Traktor/myenv/Lib/site-packages/sympy/simplify/gammasimp.py

498 lines
18 KiB
Python
Raw Normal View History

2024-05-26 05:12:46 +02:00
from sympy.core import Function, S, Mul, Pow, Add
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.function import expand_func
from sympy.core.symbol import Dummy
from sympy.functions import gamma, sqrt, sin
from sympy.polys import factor, cancel
from sympy.utilities.iterables import sift, uniq
def gammasimp(expr):
r"""
Simplify expressions with gamma functions.
Explanation
===========
This function takes as input an expression containing gamma
functions or functions that can be rewritten in terms of gamma
functions and tries to minimize the number of those functions and
reduce the size of their arguments.
The algorithm works by rewriting all gamma functions as expressions
involving rising factorials (Pochhammer symbols) and applies
recurrence relations and other transformations applicable to rising
factorials, to reduce their arguments, possibly letting the resulting
rising factorial to cancel. Rising factorials with the second argument
being an integer are expanded into polynomial forms and finally all
other rising factorial are rewritten in terms of gamma functions.
Then the following two steps are performed.
1. Reduce the number of gammas by applying the reflection theorem
gamma(x)*gamma(1-x) == pi/sin(pi*x).
2. Reduce the number of gammas by applying the multiplication theorem
gamma(x)*gamma(x+1/n)*...*gamma(x+(n-1)/n) == C*gamma(n*x).
It then reduces the number of prefactors by absorbing them into gammas
where possible and expands gammas with rational argument.
All transformation rules can be found (or were derived from) here:
.. [1] https://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
.. [2] https://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/
Examples
========
>>> from sympy.simplify import gammasimp
>>> from sympy import gamma, Symbol
>>> from sympy.abc import x
>>> n = Symbol('n', integer = True)
>>> gammasimp(gamma(x)/gamma(x - 3))
(x - 3)*(x - 2)*(x - 1)
>>> gammasimp(gamma(n + 3))
gamma(n + 3)
"""
expr = expr.rewrite(gamma)
# compute_ST will be looking for Functions and we don't want
# it looking for non-gamma functions: issue 22606
# so we mask free, non-gamma functions
f = expr.atoms(Function)
# take out gammas
gammas = {i for i in f if isinstance(i, gamma)}
if not gammas:
return expr # avoid side effects like factoring
f -= gammas
# keep only those without bound symbols
f = f & expr.as_dummy().atoms(Function)
if f:
dum, fun, simp = zip(*[
(Dummy(), fi, fi.func(*[
_gammasimp(a, as_comb=False) for a in fi.args]))
for fi in ordered(f)])
d = expr.xreplace(dict(zip(fun, dum)))
return _gammasimp(d, as_comb=False).xreplace(dict(zip(dum, simp)))
return _gammasimp(expr, as_comb=False)
def _gammasimp(expr, as_comb):
"""
Helper function for gammasimp and combsimp.
Explanation
===========
Simplifies expressions written in terms of gamma function. If
as_comb is True, it tries to preserve integer arguments. See
docstring of gammasimp for more information. This was part of
combsimp() in combsimp.py.
"""
expr = expr.replace(gamma,
lambda n: _rf(1, (n - 1).expand()))
if as_comb:
expr = expr.replace(_rf,
lambda a, b: gamma(b + 1))
else:
expr = expr.replace(_rf,
lambda a, b: gamma(a + b)/gamma(a))
def rule_gamma(expr, level=0):
""" Simplify products of gamma functions further. """
if expr.is_Atom:
return expr
def gamma_rat(x):
# helper to simplify ratios of gammas
was = x.count(gamma)
xx = x.replace(gamma, lambda n: _rf(1, (n - 1).expand()
).replace(_rf, lambda a, b: gamma(a + b)/gamma(a)))
if xx.count(gamma) < was:
x = xx
return x
def gamma_factor(x):
# return True if there is a gamma factor in shallow args
if isinstance(x, gamma):
return True
if x.is_Add or x.is_Mul:
return any(gamma_factor(xi) for xi in x.args)
if x.is_Pow and (x.exp.is_integer or x.base.is_positive):
return gamma_factor(x.base)
return False
# recursion step
if level == 0:
expr = expr.func(*[rule_gamma(x, level + 1) for x in expr.args])
level += 1
if not expr.is_Mul:
return expr
# non-commutative step
if level == 1:
args, nc = expr.args_cnc()
if not args:
return expr
if nc:
return rule_gamma(Mul._from_args(args), level + 1)*Mul._from_args(nc)
level += 1
# pure gamma handling, not factor absorption
if level == 2:
T, F = sift(expr.args, gamma_factor, binary=True)
gamma_ind = Mul(*F)
d = Mul(*T)
nd, dd = d.as_numer_denom()
for ipass in range(2):
args = list(ordered(Mul.make_args(nd)))
for i, ni in enumerate(args):
if ni.is_Add:
ni, dd = Add(*[
rule_gamma(gamma_rat(a/dd), level + 1) for a in ni.args]
).as_numer_denom()
args[i] = ni
if not dd.has(gamma):
break
nd = Mul(*args)
if ipass == 0 and not gamma_factor(nd):
break
nd, dd = dd, nd # now process in reversed order
expr = gamma_ind*nd/dd
if not (expr.is_Mul and (gamma_factor(dd) or gamma_factor(nd))):
return expr
level += 1
# iteration until constant
if level == 3:
while True:
was = expr
expr = rule_gamma(expr, 4)
if expr == was:
return expr
numer_gammas = []
denom_gammas = []
numer_others = []
denom_others = []
def explicate(p):
if p is S.One:
return None, []
b, e = p.as_base_exp()
if e.is_Integer:
if isinstance(b, gamma):
return True, [b.args[0]]*e
else:
return False, [b]*e
else:
return False, [p]
newargs = list(ordered(expr.args))
while newargs:
n, d = newargs.pop().as_numer_denom()
isg, l = explicate(n)
if isg:
numer_gammas.extend(l)
elif isg is False:
numer_others.extend(l)
isg, l = explicate(d)
if isg:
denom_gammas.extend(l)
elif isg is False:
denom_others.extend(l)
# =========== level 2 work: pure gamma manipulation =========
if not as_comb:
# Try to reduce the number of gamma factors by applying the
# reflection formula gamma(x)*gamma(1-x) = pi/sin(pi*x)
for gammas, numer, denom in [(
numer_gammas, numer_others, denom_others),
(denom_gammas, denom_others, numer_others)]:
new = []
while gammas:
g1 = gammas.pop()
if g1.is_integer:
new.append(g1)
continue
for i, g2 in enumerate(gammas):
n = g1 + g2 - 1
if not n.is_Integer:
continue
numer.append(S.Pi)
denom.append(sin(S.Pi*g1))
gammas.pop(i)
if n > 0:
for k in range(n):
numer.append(1 - g1 + k)
elif n < 0:
for k in range(-n):
denom.append(-g1 - k)
break
else:
new.append(g1)
# /!\ updating IN PLACE
gammas[:] = new
# Try to reduce the number of gammas by using the duplication
# theorem to cancel an upper and lower: gamma(2*s)/gamma(s) =
# 2**(2*s + 1)/(4*sqrt(pi))*gamma(s + 1/2). Although this could
# be done with higher argument ratios like gamma(3*x)/gamma(x),
# this would not reduce the number of gammas as in this case.
for ng, dg, no, do in [(numer_gammas, denom_gammas, numer_others,
denom_others),
(denom_gammas, numer_gammas, denom_others,
numer_others)]:
while True:
for x in ng:
for y in dg:
n = x - 2*y
if n.is_Integer:
break
else:
continue
break
else:
break
ng.remove(x)
dg.remove(y)
if n > 0:
for k in range(n):
no.append(2*y + k)
elif n < 0:
for k in range(-n):
do.append(2*y - 1 - k)
ng.append(y + S.Half)
no.append(2**(2*y - 1))
do.append(sqrt(S.Pi))
# Try to reduce the number of gamma factors by applying the
# multiplication theorem (used when n gammas with args differing
# by 1/n mod 1 are encountered).
#
# run of 2 with args differing by 1/2
#
# >>> gammasimp(gamma(x)*gamma(x+S.Half))
# 2*sqrt(2)*2**(-2*x - 1/2)*sqrt(pi)*gamma(2*x)
#
# run of 3 args differing by 1/3 (mod 1)
#
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(2)/3))
# 6*3**(-3*x - 1/2)*pi*gamma(3*x)
# >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(5)/3))
# 2*3**(-3*x - 1/2)*pi*(3*x + 2)*gamma(3*x)
#
def _run(coeffs):
# find runs in coeffs such that the difference in terms (mod 1)
# of t1, t2, ..., tn is 1/n
u = list(uniq(coeffs))
for i in range(len(u)):
dj = ([((u[j] - u[i]) % 1, j) for j in range(i + 1, len(u))])
for one, j in dj:
if one.p == 1 and one.q != 1:
n = one.q
got = [i]
get = list(range(1, n))
for d, j in dj:
m = n*d
if m.is_Integer and m in get:
get.remove(m)
got.append(j)
if not get:
break
else:
continue
for i, j in enumerate(got):
c = u[j]
coeffs.remove(c)
got[i] = c
return one.q, got[0], got[1:]
def _mult_thm(gammas, numer, denom):
# pull off and analyze the leading coefficient from each gamma arg
# looking for runs in those Rationals
# expr -> coeff + resid -> rats[resid] = coeff
rats = {}
for g in gammas:
c, resid = g.as_coeff_Add()
rats.setdefault(resid, []).append(c)
# look for runs in Rationals for each resid
keys = sorted(rats, key=default_sort_key)
for resid in keys:
coeffs = sorted(rats[resid])
new = []
while True:
run = _run(coeffs)
if run is None:
break
# process the sequence that was found:
# 1) convert all the gamma functions to have the right
# argument (could be off by an integer)
# 2) append the factors corresponding to the theorem
# 3) append the new gamma function
n, ui, other = run
# (1)
for u in other:
con = resid + u - 1
for k in range(int(u - ui)):
numer.append(con - k)
con = n*(resid + ui) # for (2) and (3)
# (2)
numer.append((2*S.Pi)**(S(n - 1)/2)*
n**(S.Half - con))
# (3)
new.append(con)
# restore resid to coeffs
rats[resid] = [resid + c for c in coeffs] + new
# rebuild the gamma arguments
g = []
for resid in keys:
g += rats[resid]
# /!\ updating IN PLACE
gammas[:] = g
for l, numer, denom in [(numer_gammas, numer_others, denom_others),
(denom_gammas, denom_others, numer_others)]:
_mult_thm(l, numer, denom)
# =========== level >= 2 work: factor absorption =========
if level >= 2:
# Try to absorb factors into the gammas: x*gamma(x) -> gamma(x + 1)
# and gamma(x)/(x - 1) -> gamma(x - 1)
# This code (in particular repeated calls to find_fuzzy) can be very
# slow.
def find_fuzzy(l, x):
if not l:
return
S1, T1 = compute_ST(x)
for y in l:
S2, T2 = inv[y]
if T1 != T2 or (not S1.intersection(S2) and
(S1 != set() or S2 != set())):
continue
# XXX we want some simplification (e.g. cancel or
# simplify) but no matter what it's slow.
a = len(cancel(x/y).free_symbols)
b = len(x.free_symbols)
c = len(y.free_symbols)
# TODO is there a better heuristic?
if a == 0 and (b > 0 or c > 0):
return y
# We thus try to avoid expensive calls by building the following
# "invariants": For every factor or gamma function argument
# - the set of free symbols S
# - the set of functional components T
# We will only try to absorb if T1==T2 and (S1 intersect S2 != emptyset
# or S1 == S2 == emptyset)
inv = {}
def compute_ST(expr):
if expr in inv:
return inv[expr]
return (expr.free_symbols, expr.atoms(Function).union(
{e.exp for e in expr.atoms(Pow)}))
def update_ST(expr):
inv[expr] = compute_ST(expr)
for expr in numer_gammas + denom_gammas + numer_others + denom_others:
update_ST(expr)
for gammas, numer, denom in [(
numer_gammas, numer_others, denom_others),
(denom_gammas, denom_others, numer_others)]:
new = []
while gammas:
g = gammas.pop()
cont = True
while cont:
cont = False
y = find_fuzzy(numer, g)
if y is not None:
numer.remove(y)
if y != g:
numer.append(y/g)
update_ST(y/g)
g += 1
cont = True
y = find_fuzzy(denom, g - 1)
if y is not None:
denom.remove(y)
if y != g - 1:
numer.append((g - 1)/y)
update_ST((g - 1)/y)
g -= 1
cont = True
new.append(g)
# /!\ updating IN PLACE
gammas[:] = new
# =========== rebuild expr ==================================
return Mul(*[gamma(g) for g in numer_gammas]) \
/ Mul(*[gamma(g) for g in denom_gammas]) \
* Mul(*numer_others) / Mul(*denom_others)
was = factor(expr)
# (for some reason we cannot use Basic.replace in this case)
expr = rule_gamma(was)
if expr != was:
expr = factor(expr)
expr = expr.replace(gamma,
lambda n: expand_func(gamma(n)) if n.is_Rational else gamma(n))
return expr
class _rf(Function):
@classmethod
def eval(cls, a, b):
if b.is_Integer:
if not b:
return S.One
n = int(b)
if n > 0:
return Mul(*[a + i for i in range(n)])
elif n < 0:
return 1/Mul(*[a - i for i in range(1, -n + 1)])
else:
if b.is_Add:
c, _b = b.as_coeff_Add()
if c.is_Integer:
if c > 0:
return _rf(a, _b)*_rf(a + _b, c)
elif c < 0:
return _rf(a, _b)/_rf(a + _b + c, -c)
if a.is_Add:
c, _a = a.as_coeff_Add()
if c.is_Integer:
if c > 0:
return _rf(_a, b)*_rf(_a + b, c)/_rf(_a, c)
elif c < 0:
return _rf(_a, b)*_rf(_a + c, -c)/_rf(_a + b + c, -c)