
if order is lex:
|
||
|
obj.leading_expv = max
|
||
|
else:
|
||
|
obj.leading_expv = lambda f: max(f, key=order)
|
||
|
|
||
|
for symbol, generator in zip(obj.symbols, obj.gens):
|
||
|
if isinstance(symbol, Symbol):
|
||
|
name = symbol.name
|
||
|
|
||
|
if not hasattr(obj, name):
|
||
|
setattr(obj, name, generator)
|
||
|
|
||
|
_ring_cache[_hash_tuple] = obj
|
||
|
|
||
|
return obj
|
||
|
|
||
|
def _gens(self):
|
||
|
"""Return a list of polynomial generators. """
|
||
|
one = self.domain.one
|
||
|
_gens = []
|
||
|
for i in range(self.ngens):
|
||
|
expv = self.monomial_basis(i)
|
||
|
poly = self.zero
|
||
|
poly[expv] = one
|
||
|
_gens.append(poly)
|
||
|
return tuple(_gens)
|
||
|
|
||
|
def __getnewargs__(self):
|
||
|
return (self.symbols, self.domain, self.order)
|
||
|
|
||
|
def __getstate__(self):
|
||
|
state = self.__dict__.copy()
|
||
|
del state["leading_expv"]
|
||
|
|
||
|
for key, value in state.items():
|
||
|
if key.startswith("monomial_"):
|
||
|
del state[key]
|
||
|
|
||
|
return state
|
||
|
|
||
|
def __hash__(self):
|
||
|
return self._hash
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return isinstance(other, PolyRing) and \
|
||
|
(self.symbols, self.domain, self.ngens, self.order) == \
|
||
|
(other.symbols, other.domain, other.ngens, other.order)
|
||
|
|
||
|
def __ne__(self, other):
|
||
|
return not self == other
|
||
|
|
||
|
def clone(self, symbols=None, domain=None, order=None):
|
||
|
return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)
|
||
|
|
||
|
def monomial_basis(self, i):
|
||
|
"""Return the ith-basis element. """
|
||
|
basis = [0]*self.ngens
|
||
|
basis[i] = 1
|
||
|
return tuple(basis)
|
||
|
|
||
|
@property
|
||
|
def zero(self):
|
||
|
return self.dtype()
|
||
|
|
||
|
@property
|
||
|
def one(self):
|
||
|
return self.dtype(self._one)
|
||
|
|
||
|
def domain_new(self, element, orig_domain=None):
|
||
|
return self.domain.convert(element, orig_domain)
|
||
|
|
||
|
def ground_new(self, coeff):
|
||
|
return self.term_new(self.zero_monom, coeff)
|
||
|
|
||
|
def term_new(self, monom, coeff):
|
||
|
coeff = self.domain_new(coeff)
|
||
|
poly = self.zero
|
||
|
if coeff:
|
||
|
poly[monom] = coeff
|
||
|
return poly
|
||
|
|
||
|
def ring_new(self, element):
|
||
|
if isinstance(element, PolyElement):
|
||
|
if self == element.ring:
|
||
|
return element
|
||
|
elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
|
||
|
return self.ground_new(element)
|
||
|
else:
|
||
|
raise NotImplementedError("conversion")
|
||
|
elif isinstance(element, str):
|
||
|
raise NotImplementedError("parsing")
|
||
|
elif isinstance(element, dict):
|
||
|
return self.from_dict(element)
|
||
|
elif isinstance(element, list):
|
||
|
try:
|
||
|
return self.from_terms(element)
|
||
|
except ValueError:
|
||
|
return self.from_list(element)
|
||
|
elif isinstance(element, Expr):
|
||
|
return self.from_expr(element)
|
||
|
else:
|
||
|
return self.ground_new(element)
|
||
|
|
||
|
__call__ = ring_new
|
||
|
|
||
|
def from_dict(self, element, orig_domain=None):
|
||
|
domain_new = self.domain_new
|
||
|
poly = self.zero
|
||
|
|
||
|
for monom, coeff in element.items():
|
||
|
coeff = domain_new(coeff, orig_domain)
|
||
|
if coeff:
|
||
|
poly[monom] = coeff
|
||
|
|
||
|
return poly
|
||
|
|
||
|
def from_terms(self, element, orig_domain=None):
|
||
|
return self.from_dict(dict(element), orig_domain)
|
||
|
|
||
|
def from_list(self, element):
|
||
|
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))
|
||
|
|
||
|
def _rebuild_expr(self, expr, mapping):
|
||
|
domain = self.domain
|
||
|
|
||
|
def _rebuild(expr):
|
||
|
generator = mapping.get(expr)
|
||
|
|
||
|
if generator is not None:
|
||
|
return generator
|
||
|
elif expr.is_Add:
|
||
|
return reduce(add, list(map(_rebuild, expr.args)))
|
||
|
elif expr.is_Mul:
|
||
|
return reduce(mul, list(map(_rebuild, expr.args)))
|
||
|
else:
|
||
|
# XXX: Use as_base_exp() to handle Pow(x, n) and also exp(n)
|
||
|
# XXX: E can be a generator e.g. sring([exp(2)]) -> ZZ[E]
|
||
|
base, exp = expr.as_base_exp()
|
||
|
if exp.is_Integer and exp > 1:
|
||
|
return _rebuild(base)**int(exp)
|
||
|
else:
|
||
|
return self.ground_new(domain.convert(expr))
|
||
|
|
||
|
return _rebuild(sympify(expr))
|
||
|
|
||
|
def from_expr(self, expr):
|
||
|
mapping = dict(list(zip(self.symbols, self.gens)))
|
||
|
|
||
|
try:
|
||
|
poly = self._rebuild_expr(expr, mapping)
|
||
|
except CoercionFailed:
|
||
|
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
|
||
|
else:
|
||
|
return self.ring_new(poly)
|
||
|
|
||
|
def index(self, gen):
|
||
|
"""Compute index of ``gen`` in ``self.gens``. """
|
||
|
if gen is None:
|
||
|
if self.ngens:
|
||
|
i = 0
|
||
|
else:
|
||
|
i = -1 # indicate impossible choice
|
||
|
elif isinstance(gen, int):
|
||
|
i = gen
|
||
|
|
||
|
if 0 <= i and i < self.ngens:
|
||
|
pass
|
||
|
elif -self.ngens <= i and i <= -1:
|
||
|
i = -i - 1
|
||
|
else:
|
||
|
raise ValueError("invalid generator index: %s" % gen)
|
||
|
elif isinstance(gen, self.dtype):
|
||
|
try:
|
||
|
i = self.gens.index(gen)
|
||
|
except ValueError:
|
||
|
raise ValueError("invalid generator: %s" % gen)
|
||
|
elif isinstance(gen, str):
|
||
|
try:
|
||
|
i = self.symbols.index(gen)
|
||
|
except ValueError:
|
||
|
raise ValueError("invalid generator: %s" % gen)
|
||
|
else:
|
||
|
raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)
|
||
|
|
||
|
return i
|
||
|
|
||
|
def drop(self, *gens):
|
||
|
"""Remove specified generators from this ring. """
|
||
|
indices = set(map(self.index, gens))
|
||
|
symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]
|
||
|
|
||
|
if not symbols:
|
||
|
return self.domain
|
||
|
else:
|
||
|
return self.clone(symbols=symbols)
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
symbols = self.symbols[key]
|
||
|
|
||
|
if not symbols:
|
||
|
return self.domain
|
||
|
else:
|
||
|
return self.clone(symbols=symbols)
|
||
|
|
||
|
def to_ground(self):
|
||
|
# TODO: should AlgebraicField be a Composite domain?
|
||
|
if self.domain.is_Composite or hasattr(self.domain, 'domain'):
|
||
|
return self.clone(domain=self.domain.domain)
|
||
|
else:
|
||
|
raise ValueError("%s is not a composite domain" % self.domain)
|
||
|
|
||
|
def to_domain(self):
|
||
|
return PolynomialRing(self)
|
||
|
|
||
|
def to_field(self):
|
||
|
from sympy.polys.fields import FracField
|
||
|
return FracField(self.symbols, self.domain, self.order)
|
||
|
|
||
|
@property
|
||
|
def is_univariate(self):
|
||
|
return len(self.gens) == 1
|
||
|
|
||
|
@property
|
||
|
def is_multivariate(self):
|
||
|
return len(self.gens) > 1
|
||
|
|
||
|
def add(self, *objs):
|
||
|
"""
|
||
|
Add a sequence of polynomials or containers of polynomials.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> R, x = ring("x", ZZ)
|
||
|
>>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
|
||
|
4*x**2 + 24
|
||
|
>>> _.factor_list()
|
||
|
(4, [(x**2 + 6, 1)])
|
||
|
|
||
|
"""
|
||
|
p = self.zero
|
||
|
|
||
|
for obj in objs:
|
||
|
if is_sequence(obj, include=GeneratorType):
|
||
|
p += self.add(*obj)
|
||
|
else:
|
||
|
p += obj
|
||
|
|
||
|
return p
|
||
|
|
||
|
def mul(self, *objs):
|
||
|
"""
|
||
|
Multiply a sequence of polynomials or containers of polynomials.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> R, x = ring("x", ZZ)
|
||
|
>>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
|
||
|
x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
|
||
|
>>> _.factor_list()
|
||
|
(1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])
|
||
|
|
||
|
"""
|
||
|
p = self.one
|
||
|
|
||
|
for obj in objs:
|
||
|
if is_sequence(obj, include=GeneratorType):
|
||
|
p *= self.mul(*obj)
|
||
|
else:
|
||
|
p *= obj
|
||
|
|
||
|
return p
|
||
|
|
||
|
def drop_to_ground(self, *gens):
|
||
|
r"""
|
||
|
Remove specified generators from the ring and inject them into
|
||
|
its domain.
|
||
|
"""
|
||
|
indices = set(map(self.index, gens))
|
||
|
symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
|
||
|
gens = [gen for i, gen in enumerate(self.gens) if i not in indices]
|
||
|
|
||
|
if not symbols:
|
||
|
return self
|
||
|
else:
|
||
|
return self.clone(symbols=symbols, domain=self.drop(*gens))
|
||
|
|
||
|
def compose(self, other):
|
||
|
"""Add the generators of ``other`` to ``self``"""
|
||
|
if self != other:
|
||
|
syms = set(self.symbols).union(set(other.symbols))
|
||
|
return self.clone(symbols=list(syms))
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
def add_gens(self, symbols):
|
||
|
"""Add the elements of ``symbols`` as generators to ``self``"""
|
||
|
syms = set(self.symbols).union(set(symbols))
|
||
|
return self.clone(symbols=list(syms))
|
||
|
|
||
|
def symmetric_poly(self, n):
|
||
|
"""
|
||
|
Return the elementary symmetric polynomial of degree *n* over
|
||
|
this ring's generators.
|
||
|
"""
|
||
|
if n < 0 or n > self.ngens:
|
||
|
raise ValueError("Cannot generate symmetric polynomial of order %s for %s" % (n, self.gens))
|
||
|
elif not n:
|
||
|
return self.one
|
||
|
else:
|
||
|
poly = self.zero
|
||
|
for s in subsets(range(self.ngens), int(n)):
|
||
|
monom = tuple(int(i in s) for i in range(self.ngens))
|
||
|
poly += self.term_new(monom, self.domain.one)
|
||
|
return poly
|
||
|
|
||
|
|
||
|
class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
|
||
|
"""Element of multivariate distributed polynomial ring. """
|
||
|
|
||
|
def new(self, init):
|
||
|
return self.__class__(init)
|
||
|
|
||
|
def parent(self):
|
||
|
return self.ring.to_domain()
|
||
|
|
||
|
def __getnewargs__(self):
|
||
|
return (self.ring, list(self.iterterms()))
|
||
|
|
||
|
_hash = None
|
||
|
|
||
|
def __hash__(self):
|
||
|
# XXX: This computes a hash of a dictionary, but currently we don't
|
||
|
# protect dictionary from being changed so any use site modifications
|
||
|
# will make hashing go wrong. Use this feature with caution until we
|
||
|
# figure out how to make a safe API without compromising speed of this
|
||
|
# low-level class.
|
||
|
_hash = self._hash
|
||
|
if _hash is None:
|
||
|
self._hash = _hash = hash((self.ring, frozenset(self.items())))
|
||
|
return _hash
|
||
|
|
||
|
def copy(self):
|
||
|
"""Return a copy of polynomial self.
|
||
|
|
||
|
Polynomials are mutable; if one is interested in preserving
|
||
|
a polynomial, and one plans to use inplace operations, one
|
||
|
can copy the polynomial. This method makes a shallow copy.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> R, x, y = ring('x, y', ZZ)
|
||
|
>>> p = (x + y)**2
|
||
|
>>> p1 = p.copy()
|
||
|
>>> p2 = p
|
||
|
>>> p[R.zero_monom] = 3
|
||
|
>>> p
|
||
|
x**2 + 2*x*y + y**2 + 3
|
||
|
>>> p1
|
||
|
x**2 + 2*x*y + y**2
|
||
|
>>> p2
|
||
|
x**2 + 2*x*y + y**2 + 3
|
||
|
|
||
|
"""
|
||
|
return self.new(self)
|
||
|
|
||
|
def set_ring(self, new_ring):
|
||
|
if self.ring == new_ring:
|
||
|
return self
|
||
|
elif self.ring.symbols != new_ring.symbols:
|
||
|
terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
|
||
|
return new_ring.from_terms(terms, self.ring.domain)
|
||
|
else:
|
||
|
return new_ring.from_dict(self, self.ring.domain)
|
||
|
|
||
|
def as_expr(self, *symbols):
|
||
|
if not symbols:
|
||
|
symbols = self.ring.symbols
|
||
|
elif len(symbols) != self.ring.ngens:
|
||
|
raise ValueError(
|
||
|
"Wrong number of symbols, expected %s got %s" %
|
||
|
(self.ring.ngens, len(symbols))
|
||
|
)
|
||
|
|
||
|
return expr_from_dict(self.as_expr_dict(), *symbols)
|
||
|
|
||
|
def as_expr_dict(self):
|
||
|
to_sympy = self.ring.domain.to_sympy
|
||
|
return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}
|
||
|
|
||
|
def clear_denoms(self):
|
||
|
domain = self.ring.domain
|
||
|
|
||
|
if not domain.is_Field or not domain.has_assoc_Ring:
|
||
|
return domain.one, self
|
||
|
|
||
|
ground_ring = domain.get_ring()
|
||
|
common = ground_ring.one
|
||
|
lcm = ground_ring.lcm
|
||
|
denom = domain.denom
|
||
|
|
||
|
for coeff in self.values():
|
||
|
common = lcm(common, denom(coeff))
|
||
|
|
||
|
poly = self.new([ (k, v*common) for k, v in self.items() ])
|
||
|
return common, poly
|
||
|
|
||
|
def strip_zero(self):
|
||
|
"""Eliminate monomials with zero coefficient. """
|
||
|
for k, v in list(self.items()):
|
||
|
if not v:
|
||
|
del self[k]
|
||
|
|
||
|
def __eq__(p1, p2):
|
||
|
"""Equality test for polynomials.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p1 = (x + y)**2 + (x - y)**2
|
||
|
>>> p1 == 4*x*y
|
||
|
False
|
||
|
>>> p1 == 2*(x**2 + y**2)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
if not p2:
|
||
|
return not p1
|
||
|
elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
|
||
|
return dict.__eq__(p1, p2)
|
||
|
elif len(p1) > 1:
|
||
|
return False
|
||
|
else:
|
||
|
return p1.get(p1.ring.zero_monom) == p2
|
||
|
|
||
|
def __ne__(p1, p2):
|
||
|
return not p1 == p2
|
||
|
|
||
|
def almosteq(p1, p2, tolerance=None):
|
||
|
"""Approximate equality test for polynomials. """
|
||
|
ring = p1.ring
|
||
|
|
||
|
if isinstance(p2, ring.dtype):
|
||
|
if set(p1.keys()) != set(p2.keys()):
|
||
|
return False
|
||
|
|
||
|
almosteq = ring.domain.almosteq
|
||
|
|
||
|
for k in p1.keys():
|
||
|
if not almosteq(p1[k], p2[k], tolerance):
|
||
|
return False
|
||
|
return True
|
||
|
elif len(p1) > 1:
|
||
|
return False
|
||
|
else:
|
||
|
try:
|
||
|
p2 = ring.domain.convert(p2)
|
||
|
except CoercionFailed:
|
||
|
return False
|
||
|
else:
|
||
|
return ring.domain.almosteq(p1.const(), p2, tolerance)
|
||
|
|
||
|
def sort_key(self):
|
||
|
return (len(self), self.terms())
|
||
|
|
||
|
def _cmp(p1, p2, op):
|
||
|
if isinstance(p2, p1.ring.dtype):
|
||
|
return op(p1.sort_key(), p2.sort_key())
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
def __lt__(p1, p2):
|
||
|
return p1._cmp(p2, lt)
|
||
|
def __le__(p1, p2):
|
||
|
return p1._cmp(p2, le)
|
||
|
def __gt__(p1, p2):
|
||
|
return p1._cmp(p2, gt)
|
||
|
def __ge__(p1, p2):
|
||
|
return p1._cmp(p2, ge)
|
||
|
|
||
|
def _drop(self, gen):
|
||
|
ring = self.ring
|
||
|
i = ring.index(gen)
|
||
|
|
||
|
if ring.ngens == 1:
|
||
|
return i, ring.domain
|
||
|
else:
|
||
|
symbols = list(ring.symbols)
|
||
|
del symbols[i]
|
||
|
return i, ring.clone(symbols=symbols)
|
||
|
|
||
|
def drop(self, gen):
|
||
|
i, ring = self._drop(gen)
|
||
|
|
||
|
if self.ring.ngens == 1:
|
||
|
if self.is_ground:
|
||
|
return self.coeff(1)
|
||
|
else:
|
||
|
raise ValueError("Cannot drop %s" % gen)
|
||
|
else:
|
||
|
poly = ring.zero
|
||
|
|
||
|
for k, v in self.items():
|
||
|
if k[i] == 0:
|
||
|
K = list(k)
|
||
|
del K[i]
|
||
|
poly[tuple(K)] = v
|
||
|
else:
|
||
|
raise ValueError("Cannot drop %s" % gen)
|
||
|
|
||
|
return poly
|
||
|
|
||
|
def _drop_to_ground(self, gen):
|
||
|
ring = self.ring
|
||
|
i = ring.index(gen)
|
||
|
|
||
|
symbols = list(ring.symbols)
|
||
|
del symbols[i]
|
||
|
return i, ring.clone(symbols=symbols, domain=ring[i])
|
||
|
|
||
|
def drop_to_ground(self, gen):
|
||
|
if self.ring.ngens == 1:
|
||
|
raise ValueError("Cannot drop only generator to ground")
|
||
|
|
||
|
i, ring = self._drop_to_ground(gen)
|
||
|
poly = ring.zero
|
||
|
gen = ring.domain.gens[0]
|
||
|
|
||
|
for monom, coeff in self.iterterms():
|
||
|
mon = monom[:i] + monom[i+1:]
|
||
|
if mon not in poly:
|
||
|
poly[mon] = (gen**monom[i]).mul_ground(coeff)
|
||
|
else:
|
||
|
poly[mon] += (gen**monom[i]).mul_ground(coeff)
|
||
|
|
||
|
return poly
|
||
|
|
||
|
def to_dense(self):
|
||
|
return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)
|
||
|
|
||
|
def to_dict(self):
|
||
|
return dict(self)
|
||
|
|
||
|
def str(self, printer, precedence, exp_pattern, mul_symbol):
|
||
|
if not self:
|
||
|
return printer._print(self.ring.domain.zero)
|
||
|
prec_mul = precedence["Mul"]
|
||
|
prec_atom = precedence["Atom"]
|
||
|
ring = self.ring
|
||
|
symbols = ring.symbols
|
||
|
ngens = ring.ngens
|
||
|
zm = ring.zero_monom
|
||
|
sexpvs = []
|
||
|
for expv, coeff in self.terms():
|
||
|
negative = ring.domain.is_negative(coeff)
|
||
|
sign = " - " if negative else " + "
|
||
|
sexpvs.append(sign)
|
||
|
if expv == zm:
|
||
|
scoeff = printer._print(coeff)
|
||
|
if negative and scoeff.startswith("-"):
|
||
|
scoeff = scoeff[1:]
|
||
|
else:
|
||
|
if negative:
|
||
|
coeff = -coeff
|
||
|
if coeff != self.ring.domain.one:
|
||
|
scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
|
||
|
else:
|
||
|
scoeff = ''
|
||
|
sexpv = []
|
||
|
for i in range(ngens):
|
||
|
exp = expv[i]
|
||
|
if not exp:
|
||
|
continue
|
||
|
symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
|
||
|
if exp != 1:
|
||
|
if exp != int(exp) or exp < 0:
|
||
|
sexp = printer.parenthesize(exp, prec_atom, strict=False)
|
||
|
else:
|
||
|
sexp = exp
|
||
|
sexpv.append(exp_pattern % (symbol, sexp))
|
||
|
else:
|
||
|
sexpv.append('%s' % symbol)
|
||
|
if scoeff:
|
||
|
sexpv = [scoeff] + sexpv
|
||
|
sexpvs.append(mul_symbol.join(sexpv))
|
||
|
if sexpvs[0] in [" + ", " - "]:
|
||
|
head = sexpvs.pop(0)
|
||
|
if head == " - ":
|
||
|
sexpvs.insert(0, "-")
|
||
|
return "".join(sexpvs)
|
||
|
|
||
|
@property
|
||
|
def is_generator(self):
|
||
|
return self in self.ring._gens_set
|
||
|
|
||
|
@property
|
||
|
def is_ground(self):
|
||
|
return not self or (len(self) == 1 and self.ring.zero_monom in self)
|
||
|
|
||
|
@property
|
||
|
def is_monomial(self):
|
||
|
return not self or (len(self) == 1 and self.LC == 1)
|
||
|
|
||
|
@property
|
||
|
def is_term(self):
|
||
|
return len(self) <= 1
|
||
|
|
||
|
@property
|
||
|
def is_negative(self):
|
||
|
return self.ring.domain.is_negative(self.LC)
|
||
|
|
||
|
@property
|
||
|
def is_positive(self):
|
||
|
return self.ring.domain.is_positive(self.LC)
|
||
|
|
||
|
@property
|
||
|
def is_nonnegative(self):
|
||
|
return self.ring.domain.is_nonnegative(self.LC)
|
||
|
|
||
|
@property
|
||
|
def is_nonpositive(self):
|
||
|
return self.ring.domain.is_nonpositive(self.LC)
|
||
|
|
||
|
@property
|
||
|
def is_zero(f):
|
||
|
return not f
|
||
|
|
||
|
@property
|
||
|
def is_one(f):
|
||
|
return f == f.ring.one
|
||
|
|
||
|
@property
|
||
|
def is_monic(f):
|
||
|
return f.ring.domain.is_one(f.LC)
|
||
|
|
||
|
@property
|
||
|
def is_primitive(f):
|
||
|
return f.ring.domain.is_one(f.content())
|
||
|
|
||
|
@property
|
||
|
def is_linear(f):
|
||
|
return all(sum(monom) <= 1 for monom in f.itermonoms())
|
||
|
|
||
|
@property
|
||
|
def is_quadratic(f):
|
||
|
return all(sum(monom) <= 2 for monom in f.itermonoms())
|
||
|
|
||
|
@property
|
||
|
def is_squarefree(f):
|
||
|
if not f.ring.ngens:
|
||
|
return True
|
||
|
return f.ring.dmp_sqf_p(f)
|
||
|
|
||
|
@property
|
||
|
def is_irreducible(f):
|
||
|
if not f.ring.ngens:
|
||
|
return True
|
||
|
return f.ring.dmp_irreducible_p(f)
|
||
|
|
||
|
@property
|
||
|
def is_cyclotomic(f):
|
||
|
if f.ring.is_univariate:
|
||
|
return f.ring.dup_cyclotomic_p(f)
|
||
|
else:
|
||
|
raise MultivariatePolynomialError("cyclotomic polynomial")
|
||
|
|
||
|
def __neg__(self):
|
||
|
return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])
|
||
|
|
||
|
def __pos__(self):
|
||
|
return self
|
||
|
|
||
|
def __add__(p1, p2):
|
||
|
"""Add two polynomials.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> (x + y)**2 + (x - y)**2
|
||
|
2*x**2 + 2*y**2
|
||
|
|
||
|
"""
|
||
|
if not p2:
|
||
|
return p1.copy()
|
||
|
ring = p1.ring
|
||
|
if isinstance(p2, ring.dtype):
|
||
|
p = p1.copy()
|
||
|
get = p.get
|
||
|
zero = ring.domain.zero
|
||
|
for k, v in p2.items():
|
||
|
v = get(k, zero) + v
|
||
|
if v:
|
||
|
p[k] = v
|
||
|
else:
|
||
|
del p[k]
|
||
|
return p
|
||
|
elif isinstance(p2, PolyElement):
|
||
|
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
|
||
|
pass
|
||
|
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
|
||
|
return p2.__radd__(p1)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
try:
|
||
|
cp2 = ring.domain_new(p2)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
p = p1.copy()
|
||
|
if not cp2:
|
||
|
return p
|
||
|
zm = ring.zero_monom
|
||
|
if zm not in p1.keys():
|
||
|
p[zm] = cp2
|
||
|
else:
|
||
|
if p2 == -p[zm]:
|
||
|
del p[zm]
|
||
|
else:
|
||
|
p[zm] += cp2
|
||
|
return p
|
||
|
|
||
|
def __radd__(p1, n):
|
||
|
p = p1.copy()
|
||
|
if not n:
|
||
|
return p
|
||
|
ring = p1.ring
|
||
|
try:
|
||
|
n = ring.domain_new(n)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
zm = ring.zero_monom
|
||
|
if zm not in p1.keys():
|
||
|
p[zm] = n
|
||
|
else:
|
||
|
if n == -p[zm]:
|
||
|
del p[zm]
|
||
|
else:
|
||
|
p[zm] += n
|
||
|
return p
|
||
|
|
||
|
def __sub__(p1, p2):
|
||
|
"""Subtract polynomial p2 from p1.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p1 = x + y**2
|
||
|
>>> p2 = x*y + y**2
|
||
|
>>> p1 - p2
|
||
|
-x*y + x
|
||
|
|
||
|
"""
|
||
|
if not p2:
|
||
|
return p1.copy()
|
||
|
ring = p1.ring
|
||
|
if isinstance(p2, ring.dtype):
|
||
|
p = p1.copy()
|
||
|
get = p.get
|
||
|
zero = ring.domain.zero
|
||
|
for k, v in p2.items():
|
||
|
v = get(k, zero) - v
|
||
|
if v:
|
||
|
p[k] = v
|
||
|
else:
|
||
|
del p[k]
|
||
|
return p
|
||
|
elif isinstance(p2, PolyElement):
|
||
|
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
|
||
|
pass
|
||
|
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
|
||
|
return p2.__rsub__(p1)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
try:
|
||
|
p2 = ring.domain_new(p2)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
p = p1.copy()
|
||
|
zm = ring.zero_monom
|
||
|
if zm not in p1.keys():
|
||
|
p[zm] = -p2
|
||
|
else:
|
||
|
if p2 == p[zm]:
|
||
|
del p[zm]
|
||
|
else:
|
||
|
p[zm] -= p2
|
||
|
return p
|
||
|
|
||
|
def __rsub__(p1, n):
|
||
|
"""n - p1 with n convertible to the coefficient domain.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p = x + y
|
||
|
>>> 4 - p
|
||
|
-x - y + 4
|
||
|
|
||
|
"""
|
||
|
ring = p1.ring
|
||
|
try:
|
||
|
n = ring.domain_new(n)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
p = ring.zero
|
||
|
for expv in p1:
|
||
|
p[expv] = -p1[expv]
|
||
|
p += n
|
||
|
return p
|
||
|
|
||
|
def __mul__(p1, p2):
|
||
|
"""Multiply two polynomials.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import QQ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> _, x, y = ring('x, y', QQ)
|
||
|
>>> p1 = x + y
|
||
|
>>> p2 = x - y
|
||
|
>>> p1*p2
|
||
|
x**2 - y**2
|
||
|
|
||
|
"""
|
||
|
ring = p1.ring
|
||
|
p = ring.zero
|
||
|
if not p1 or not p2:
|
||
|
return p
|
||
|
elif isinstance(p2, ring.dtype):
|
||
|
get = p.get
|
||
|
zero = ring.domain.zero
|
||
|
monomial_mul = ring.monomial_mul
|
||
|
p2it = list(p2.items())
|
||
|
for exp1, v1 in p1.items():
|
||
|
for exp2, v2 in p2it:
|
||
|
exp = monomial_mul(exp1, exp2)
|
||
|
p[exp] = get(exp, zero) + v1*v2
|
||
|
p.strip_zero()
|
||
|
return p
|
||
|
elif isinstance(p2, PolyElement):
|
||
|
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
|
||
|
pass
|
||
|
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
|
||
|
return p2.__rmul__(p1)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
try:
|
||
|
p2 = ring.domain_new(p2)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
for exp1, v1 in p1.items():
|
||
|
v = v1*p2
|
||
|
if v:
|
||
|
p[exp1] = v
|
||
|
return p
|
||
|
|
||
|
def __rmul__(p1, p2):
|
||
|
"""p2 * p1 with p2 in the coefficient domain of p1.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p = x + y
|
||
|
>>> 4 * p
|
||
|
4*x + 4*y
|
||
|
|
||
|
"""
|
||
|
p = p1.ring.zero
|
||
|
if not p2:
|
||
|
return p
|
||
|
try:
|
||
|
p2 = p.ring.domain_new(p2)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
for exp1, v1 in p1.items():
|
||
|
v = p2*v1
|
||
|
if v:
|
||
|
p[exp1] = v
|
||
|
return p
|
||
|
|
||
|
def __pow__(self, n):
|
||
|
"""raise polynomial to power `n`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p = x + y**2
|
||
|
>>> p**3
|
||
|
x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6
|
||
|
|
||
|
"""
|
||
|
ring = self.ring
|
||
|
|
||
|
if not n:
|
||
|
if self:
|
||
|
return ring.one
|
||
|
else:
|
||
|
raise ValueError("0**0")
|
||
|
elif len(self) == 1:
|
||
|
monom, coeff = list(self.items())[0]
|
||
|
p = ring.zero
|
||
|
if coeff == ring.domain.one:
|
||
|
p[ring.monomial_pow(monom, n)] = coeff
|
||
|
else:
|
||
|
p[ring.monomial_pow(monom, n)] = coeff**n
|
||
|
return p
|
||
|
|
||
|
# For ring series, we need negative and rational exponent support only
|
||
|
# with monomials.
|
||
|
n = int(n)
|
||
|
if n < 0:
|
||
|
raise ValueError("Negative exponent")
|
||
|
|
||
|
elif n == 1:
|
||
|
return self.copy()
|
||
|
elif n == 2:
|
||
|
return self.square()
|
||
|
elif n == 3:
|
||
|
return self*self.square()
|
||
|
elif len(self) <= 5: # TODO: use an actual density measure
|
||
|
return self._pow_multinomial(n)
|
||
|
else:
|
||
|
return self._pow_generic(n)
|
||
|
|
||
|
def _pow_generic(self, n):
|
||
|
p = self.ring.one
|
||
|
c = self
|
||
|
|
||
|
while True:
|
||
|
if n & 1:
|
||
|
p = p*c
|
||
|
n -= 1
|
||
|
if not n:
|
||
|
break
|
||
|
|
||
|
c = c.square()
|
||
|
n = n // 2
|
||
|
|
||
|
return p
|
||
|
|
||
|
def _pow_multinomial(self, n):
|
||
|
multinomials = multinomial_coefficients(len(self), n).items()
|
||
|
monomial_mulpow = self.ring.monomial_mulpow
|
||
|
zero_monom = self.ring.zero_monom
|
||
|
terms = self.items()
|
||
|
zero = self.ring.domain.zero
|
||
|
poly = self.ring.zero
|
||
|
|
||
|
for multinomial, multinomial_coeff in multinomials:
|
||
|
product_monom = zero_monom
|
||
|
product_coeff = multinomial_coeff
|
||
|
|
||
|
for exp, (monom, coeff) in zip(multinomial, terms):
|
||
|
if exp:
|
||
|
product_monom = monomial_mulpow(product_monom, monom, exp)
|
||
|
product_coeff *= coeff**exp
|
||
|
|
||
|
monom = tuple(product_monom)
|
||
|
coeff = product_coeff
|
||
|
|
||
|
coeff = poly.get(monom, zero) + coeff
|
||
|
|
||
|
if coeff:
|
||
|
poly[monom] = coeff
|
||
|
elif monom in poly:
|
||
|
del poly[monom]
|
||
|
|
||
|
return poly
|
||
|
|
||
|
def square(self):
|
||
|
"""square of a polynomial
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p = x + y**2
|
||
|
>>> p.square()
|
||
|
x**2 + 2*x*y**2 + y**4
|
||
|
|
||
|
"""
|
||
|
ring = self.ring
|
||
|
p = ring.zero
|
||
|
get = p.get
|
||
|
keys = list(self.keys())
|
||
|
zero = ring.domain.zero
|
||
|
monomial_mul = ring.monomial_mul
|
||
|
for i in range(len(keys)):
|
||
|
k1 = keys[i]
|
||
|
pk = self[k1]
|
||
|
for j in range(i):
|
||
|
k2 = keys[j]
|
||
|
exp = monomial_mul(k1, k2)
|
||
|
p[exp] = get(exp, zero) + pk*self[k2]
|
||
|
p = p.imul_num(2)
|
||
|
get = p.get
|
||
|
for k, v in self.items():
|
||
|
k2 = monomial_mul(k, k)
|
||
|
p[k2] = get(k2, zero) + v**2
|
||
|
p.strip_zero()
|
||
|
return p
|
||
|
|
||
|
def __divmod__(p1, p2):
|
||
|
ring = p1.ring
|
||
|
|
||
|
if not p2:
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
elif isinstance(p2, ring.dtype):
|
||
|
return p1.div(p2)
|
||
|
elif isinstance(p2, PolyElement):
|
||
|
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
|
||
|
pass
|
||
|
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
|
||
|
return p2.__rdivmod__(p1)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
try:
|
||
|
p2 = ring.domain_new(p2)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return (p1.quo_ground(p2), p1.rem_ground(p2))
|
||
|
|
||
|
def __rdivmod__(p1, p2):
|
||
|
return NotImplemented
|
||
|
|
||
|
def __mod__(p1, p2):
|
||
|
ring = p1.ring
|
||
|
|
||
|
if not p2:
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
elif isinstance(p2, ring.dtype):
|
||
|
return p1.rem(p2)
|
||
|
elif isinstance(p2, PolyElement):
|
||
|
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
|
||
|
pass
|
||
|
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
|
||
|
return p2.__rmod__(p1)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
try:
|
||
|
p2 = ring.domain_new(p2)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return p1.rem_ground(p2)
|
||
|
|
||
|
def __rmod__(p1, p2):
|
||
|
return NotImplemented
|
||
|
|
||
|
def __truediv__(p1, p2):
|
||
|
ring = p1.ring
|
||
|
|
||
|
if not p2:
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
elif isinstance(p2, ring.dtype):
|
||
|
if p2.is_monomial:
|
||
|
return p1*(p2**(-1))
|
||
|
else:
|
||
|
return p1.quo(p2)
|
||
|
elif isinstance(p2, PolyElement):
|
||
|
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
|
||
|
pass
|
||
|
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
|
||
|
return p2.__rtruediv__(p1)
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
try:
|
||
|
p2 = ring.domain_new(p2)
|
||
|
except CoercionFailed:
|
||
|
return NotImplemented
|
||
|
else:
|
||
|
return p1.quo_ground(p2)
|
||
|
|
||
|
def __rtruediv__(p1, p2):
|
||
|
return NotImplemented
|
||
|
|
||
|
__floordiv__ = __truediv__
|
||
|
__rfloordiv__ = __rtruediv__
|
||
|
|
||
|
# TODO: use // (__floordiv__) for exquo()?
|
||
|
|
||
|
def _term_div(self):
|
||
|
zm = self.ring.zero_monom
|
||
|
domain = self.ring.domain
|
||
|
domain_quo = domain.quo
|
||
|
monomial_div = self.ring.monomial_div
|
||
|
|
||
|
if domain.is_Field:
|
||
|
def term_div(a_lm_a_lc, b_lm_b_lc):
|
||
|
a_lm, a_lc = a_lm_a_lc
|
||
|
b_lm, b_lc = b_lm_b_lc
|
||
|
if b_lm == zm: # apparently this is a very common case
|
||
|
monom = a_lm
|
||
|
else:
|
||
|
monom = monomial_div(a_lm, b_lm)
|
||
|
if monom is not None:
|
||
|
return monom, domain_quo(a_lc, b_lc)
|
||
|
else:
|
||
|
return None
|
||
|
else:
|
||
|
def term_div(a_lm_a_lc, b_lm_b_lc):
|
||
|
a_lm, a_lc = a_lm_a_lc
|
||
|
b_lm, b_lc = b_lm_b_lc
|
||
|
if b_lm == zm: # apparently this is a very common case
|
||
|
monom = a_lm
|
||
|
else:
|
||
|
monom = monomial_div(a_lm, b_lm)
|
||
|
if not (monom is None or a_lc % b_lc):
|
||
|
return monom, domain_quo(a_lc, b_lc)
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
return term_div
|
||
|
|
||
|
def div(self, fv):
|
||
|
"""Division algorithm, see [CLO] p64.
|
||
|
|
||
|
fv array of polynomials
|
||
|
return qv, r such that
|
||
|
self = sum(fv[i]*qv[i]) + r
|
||
|
|
||
|
All polynomials are required not to be Laurent polynomials.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> f = x**3
|
||
|
>>> f0 = x - y**2
|
||
|
>>> f1 = x - y
|
||
|
>>> qv, r = f.div((f0, f1))
|
||
|
>>> qv[0]
|
||
|
x**2 + x*y**2 + y**4
|
||
|
>>> qv[1]
|
||
|
0
|
||
|
>>> r
|
||
|
y**6
|
||
|
|
||
|
"""
|
||
|
ring = self.ring
|
||
|
ret_single = False
|
||
|
if isinstance(fv, PolyElement):
|
||
|
ret_single = True
|
||
|
fv = [fv]
|
||
|
if not all(fv):
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
if not self:
|
||
|
if ret_single:
|
||
|
return ring.zero, ring.zero
|
||
|
else:
|
||
|
return [], ring.zero
|
||
|
for f in fv:
|
||
|
if f.ring != ring:
|
||
|
raise ValueError('self and f must have the same ring')
|
||
|
s = len(fv)
|
||
|
qv = [ring.zero for i in range(s)]
|
||
|
p = self.copy()
|
||
|
r = ring.zero
|
||
|
term_div = self._term_div()
|
||
|
expvs = [fx.leading_expv() for fx in fv]
|
||
|
while p:
|
||
|
i = 0
|
||
|
divoccurred = 0
|
||
|
while i < s and divoccurred == 0:
|
||
|
expv = p.leading_expv()
|
||
|
term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
|
||
|
if term is not None:
|
||
|
expv1, c = term
|
||
|
qv[i] = qv[i]._iadd_monom((expv1, c))
|
||
|
p = p._iadd_poly_monom(fv[i], (expv1, -c))
|
||
|
divoccurred = 1
|
||
|
else:
|
||
|
i += 1
|
||
|
if not divoccurred:
|
||
|
expv = p.leading_expv()
|
||
|
r = r._iadd_monom((expv, p[expv]))
|
||
|
del p[expv]
|
||
|
if expv == ring.zero_monom:
|
||
|
r += p
|
||
|
if ret_single:
|
||
|
if not qv:
|
||
|
return ring.zero, r
|
||
|
else:
|
||
|
return qv[0], r
|
||
|
else:
|
||
|
return qv, r
|
||
|
|
||
|
def rem(self, G):
|
||
|
f = self
|
||
|
if isinstance(G, PolyElement):
|
||
|
G = [G]
|
||
|
if not all(G):
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
ring = f.ring
|
||
|
domain = ring.domain
|
||
|
zero = domain.zero
|
||
|
monomial_mul = ring.monomial_mul
|
||
|
r = ring.zero
|
||
|
term_div = f._term_div()
|
||
|
ltf = f.LT
|
||
|
f = f.copy()
|
||
|
get = f.get
|
||
|
while f:
|
||
|
for g in G:
|
||
|
tq = term_div(ltf, g.LT)
|
||
|
if tq is not None:
|
||
|
m, c = tq
|
||
|
for mg, cg in g.iterterms():
|
||
|
m1 = monomial_mul(mg, m)
|
||
|
c1 = get(m1, zero) - c*cg
|
||
|
if not c1:
|
||
|
del f[m1]
|
||
|
else:
|
||
|
f[m1] = c1
|
||
|
ltm = f.leading_expv()
|
||
|
if ltm is not None:
|
||
|
ltf = ltm, f[ltm]
|
||
|
|
||
|
break
|
||
|
else:
|
||
|
ltm, ltc = ltf
|
||
|
if ltm in r:
|
||
|
r[ltm] += ltc
|
||
|
else:
|
||
|
r[ltm] = ltc
|
||
|
del f[ltm]
|
||
|
ltm = f.leading_expv()
|
||
|
if ltm is not None:
|
||
|
ltf = ltm, f[ltm]
|
||
|
|
||
|
return r
|
||
|
|
||
|
def quo(f, G):
|
||
|
return f.div(G)[0]
|
||
|
|
||
|
def exquo(f, G):
|
||
|
q, r = f.div(G)
|
||
|
|
||
|
if not r:
|
||
|
return q
|
||
|
else:
|
||
|
raise ExactQuotientFailed(f, G)
|
||
|
|
||
|
def _iadd_monom(self, mc):
|
||
|
"""add to self the monomial coeff*x0**i0*x1**i1*...
|
||
|
unless self is a generator -- then just return the sum of the two.
|
||
|
|
||
|
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p = x**4 + 2*y
|
||
|
>>> m = (1, 2)
|
||
|
>>> p1 = p._iadd_monom((m, 5))
|
||
|
>>> p1
|
||
|
x**4 + 5*x*y**2 + 2*y
|
||
|
>>> p1 is p
|
||
|
True
|
||
|
>>> p = x
|
||
|
>>> p1 = p._iadd_monom((m, 5))
|
||
|
>>> p1
|
||
|
5*x*y**2 + x
|
||
|
>>> p1 is p
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
if self in self.ring._gens_set:
|
||
|
cpself = self.copy()
|
||
|
else:
|
||
|
cpself = self
|
||
|
expv, coeff = mc
|
||
|
c = cpself.get(expv)
|
||
|
if c is None:
|
||
|
cpself[expv] = coeff
|
||
|
else:
|
||
|
c += coeff
|
||
|
if c:
|
||
|
cpself[expv] = c
|
||
|
else:
|
||
|
del cpself[expv]
|
||
|
return cpself
|
||
|
|
||
|
def _iadd_poly_monom(self, p2, mc):
|
||
|
"""add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
|
||
|
unless self is a generator -- then just return the sum of the two.
|
||
|
|
||
|
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y, z = ring('x, y, z', ZZ)
|
||
|
>>> p1 = x**4 + 2*y
|
||
|
>>> p2 = y + z
|
||
|
>>> m = (1, 2, 3)
|
||
|
>>> p1 = p1._iadd_poly_monom(p2, (m, 3))
|
||
|
>>> p1
|
||
|
x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y
|
||
|
|
||
|
"""
|
||
|
p1 = self
|
||
|
if p1 in p1.ring._gens_set:
|
||
|
p1 = p1.copy()
|
||
|
(m, c) = mc
|
||
|
get = p1.get
|
||
|
zero = p1.ring.domain.zero
|
||
|
monomial_mul = p1.ring.monomial_mul
|
||
|
for k, v in p2.items():
|
||
|
ka = monomial_mul(k, m)
|
||
|
coeff = get(ka, zero) + v*c
|
||
|
if coeff:
|
||
|
p1[ka] = coeff
|
||
|
else:
|
||
|
del p1[ka]
|
||
|
return p1
|
||
|
|
||
|
def degree(f, x=None):
|
||
|
"""
|
||
|
The leading degree in ``x`` or the main variable.
|
||
|
|
||
|
Note that the degree of 0 is negative infinity (the SymPy object -oo).
|
||
|
|
||
|
"""
|
||
|
i = f.ring.index(x)
|
||
|
|
||
|
if not f:
|
||
|
return -oo
|
||
|
elif i < 0:
|
||
|
return 0
|
||
|
else:
|
||
|
return max([ monom[i] for monom in f.itermonoms() ])
|
||
|
|
||
|
def degrees(f):
|
||
|
"""
|
||
|
A tuple containing leading degrees in all variables.
|
||
|
|
||
|
Note that the degree of 0 is negative infinity (the SymPy object -oo)
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
return (-oo,)*f.ring.ngens
|
||
|
else:
|
||
|
return tuple(map(max, list(zip(*f.itermonoms()))))
|
||
|
|
||
|
def tail_degree(f, x=None):
|
||
|
"""
|
||
|
The tail degree in ``x`` or the main variable.
|
||
|
|
||
|
Note that the degree of 0 is negative infinity (the SymPy object -oo)
|
||
|
|
||
|
"""
|
||
|
i = f.ring.index(x)
|
||
|
|
||
|
if not f:
|
||
|
return -oo
|
||
|
elif i < 0:
|
||
|
return 0
|
||
|
else:
|
||
|
return min([ monom[i] for monom in f.itermonoms() ])
|
||
|
|
||
|
def tail_degrees(f):
|
||
|
"""
|
||
|
A tuple containing tail degrees in all variables.
|
||
|
|
||
|
Note that the degree of 0 is negative infinity (the SymPy object -oo)
|
||
|
|
||
|
"""
|
||
|
if not f:
|
||
|
return (-oo,)*f.ring.ngens
|
||
|
else:
|
||
|
return tuple(map(min, list(zip(*f.itermonoms()))))
|
||
|
|
||
|
def leading_expv(self):
|
||
|
"""Leading monomial tuple according to the monomial ordering.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y, z = ring('x, y, z', ZZ)
|
||
|
>>> p = x**4 + x**3*y + x**2*z**2 + z**7
|
||
|
>>> p.leading_expv()
|
||
|
(4, 0, 0)
|
||
|
|
||
|
"""
|
||
|
if self:
|
||
|
return self.ring.leading_expv(self)
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
def _get_coeff(self, expv):
|
||
|
return self.get(expv, self.ring.domain.zero)
|
||
|
|
||
|
def coeff(self, element):
|
||
|
"""
|
||
|
Returns the coefficient that stands next to the given monomial.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
element : PolyElement (with ``is_monomial = True``) or 1
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y, z = ring("x,y,z", ZZ)
|
||
|
>>> f = 3*x**2*y - x*y*z + 7*z**3 + 23
|
||
|
|
||
|
>>> f.coeff(x**2*y)
|
||
|
3
|
||
|
>>> f.coeff(x*y)
|
||
|
0
|
||
|
>>> f.coeff(1)
|
||
|
23
|
||
|
|
||
|
"""
|
||
|
if element == 1:
|
||
|
return self._get_coeff(self.ring.zero_monom)
|
||
|
elif isinstance(element, self.ring.dtype):
|
||
|
terms = list(element.iterterms())
|
||
|
if len(terms) == 1:
|
||
|
monom, coeff = terms[0]
|
||
|
if coeff == self.ring.domain.one:
|
||
|
return self._get_coeff(monom)
|
||
|
|
||
|
raise ValueError("expected a monomial, got %s" % element)
|
||
|
|
||
|
def const(self):
|
||
|
"""Returns the constant coefficient. """
|
||
|
return self._get_coeff(self.ring.zero_monom)
|
||
|
|
||
|
@property
|
||
|
def LC(self):
|
||
|
return self._get_coeff(self.leading_expv())
|
||
|
|
||
|
@property
|
||
|
def LM(self):
|
||
|
expv = self.leading_expv()
|
||
|
if expv is None:
|
||
|
return self.ring.zero_monom
|
||
|
else:
|
||
|
return expv
|
||
|
|
||
|
def leading_monom(self):
|
||
|
"""
|
||
|
Leading monomial as a polynomial element.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> (3*x*y + y**2).leading_monom()
|
||
|
x*y
|
||
|
|
||
|
"""
|
||
|
p = self.ring.zero
|
||
|
expv = self.leading_expv()
|
||
|
if expv:
|
||
|
p[expv] = self.ring.domain.one
|
||
|
return p
|
||
|
|
||
|
@property
|
||
|
def LT(self):
|
||
|
expv = self.leading_expv()
|
||
|
if expv is None:
|
||
|
return (self.ring.zero_monom, self.ring.domain.zero)
|
||
|
else:
|
||
|
return (expv, self._get_coeff(expv))
|
||
|
|
||
|
def leading_term(self):
|
||
|
"""Leading term as a polynomial element.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> (3*x*y + y**2).leading_term()
|
||
|
3*x*y
|
||
|
|
||
|
"""
|
||
|
p = self.ring.zero
|
||
|
expv = self.leading_expv()
|
||
|
if expv is not None:
|
||
|
p[expv] = self[expv]
|
||
|
return p
|
||
|
|
||
|
def _sorted(self, seq, order):
|
||
|
if order is None:
|
||
|
order = self.ring.order
|
||
|
else:
|
||
|
order = OrderOpt.preprocess(order)
|
||
|
|
||
|
if order is lex:
|
||
|
return sorted(seq, key=lambda monom: monom[0], reverse=True)
|
||
|
else:
|
||
|
return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)
|
||
|
|
||
|
def coeffs(self, order=None):
|
||
|
"""Ordered list of polynomial coefficients.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
order : :class:`~.MonomialOrder` or coercible, optional
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.orderings import lex, grlex
|
||
|
|
||
|
>>> _, x, y = ring("x, y", ZZ, lex)
|
||
|
>>> f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
>>> f.coeffs()
|
||
|
[2, 1]
|
||
|
>>> f.coeffs(grlex)
|
||
|
[1, 2]
|
||
|
|
||
|
"""
|
||
|
return [ coeff for _, coeff in self.terms(order) ]
|
||
|
|
||
|
def monoms(self, order=None):
|
||
|
"""Ordered list of polynomial monomials.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
order : :class:`~.MonomialOrder` or coercible, optional
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.orderings import lex, grlex
|
||
|
|
||
|
>>> _, x, y = ring("x, y", ZZ, lex)
|
||
|
>>> f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
>>> f.monoms()
|
||
|
[(2, 3), (1, 7)]
|
||
|
>>> f.monoms(grlex)
|
||
|
[(1, 7), (2, 3)]
|
||
|
|
||
|
"""
|
||
|
return [ monom for monom, _ in self.terms(order) ]
|
||
|
|
||
|
def terms(self, order=None):
|
||
|
"""Ordered list of polynomial terms.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
order : :class:`~.MonomialOrder` or coercible, optional
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> from sympy.polys.orderings import lex, grlex
|
||
|
|
||
|
>>> _, x, y = ring("x, y", ZZ, lex)
|
||
|
>>> f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
>>> f.terms()
|
||
|
[((2, 3), 2), ((1, 7), 1)]
|
||
|
>>> f.terms(grlex)
|
||
|
[((1, 7), 1), ((2, 3), 2)]
|
||
|
|
||
|
"""
|
||
|
return self._sorted(list(self.items()), order)
|
||
|
|
||
|
def itercoeffs(self):
|
||
|
"""Iterator over coefficients of a polynomial. """
|
||
|
return iter(self.values())
|
||
|
|
||
|
def itermonoms(self):
|
||
|
"""Iterator over monomials of a polynomial. """
|
||
|
return iter(self.keys())
|
||
|
|
||
|
def iterterms(self):
|
||
|
"""Iterator over terms of a polynomial. """
|
||
|
return iter(self.items())
|
||
|
|
||
|
def listcoeffs(self):
|
||
|
"""Unordered list of polynomial coefficients. """
|
||
|
return list(self.values())
|
||
|
|
||
|
def listmonoms(self):
|
||
|
"""Unordered list of polynomial monomials. """
|
||
|
return list(self.keys())
|
||
|
|
||
|
def listterms(self):
|
||
|
"""Unordered list of polynomial terms. """
|
||
|
return list(self.items())
|
||
|
|
||
|
def imul_num(p, c):
|
||
|
"""multiply inplace the polynomial p by an element in the
|
||
|
coefficient ring, provided p is not one of the generators;
|
||
|
else multiply not inplace
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y = ring('x, y', ZZ)
|
||
|
>>> p = x + y**2
|
||
|
>>> p1 = p.imul_num(3)
|
||
|
>>> p1
|
||
|
3*x + 3*y**2
|
||
|
>>> p1 is p
|
||
|
True
|
||
|
>>> p = x
|
||
|
>>> p1 = p.imul_num(3)
|
||
|
>>> p1
|
||
|
3*x
|
||
|
>>> p1 is p
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
if p in p.ring._gens_set:
|
||
|
return p*c
|
||
|
if not c:
|
||
|
p.clear()
|
||
|
return
|
||
|
for exp in p:
|
||
|
p[exp] *= c
|
||
|
return p
|
||
|
|
||
|
def content(f):
|
||
|
"""Returns GCD of polynomial's coefficients. """
|
||
|
domain = f.ring.domain
|
||
|
cont = domain.zero
|
||
|
gcd = domain.gcd
|
||
|
|
||
|
for coeff in f.itercoeffs():
|
||
|
cont = gcd(cont, coeff)
|
||
|
|
||
|
return cont
|
||
|
|
||
|
def primitive(f):
|
||
|
"""Returns content and a primitive polynomial. """
|
||
|
cont = f.content()
|
||
|
return cont, f.quo_ground(cont)
|
||
|
|
||
|
def monic(f):
|
||
|
"""Divides all coefficients by the leading coefficient. """
|
||
|
if not f:
|
||
|
return f
|
||
|
else:
|
||
|
return f.quo_ground(f.LC)
|
||
|
|
||
|
def mul_ground(f, x):
|
||
|
if not x:
|
||
|
return f.ring.zero
|
||
|
|
||
|
terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
|
||
|
return f.new(terms)
|
||
|
|
||
|
def mul_monom(f, monom):
|
||
|
monomial_mul = f.ring.monomial_mul
|
||
|
terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
|
||
|
return f.new(terms)
|
||
|
|
||
|
def mul_term(f, term):
|
||
|
monom, coeff = term
|
||
|
|
||
|
if not f or not coeff:
|
||
|
return f.ring.zero
|
||
|
elif monom == f.ring.zero_monom:
|
||
|
return f.mul_ground(coeff)
|
||
|
|
||
|
monomial_mul = f.ring.monomial_mul
|
||
|
terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
|
||
|
return f.new(terms)
|
||
|
|
||
|
def quo_ground(f, x):
|
||
|
domain = f.ring.domain
|
||
|
|
||
|
if not x:
|
||
|
raise ZeroDivisionError('polynomial division')
|
||
|
if not f or x == domain.one:
|
||
|
return f
|
||
|
|
||
|
if domain.is_Field:
|
||
|
quo = domain.quo
|
||
|
terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
|
||
|
else:
|
||
|
terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]
|
||
|
|
||
|
return f.new(terms)
|
||
|
|
||
|
def quo_term(f, term):
|
||
|
monom, coeff = term
|
||
|
|
||
|
if not coeff:
|
||
|
raise ZeroDivisionError("polynomial division")
|
||
|
elif not f:
|
||
|
return f.ring.zero
|
||
|
elif monom == f.ring.zero_monom:
|
||
|
return f.quo_ground(coeff)
|
||
|
|
||
|
term_div = f._term_div()
|
||
|
|
||
|
terms = [ term_div(t, term) for t in f.iterterms() ]
|
||
|
return f.new([ t for t in terms if t is not None ])
|
||
|
|
||
|
def trunc_ground(f, p):
|
||
|
if f.ring.domain.is_ZZ:
|
||
|
terms = []
|
||
|
|
||
|
for monom, coeff in f.iterterms():
|
||
|
coeff = coeff % p
|
||
|
|
||
|
if coeff > p // 2:
|
||
|
coeff = coeff - p
|
||
|
|
||
|
terms.append((monom, coeff))
|
||
|
else:
|
||
|
terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]
|
||
|
|
||
|
poly = f.new(terms)
|
||
|
poly.strip_zero()
|
||
|
return poly
|
||
|
|
||
|
rem_ground = trunc_ground
|
||
|
|
||
|
def extract_ground(self, g):
|
||
|
f = self
|
||
|
fc = f.content()
|
||
|
gc = g.content()
|
||
|
|
||
|
gcd = f.ring.domain.gcd(fc, gc)
|
||
|
|
||
|
f = f.quo_ground(gcd)
|
||
|
g = g.quo_ground(gcd)
|
||
|
|
||
|
return gcd, f, g
|
||
|
|
||
|
def _norm(f, norm_func):
|
||
|
if not f:
|
||
|
return f.ring.domain.zero
|
||
|
else:
|
||
|
ground_abs = f.ring.domain.abs
|
||
|
return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])
|
||
|
|
||
|
def max_norm(f):
|
||
|
return f._norm(max)
|
||
|
|
||
|
def l1_norm(f):
|
||
|
return f._norm(sum)
|
||
|
|
||
|
def deflate(f, *G):
|
||
|
ring = f.ring
|
||
|
polys = [f] + list(G)
|
||
|
|
||
|
J = [0]*ring.ngens
|
||
|
|
||
|
for p in polys:
|
||
|
for monom in p.itermonoms():
|
||
|
for i, m in enumerate(monom):
|
||
|
J[i] = igcd(J[i], m)
|
||
|
|
||
|
for i, b in enumerate(J):
|
||
|
if not b:
|
||
|
J[i] = 1
|
||
|
|
||
|
J = tuple(J)
|
||
|
|
||
|
if all(b == 1 for b in J):
|
||
|
return J, polys
|
||
|
|
||
|
H = []
|
||
|
|
||
|
for p in polys:
|
||
|
h = ring.zero
|
||
|
|
||
|
for I, coeff in p.iterterms():
|
||
|
N = [ i // j for i, j in zip(I, J) ]
|
||
|
h[tuple(N)] = coeff
|
||
|
|
||
|
H.append(h)
|
||
|
|
||
|
return J, H
|
||
|
|
||
|
def inflate(f, J):
|
||
|
poly = f.ring.zero
|
||
|
|
||
|
for I, coeff in f.iterterms():
|
||
|
N = [ i*j for i, j in zip(I, J) ]
|
||
|
poly[tuple(N)] = coeff
|
||
|
|
||
|
return poly
|
||
|
|
||
|
def lcm(self, g):
|
||
|
f = self
|
||
|
domain = f.ring.domain
|
||
|
|
||
|
if not domain.is_Field:
|
||
|
fc, f = f.primitive()
|
||
|
gc, g = g.primitive()
|
||
|
c = domain.lcm(fc, gc)
|
||
|
|
||
|
h = (f*g).quo(f.gcd(g))
|
||
|
|
||
|
if not domain.is_Field:
|
||
|
return h.mul_ground(c)
|
||
|
else:
|
||
|
return h.monic()
|
||
|
|
||
|
def gcd(f, g):
|
||
|
return f.cofactors(g)[0]
|
||
|
|
||
|
def cofactors(f, g):
|
||
|
if not f and not g:
|
||
|
zero = f.ring.zero
|
||
|
return zero, zero, zero
|
||
|
elif not f:
|
||
|
h, cff, cfg = f._gcd_zero(g)
|
||
|
return h, cff, cfg
|
||
|
elif not g:
|
||
|
h, cfg, cff = g._gcd_zero(f)
|
||
|
return h, cff, cfg
|
||
|
elif len(f) == 1:
|
||
|
h, cff, cfg = f._gcd_monom(g)
|
||
|
return h, cff, cfg
|
||
|
elif len(g) == 1:
|
||
|
h, cfg, cff = g._gcd_monom(f)
|
||
|
return h, cff, cfg
|
||
|
|
||
|
J, (f, g) = f.deflate(g)
|
||
|
h, cff, cfg = f._gcd(g)
|
||
|
|
||
|
return (h.inflate(J), cff.inflate(J), cfg.inflate(J))
|
||
|
|
||
|
def _gcd_zero(f, g):
|
||
|
one, zero = f.ring.one, f.ring.zero
|
||
|
if g.is_nonnegative:
|
||
|
return g, zero, one
|
||
|
else:
|
||
|
return -g, zero, -one
|
||
|
|
||
|
def _gcd_monom(f, g):
|
||
|
ring = f.ring
|
||
|
ground_gcd = ring.domain.gcd
|
||
|
ground_quo = ring.domain.quo
|
||
|
monomial_gcd = ring.monomial_gcd
|
||
|
monomial_ldiv = ring.monomial_ldiv
|
||
|
mf, cf = list(f.iterterms())[0]
|
||
|
_mgcd, _cgcd = mf, cf
|
||
|
for mg, cg in g.iterterms():
|
||
|
_mgcd = monomial_gcd(_mgcd, mg)
|
||
|
_cgcd = ground_gcd(_cgcd, cg)
|
||
|
h = f.new([(_mgcd, _cgcd)])
|
||
|
cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
|
||
|
cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
|
||
|
return h, cff, cfg
|
||
|
|
||
|
def _gcd(f, g):
|
||
|
ring = f.ring
|
||
|
|
||
|
if ring.domain.is_QQ:
|
||
|
return f._gcd_QQ(g)
|
||
|
elif ring.domain.is_ZZ:
|
||
|
return f._gcd_ZZ(g)
|
||
|
else: # TODO: don't use dense representation (port PRS algorithms)
|
||
|
return ring.dmp_inner_gcd(f, g)
|
||
|
|
||
|
def _gcd_ZZ(f, g):
|
||
|
return heugcd(f, g)
|
||
|
|
||
|
def _gcd_QQ(self, g):
|
||
|
f = self
|
||
|
ring = f.ring
|
||
|
new_ring = ring.clone(domain=ring.domain.get_ring())
|
||
|
|
||
|
cf, f = f.clear_denoms()
|
||
|
cg, g = g.clear_denoms()
|
||
|
|
||
|
f = f.set_ring(new_ring)
|
||
|
g = g.set_ring(new_ring)
|
||
|
|
||
|
h, cff, cfg = f._gcd_ZZ(g)
|
||
|
|
||
|
h = h.set_ring(ring)
|
||
|
c, h = h.LC, h.monic()
|
||
|
|
||
|
cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
|
||
|
cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))
|
||
|
|
||
|
return h, cff, cfg
|
||
|
|
||
|
def cancel(self, g):
|
||
|
"""
|
||
|
Cancel common factors in a rational function ``f/g``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys import ring, ZZ
|
||
|
>>> R, x,y = ring("x,y", ZZ)
|
||
|
|
||
|
>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
|
||
|
(2*x + 2, x - 1)
|
||
|
|
||
|
"""
|
||
|
f = self
|
||
|
ring = f.ring
|
||
|
|
||
|
if not f:
|
||
|
return f, ring.one
|
||
|
|
||
|
domain = ring.domain
|
||
|
|
||
|
if not (domain.is_Field and domain.has_assoc_Ring):
|
||
|
_, p, q = f.cofactors(g)
|
||
|
else:
|
||
|
new_ring = ring.clone(domain=domain.get_ring())
|
||
|
|
||
|
cq, f = f.clear_denoms()
|
||
|
cp, g = g.clear_denoms()
|
||
|
|
||
|
f = f.set_ring(new_ring)
|
||
|
g = g.set_ring(new_ring)
|
||
|
|
||
|
_, p, q = f.cofactors(g)
|
||
|
_, cp, cq = new_ring.domain.cofactors(cp, cq)
|
||
|
|
||
|
p = p.set_ring(ring)
|
||
|
q = q.set_ring(ring)
|
||
|
|
||
|
p = p.mul_ground(cp)
|
||
|
q = q.mul_ground(cq)
|
||
|
|
||
|
# Make canonical with respect to sign or quadrant in the case of ZZ_I
|
||
|
# or QQ_I. This ensures that the LC of the denominator is canonical by
|
||
|
# multiplying top and bottom by a unit of the ring.
|
||
|
u = q.canonical_unit()
|
||
|
if u == domain.one:
|
||
|
p, q = p, q
|
||
|
elif u == -domain.one:
|
||
|
p, q = -p, -q
|
||
|
else:
|
||
|
p = p.mul_ground(u)
|
||
|
q = q.mul_ground(u)
|
||
|
|
||
|
return p, q
|
||
|
|
||
|
def canonical_unit(f):
|
||
|
domain = f.ring.domain
|
||
|
return domain.canonical_unit(f.LC)
|
||
|
|
||
|
def diff(f, x):
|
||
|
"""Computes partial derivative in ``x``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
|
||
|
>>> _, x, y = ring("x,y", ZZ)
|
||
|
>>> p = x + x**2*y**3
|
||
|
>>> p.diff(x)
|
||
|
2*x*y**3 + 1
|
||
|
|
||
|
"""
|
||
|
ring = f.ring
|
||
|
i = ring.index(x)
|
||
|
m = ring.monomial_basis(i)
|
||
|
g = ring.zero
|
||
|
for expv, coeff in f.iterterms():
|
||
|
if expv[i]:
|
||
|
e = ring.monomial_ldiv(expv, m)
|
||
|
g[e] = ring.domain_new(coeff*expv[i])
|
||
|
return g
|
||
|
|
||
|
def __call__(f, *values):
|
||
|
if 0 < len(values) <= f.ring.ngens:
|
||
|
return f.evaluate(list(zip(f.ring.gens, values)))
|
||
|
else:
|
||
|
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))
|
||
|
|
||
|
def evaluate(self, x, a=None):
|
||
|
f = self
|
||
|
|
||
|
if isinstance(x, list) and a is None:
|
||
|
(X, a), x = x[0], x[1:]
|
||
|
f = f.evaluate(X, a)
|
||
|
|
||
|
if not x:
|
||
|
return f
|
||
|
else:
|
||
|
x = [ (Y.drop(X), a) for (Y, a) in x ]
|
||
|
return f.evaluate(x)
|
||
|
|
||
|
ring = f.ring
|
||
|
i = ring.index(x)
|
||
|
a = ring.domain.convert(a)
|
||
|
|
||
|
if ring.ngens == 1:
|
||
|
result = ring.domain.zero
|
||
|
|
||
|
for (n,), coeff in f.iterterms():
|
||
|
result += coeff*a**n
|
||
|
|
||
|
return result
|
||
|
else:
|
||
|
poly = ring.drop(x).zero
|
||
|
|
||
|
for monom, coeff in f.iterterms():
|
||
|
n, monom = monom[i], monom[:i] + monom[i+1:]
|
||
|
coeff = coeff*a**n
|
||
|
|
||
|
if monom in poly:
|
||
|
coeff = coeff + poly[monom]
|
||
|
|
||
|
if coeff:
|
||
|
poly[monom] = coeff
|
||
|
else:
|
||
|
del poly[monom]
|
||
|
else:
|
||
|
if coeff:
|
||
|
poly[monom] = coeff
|
||
|
|
||
|
return poly
|
||
|
|
||
|
def subs(self, x, a=None):
|
||
|
f = self
|
||
|
|
||
|
if isinstance(x, list) and a is None:
|
||
|
for X, a in x:
|
||
|
f = f.subs(X, a)
|
||
|
return f
|
||
|
|
||
|
ring = f.ring
|
||
|
i = ring.index(x)
|
||
|
a = ring.domain.convert(a)
|
||
|
|
||
|
if ring.ngens == 1:
|
||
|
result = ring.domain.zero
|
||
|
|
||
|
for (n,), coeff in f.iterterms():
|
||
|
result += coeff*a**n
|
||
|
|
||
|
return ring.ground_new(result)
|
||
|
else:
|
||
|
poly = ring.zero
|
||
|
|
||
|
for monom, coeff in f.iterterms():
|
||
|
n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
|
||
|
coeff = coeff*a**n
|
||
|
|
||
|
if monom in poly:
|
||
|
coeff = coeff + poly[monom]
|
||
|
|
||
|
if coeff:
|
||
|
poly[monom] = coeff
|
||
|
else:
|
||
|
del poly[monom]
|
||
|
else:
|
||
|
if coeff:
|
||
|
poly[monom] = coeff
|
||
|
|
||
|
return poly
|
||
|
|
||
|
def symmetrize(self):
|
||
|
r"""
|
||
|
Rewrite *self* in terms of elementary symmetric polynomials.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If this :py:class:`~.PolyElement` belongs to a ring of $n$ variables,
|
||
|
we can try to write it as a function of the elementary symmetric
|
||
|
polynomials on $n$ variables. We compute a symmetric part, and a
|
||
|
remainder for any part we were not able to symmetrize.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.rings import ring
|
||
|
>>> from sympy.polys.domains import ZZ
|
||
|
>>> R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
>>> f = x**2 + y**2
|
||
|
>>> f.symmetrize()
|
||
|
(x**2 - 2*y, 0, [(x, x + y), (y, x*y)])
|
||
|
|
||
|
>>> f = x**2 - y**2
|
||
|
>>> f.symmetrize()
|
||
|
(x**2 - 2*y, -2*y**2, [(x, x + y), (y, x*y)])
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
Triple ``(p, r, m)``
|
||
|
``p`` is a :py:class:`~.PolyElement` that represents our attempt
|
||
|
to express *self* as a function of elementary symmetric
|
||
|
polynomials. Each variable in ``p`` stands for one of the
|
||
|
elementary symmetric polynomials. The correspondence is given
|
||
|
by ``m``.
|
||
|
|
||
|
``r`` is the remainder.
|
||
|
|
||
|
``m`` is a list of pairs, giving the mapping from variables in
|
||
|
``p`` to elementary symmetric polynomials.
|
||
|
|
||
|
The triple satisfies the equation ``p.compose(m) + r == self``.
|
||
|
If the remainder ``r`` is zero, *self* is symmetric. If it is
|
||
|
nonzero, we were not able to represent *self* as symmetric.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.polys.polyfuncs.symmetrize
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Lauer, E. Algorithms for symmetrical polynomials, Proc. 1976
|
||
|
ACM Symp. on Symbolic and Algebraic Computing, NY 242-247.
|
||
|
https://dl.acm.org/doi/pdf/10.1145/800205.806342
|
||
|
|
||
|
"""
|
||
|
f = self.copy()
|
||
|
ring = f.ring
|
||
|
n = ring.ngens
|
||
|
|
||
|
if not n:
|
||
|
return f, ring.zero, []
|
||
|
|
||
|
polys = [ring.symmetric_poly(i+1) for i in range(n)]
|
||
|
|
||
|
poly_powers = {}
|
||
|
def get_poly_power(i, n):
|
||
|
if (i, n) not in poly_powers:
|
||
|
poly_powers[(i, n)] = polys[i]**n
|
||
|
return poly_powers[(i, n)]
|
||
|
|
||
|
indices = list(range(n - 1))
|
||
|
weights = list(range(n, 0, -1))
|
||
|
|
||
|
symmetric = ring.zero
|
||
|
|
||
|
while f:
|
||
|
_height, _monom, _coeff = -1, None, None
|
||
|
|
||
|
for i, (monom, coeff) in enumerate(f.terms()):
|
||
|
if all(monom[i] >= monom[i + 1] for i in indices):
|
||
|
height = max([n*m for n, m in zip(weights, monom)])
|
||
|
|
||
|
if height > _height:
|
||
|
_height, _monom, _coeff = height, monom, coeff
|
||
|
|
||
|
if _height != -1:
|
||
|
monom, coeff = _monom, _coeff
|
||
|
else:
|
||
|
break
|
||
|
|
||
|
exponents = []
|
||
|
for m1, m2 in zip(monom, monom[1:] + (0,)):
|
||
|
exponents.append(m1 - m2)
|
||
|
|
||
|
symmetric += ring.term_new(tuple(exponents), coeff)
|
||
|
|
||
|
product = coeff
|
||
|
for i, n in enumerate(exponents):
|
||
|
product *= get_poly_power(i, n)
|
||
|
f -= product
|
||
|
|
||
|
mapping = list(zip(ring.gens, polys))
|
||
|
|
||
|
return symmetric, f, mapping
|
||
|
|
||
|
def compose(f, x, a=None):
|
||
|
ring = f.ring
|
||
|
poly = ring.zero
|
||
|
gens_map = dict(zip(ring.gens, range(ring.ngens)))
|
||
|
|
||
|
if a is not None:
|
||
|
replacements = [(x, a)]
|
||
|
else:
|
||
|
if isinstance(x, list):
|
||
|
replacements = list(x)
|
||
|
elif isinstance(x, dict):
|
||
|
replacements = sorted(x.items(), key=lambda k: gens_map[k[0]])
|
||
|
else:
|
||
|
raise ValueError("expected a generator, value pair a sequence of such pairs")
|
||
|
|
||
|
for k, (x, g) in enumerate(replacements):
|
||
|
replacements[k] = (gens_map[x], ring.ring_new(g))
|
||
|
|
||
|
for monom, coeff in f.iterterms():
|
||
|
monom = list(monom)
|
||
|
subpoly = ring.one
|
||
|
|
||
|
for i, g in replacements:
|
||
|
n, monom[i] = monom[i], 0
|
||
|
if n:
|
||
|
subpoly *= g**n
|
||
|
|
||
|
subpoly = subpoly.mul_term((tuple(monom), coeff))
|
||
|
poly += subpoly
|
||
|
|
||
|
return poly
|
||
|
|
||
|
# TODO: following methods should point to polynomial
|
||
|
# representation independent algorithm implementations.
|
||
|
|
||
|
def pdiv(f, g):
|
||
|
return f.ring.dmp_pdiv(f, g)
|
||
|
|
||
|
def prem(f, g):
|
||
|
return f.ring.dmp_prem(f, g)
|
||
|
|
||
|
def pquo(f, g):
|
||
|
return f.ring.dmp_quo(f, g)
|
||
|
|
||
|
def pexquo(f, g):
|
||
|
return f.ring.dmp_exquo(f, g)
|
||
|
|
||
|
def half_gcdex(f, g):
|
||
|
return f.ring.dmp_half_gcdex(f, g)
|
||
|
|
||
|
def gcdex(f, g):
|
||
|
return f.ring.dmp_gcdex(f, g)
|
||
|
|
||
|
def subresultants(f, g):
|
||
|
return f.ring.dmp_subresultants(f, g)
|
||
|
|
||
|
def resultant(f, g):
|
||
|
return f.ring.dmp_resultant(f, g)
|
||
|
|
||
|
def discriminant(f):
|
||
|
return f.ring.dmp_discriminant(f)
|
||
|
|
||
|
def decompose(f):
|
||
|
if f.ring.is_univariate:
|
||
|
return f.ring.dup_decompose(f)
|
||
|
else:
|
||
|
raise MultivariatePolynomialError("polynomial decomposition")
|
||
|
|
||
|
def shift(f, a):
|
||
|
if f.ring.is_univariate:
|
||
|
return f.ring.dup_shift(f, a)
|
||
|
else:
|
||
|
raise MultivariatePolynomialError("polynomial shift")
|
||
|
|
||
|
def sturm(f):
|
||
|
if f.ring.is_univariate:
|
||
|
return f.ring.dup_sturm(f)
|
||
|
else:
|
||
|
raise MultivariatePolynomialError("sturm sequence")
|
||
|
|
||
|
def gff_list(f):
|
||
|
return f.ring.dmp_gff_list(f)
|
||
|
|
||
|
def sqf_norm(f):
|
||
|
return f.ring.dmp_sqf_norm(f)
|
||
|
|
||
|
def sqf_part(f):
|
||
|
return f.ring.dmp_sqf_part(f)
|
||
|
|
||
|
def sqf_list(f, all=False):
|
||
|
return f.ring.dmp_sqf_list(f, all=all)
|
||
|
|
||
|
def factor_list(f):
|
||
|
return f.ring.dmp_factor_list(f)
|