680 lines
21 KiB
Python
680 lines
21 KiB
Python
|
from sympy.core import Add, Expr, Mul, S, sympify
|
||
|
from sympy.core.function import _mexpand, count_ops, expand_mul
|
||
|
from sympy.core.sorting import default_sort_key
|
||
|
from sympy.core.symbol import Dummy
|
||
|
from sympy.functions import root, sign, sqrt
|
||
|
from sympy.polys import Poly, PolynomialError
|
||
|
|
||
|
|
||
|
def is_sqrt(expr):
|
||
|
"""Return True if expr is a sqrt, otherwise False."""
|
||
|
|
||
|
return expr.is_Pow and expr.exp.is_Rational and abs(expr.exp) is S.Half
|
||
|
|
||
|
|
||
|
def sqrt_depth(p):
|
||
|
"""Return the maximum depth of any square root argument of p.
|
||
|
|
||
|
>>> from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
>>> from sympy.simplify.sqrtdenest import sqrt_depth
|
||
|
|
||
|
Neither of these square roots contains any other square roots
|
||
|
so the depth is 1:
|
||
|
|
||
|
>>> sqrt_depth(1 + sqrt(2)*(1 + sqrt(3)))
|
||
|
1
|
||
|
|
||
|
The sqrt(3) is contained within a square root so the depth is
|
||
|
2:
|
||
|
|
||
|
>>> sqrt_depth(1 + sqrt(2)*sqrt(1 + sqrt(3)))
|
||
|
2
|
||
|
"""
|
||
|
if p is S.ImaginaryUnit:
|
||
|
return 1
|
||
|
if p.is_Atom:
|
||
|
return 0
|
||
|
elif p.is_Add or p.is_Mul:
|
||
|
return max([sqrt_depth(x) for x in p.args], key=default_sort_key)
|
||
|
elif is_sqrt(p):
|
||
|
return sqrt_depth(p.base) + 1
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
|
||
|
def is_algebraic(p):
|
||
|
"""Return True if p is comprised of only Rationals or square roots
|
||
|
of Rationals and algebraic operations.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
>>> from sympy.simplify.sqrtdenest import is_algebraic
|
||
|
>>> from sympy import cos
|
||
|
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*sqrt(2))))
|
||
|
True
|
||
|
>>> is_algebraic(sqrt(2)*(3/(sqrt(7) + sqrt(5)*cos(2))))
|
||
|
False
|
||
|
"""
|
||
|
|
||
|
if p.is_Rational:
|
||
|
return True
|
||
|
elif p.is_Atom:
|
||
|
return False
|
||
|
elif is_sqrt(p) or p.is_Pow and p.exp.is_Integer:
|
||
|
return is_algebraic(p.base)
|
||
|
elif p.is_Add or p.is_Mul:
|
||
|
return all(is_algebraic(x) for x in p.args)
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _subsets(n):
|
||
|
"""
|
||
|
Returns all possible subsets of the set (0, 1, ..., n-1) except the
|
||
|
empty set, listed in reversed lexicographical order according to binary
|
||
|
representation, so that the case of the fourth root is treated last.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.sqrtdenest import _subsets
|
||
|
>>> _subsets(2)
|
||
|
[[1, 0], [0, 1], [1, 1]]
|
||
|
|
||
|
"""
|
||
|
if n == 1:
|
||
|
a = [[1]]
|
||
|
elif n == 2:
|
||
|
a = [[1, 0], [0, 1], [1, 1]]
|
||
|
elif n == 3:
|
||
|
a = [[1, 0, 0], [0, 1, 0], [1, 1, 0],
|
||
|
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]]
|
||
|
else:
|
||
|
b = _subsets(n - 1)
|
||
|
a0 = [x + [0] for x in b]
|
||
|
a1 = [x + [1] for x in b]
|
||
|
a = a0 + [[0]*(n - 1) + [1]] + a1
|
||
|
return a
|
||
|
|
||
|
|
||
|
def sqrtdenest(expr, max_iter=3):
|
||
|
"""Denests sqrts in an expression that contain other square roots
|
||
|
if possible, otherwise returns the expr unchanged. This is based on the
|
||
|
algorithms of [1].
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.sqrtdenest import sqrtdenest
|
||
|
>>> from sympy import sqrt
|
||
|
>>> sqrtdenest(sqrt(5 + 2 * sqrt(6)))
|
||
|
sqrt(2) + sqrt(3)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.solvers.solvers.unrad
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://web.archive.org/web/20210806201615/https://researcher.watson.ibm.com/researcher/files/us-fagin/symb85.pdf
|
||
|
|
||
|
.. [2] D. J. Jeffrey and A. D. Rich, 'Symplifying Square Roots of Square Roots
|
||
|
by Denesting' (available at https://www.cybertester.com/data/denest.pdf)
|
||
|
|
||
|
"""
|
||
|
expr = expand_mul(expr)
|
||
|
for i in range(max_iter):
|
||
|
z = _sqrtdenest0(expr)
|
||
|
if expr == z:
|
||
|
return expr
|
||
|
expr = z
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def _sqrt_match(p):
|
||
|
"""Return [a, b, r] for p.match(a + b*sqrt(r)) where, in addition to
|
||
|
matching, sqrt(r) also has then maximal sqrt_depth among addends of p.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
>>> from sympy.simplify.sqrtdenest import _sqrt_match
|
||
|
>>> _sqrt_match(1 + sqrt(2) + sqrt(2)*sqrt(3) + 2*sqrt(1+sqrt(5)))
|
||
|
[1 + sqrt(2) + sqrt(6), 2, 1 + sqrt(5)]
|
||
|
"""
|
||
|
from sympy.simplify.radsimp import split_surds
|
||
|
|
||
|
p = _mexpand(p)
|
||
|
if p.is_Number:
|
||
|
res = (p, S.Zero, S.Zero)
|
||
|
elif p.is_Add:
|
||
|
pargs = sorted(p.args, key=default_sort_key)
|
||
|
sqargs = [x**2 for x in pargs]
|
||
|
if all(sq.is_Rational and sq.is_positive for sq in sqargs):
|
||
|
r, b, a = split_surds(p)
|
||
|
res = a, b, r
|
||
|
return list(res)
|
||
|
# to make the process canonical, the argument is included in the tuple
|
||
|
# so when the max is selected, it will be the largest arg having a
|
||
|
# given depth
|
||
|
v = [(sqrt_depth(x), x, i) for i, x in enumerate(pargs)]
|
||
|
nmax = max(v, key=default_sort_key)
|
||
|
if nmax[0] == 0:
|
||
|
res = []
|
||
|
else:
|
||
|
# select r
|
||
|
depth, _, i = nmax
|
||
|
r = pargs.pop(i)
|
||
|
v.pop(i)
|
||
|
b = S.One
|
||
|
if r.is_Mul:
|
||
|
bv = []
|
||
|
rv = []
|
||
|
for x in r.args:
|
||
|
if sqrt_depth(x) < depth:
|
||
|
bv.append(x)
|
||
|
else:
|
||
|
rv.append(x)
|
||
|
b = Mul._from_args(bv)
|
||
|
r = Mul._from_args(rv)
|
||
|
# collect terms comtaining r
|
||
|
a1 = []
|
||
|
b1 = [b]
|
||
|
for x in v:
|
||
|
if x[0] < depth:
|
||
|
a1.append(x[1])
|
||
|
else:
|
||
|
x1 = x[1]
|
||
|
if x1 == r:
|
||
|
b1.append(1)
|
||
|
else:
|
||
|
if x1.is_Mul:
|
||
|
x1args = list(x1.args)
|
||
|
if r in x1args:
|
||
|
x1args.remove(r)
|
||
|
b1.append(Mul(*x1args))
|
||
|
else:
|
||
|
a1.append(x[1])
|
||
|
else:
|
||
|
a1.append(x[1])
|
||
|
a = Add(*a1)
|
||
|
b = Add(*b1)
|
||
|
res = (a, b, r**2)
|
||
|
else:
|
||
|
b, r = p.as_coeff_Mul()
|
||
|
if is_sqrt(r):
|
||
|
res = (S.Zero, b, r**2)
|
||
|
else:
|
||
|
res = []
|
||
|
return list(res)
|
||
|
|
||
|
|
||
|
class SqrtdenestStopIteration(StopIteration):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def _sqrtdenest0(expr):
|
||
|
"""Returns expr after denesting its arguments."""
|
||
|
|
||
|
if is_sqrt(expr):
|
||
|
n, d = expr.as_numer_denom()
|
||
|
if d is S.One: # n is a square root
|
||
|
if n.base.is_Add:
|
||
|
args = sorted(n.base.args, key=default_sort_key)
|
||
|
if len(args) > 2 and all((x**2).is_Integer for x in args):
|
||
|
try:
|
||
|
return _sqrtdenest_rec(n)
|
||
|
except SqrtdenestStopIteration:
|
||
|
pass
|
||
|
expr = sqrt(_mexpand(Add(*[_sqrtdenest0(x) for x in args])))
|
||
|
return _sqrtdenest1(expr)
|
||
|
else:
|
||
|
n, d = [_sqrtdenest0(i) for i in (n, d)]
|
||
|
return n/d
|
||
|
|
||
|
if isinstance(expr, Add):
|
||
|
cs = []
|
||
|
args = []
|
||
|
for arg in expr.args:
|
||
|
c, a = arg.as_coeff_Mul()
|
||
|
cs.append(c)
|
||
|
args.append(a)
|
||
|
|
||
|
if all(c.is_Rational for c in cs) and all(is_sqrt(arg) for arg in args):
|
||
|
return _sqrt_ratcomb(cs, args)
|
||
|
|
||
|
if isinstance(expr, Expr):
|
||
|
args = expr.args
|
||
|
if args:
|
||
|
return expr.func(*[_sqrtdenest0(a) for a in args])
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def _sqrtdenest_rec(expr):
|
||
|
"""Helper that denests the square root of three or more surds.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
It returns the denested expression; if it cannot be denested it
|
||
|
throws SqrtdenestStopIteration
|
||
|
|
||
|
Algorithm: expr.base is in the extension Q_m = Q(sqrt(r_1),..,sqrt(r_k));
|
||
|
split expr.base = a + b*sqrt(r_k), where `a` and `b` are on
|
||
|
Q_(m-1) = Q(sqrt(r_1),..,sqrt(r_(k-1))); then a**2 - b**2*r_k is
|
||
|
on Q_(m-1); denest sqrt(a**2 - b**2*r_k) and so on.
|
||
|
See [1], section 6.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt
|
||
|
>>> from sympy.simplify.sqrtdenest import _sqrtdenest_rec
|
||
|
>>> _sqrtdenest_rec(sqrt(-72*sqrt(2) + 158*sqrt(5) + 498))
|
||
|
-sqrt(10) + sqrt(2) + 9 + 9*sqrt(5)
|
||
|
>>> w=-6*sqrt(55)-6*sqrt(35)-2*sqrt(22)-2*sqrt(14)+2*sqrt(77)+6*sqrt(10)+65
|
||
|
>>> _sqrtdenest_rec(sqrt(w))
|
||
|
-sqrt(11) - sqrt(7) + sqrt(2) + 3*sqrt(5)
|
||
|
"""
|
||
|
from sympy.simplify.radsimp import radsimp, rad_rationalize, split_surds
|
||
|
if not expr.is_Pow:
|
||
|
return sqrtdenest(expr)
|
||
|
if expr.base < 0:
|
||
|
return sqrt(-1)*_sqrtdenest_rec(sqrt(-expr.base))
|
||
|
g, a, b = split_surds(expr.base)
|
||
|
a = a*sqrt(g)
|
||
|
if a < b:
|
||
|
a, b = b, a
|
||
|
c2 = _mexpand(a**2 - b**2)
|
||
|
if len(c2.args) > 2:
|
||
|
g, a1, b1 = split_surds(c2)
|
||
|
a1 = a1*sqrt(g)
|
||
|
if a1 < b1:
|
||
|
a1, b1 = b1, a1
|
||
|
c2_1 = _mexpand(a1**2 - b1**2)
|
||
|
c_1 = _sqrtdenest_rec(sqrt(c2_1))
|
||
|
d_1 = _sqrtdenest_rec(sqrt(a1 + c_1))
|
||
|
num, den = rad_rationalize(b1, d_1)
|
||
|
c = _mexpand(d_1/sqrt(2) + num/(den*sqrt(2)))
|
||
|
else:
|
||
|
c = _sqrtdenest1(sqrt(c2))
|
||
|
|
||
|
if sqrt_depth(c) > 1:
|
||
|
raise SqrtdenestStopIteration
|
||
|
ac = a + c
|
||
|
if len(ac.args) >= len(expr.args):
|
||
|
if count_ops(ac) >= count_ops(expr.base):
|
||
|
raise SqrtdenestStopIteration
|
||
|
d = sqrtdenest(sqrt(ac))
|
||
|
if sqrt_depth(d) > 1:
|
||
|
raise SqrtdenestStopIteration
|
||
|
num, den = rad_rationalize(b, d)
|
||
|
r = d/sqrt(2) + num/(den*sqrt(2))
|
||
|
r = radsimp(r)
|
||
|
return _mexpand(r)
|
||
|
|
||
|
|
||
|
def _sqrtdenest1(expr, denester=True):
|
||
|
"""Return denested expr after denesting with simpler methods or, that
|
||
|
failing, using the denester."""
|
||
|
|
||
|
from sympy.simplify.simplify import radsimp
|
||
|
|
||
|
if not is_sqrt(expr):
|
||
|
return expr
|
||
|
|
||
|
a = expr.base
|
||
|
if a.is_Atom:
|
||
|
return expr
|
||
|
val = _sqrt_match(a)
|
||
|
if not val:
|
||
|
return expr
|
||
|
|
||
|
a, b, r = val
|
||
|
# try a quick numeric denesting
|
||
|
d2 = _mexpand(a**2 - b**2*r)
|
||
|
if d2.is_Rational:
|
||
|
if d2.is_positive:
|
||
|
z = _sqrt_numeric_denest(a, b, r, d2)
|
||
|
if z is not None:
|
||
|
return z
|
||
|
else:
|
||
|
# fourth root case
|
||
|
# sqrtdenest(sqrt(3 + 2*sqrt(3))) =
|
||
|
# sqrt(2)*3**(1/4)/2 + sqrt(2)*3**(3/4)/2
|
||
|
dr2 = _mexpand(-d2*r)
|
||
|
dr = sqrt(dr2)
|
||
|
if dr.is_Rational:
|
||
|
z = _sqrt_numeric_denest(_mexpand(b*r), a, r, dr2)
|
||
|
if z is not None:
|
||
|
return z/root(r, 4)
|
||
|
|
||
|
else:
|
||
|
z = _sqrt_symbolic_denest(a, b, r)
|
||
|
if z is not None:
|
||
|
return z
|
||
|
|
||
|
if not denester or not is_algebraic(expr):
|
||
|
return expr
|
||
|
|
||
|
res = sqrt_biquadratic_denest(expr, a, b, r, d2)
|
||
|
if res:
|
||
|
return res
|
||
|
|
||
|
# now call to the denester
|
||
|
av0 = [a, b, r, d2]
|
||
|
z = _denester([radsimp(expr**2)], av0, 0, sqrt_depth(expr))[0]
|
||
|
if av0[1] is None:
|
||
|
return expr
|
||
|
if z is not None:
|
||
|
if sqrt_depth(z) == sqrt_depth(expr) and count_ops(z) > count_ops(expr):
|
||
|
return expr
|
||
|
return z
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def _sqrt_symbolic_denest(a, b, r):
|
||
|
"""Given an expression, sqrt(a + b*sqrt(b)), return the denested
|
||
|
expression or None.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If r = ra + rb*sqrt(rr), try replacing sqrt(rr) in ``a`` with
|
||
|
(y**2 - ra)/rb, and if the result is a quadratic, ca*y**2 + cb*y + cc, and
|
||
|
(cb + b)**2 - 4*ca*cc is 0, then sqrt(a + b*sqrt(r)) can be rewritten as
|
||
|
sqrt(ca*(sqrt(r) + (cb + b)/(2*ca))**2).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.sqrtdenest import _sqrt_symbolic_denest, sqrtdenest
|
||
|
>>> from sympy import sqrt, Symbol
|
||
|
>>> from sympy.abc import x
|
||
|
|
||
|
>>> a, b, r = 16 - 2*sqrt(29), 2, -10*sqrt(29) + 55
|
||
|
>>> _sqrt_symbolic_denest(a, b, r)
|
||
|
sqrt(11 - 2*sqrt(29)) + sqrt(5)
|
||
|
|
||
|
If the expression is numeric, it will be simplified:
|
||
|
|
||
|
>>> w = sqrt(sqrt(sqrt(3) + 1) + 1) + 1 + sqrt(2)
|
||
|
>>> sqrtdenest(sqrt((w**2).expand()))
|
||
|
1 + sqrt(2) + sqrt(1 + sqrt(1 + sqrt(3)))
|
||
|
|
||
|
Otherwise, it will only be simplified if assumptions allow:
|
||
|
|
||
|
>>> w = w.subs(sqrt(3), sqrt(x + 3))
|
||
|
>>> sqrtdenest(sqrt((w**2).expand()))
|
||
|
sqrt((sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2))**2)
|
||
|
|
||
|
Notice that the argument of the sqrt is a square. If x is made positive
|
||
|
then the sqrt of the square is resolved:
|
||
|
|
||
|
>>> _.subs(x, Symbol('x', positive=True))
|
||
|
sqrt(sqrt(sqrt(x + 3) + 1) + 1) + 1 + sqrt(2)
|
||
|
"""
|
||
|
|
||
|
a, b, r = map(sympify, (a, b, r))
|
||
|
rval = _sqrt_match(r)
|
||
|
if not rval:
|
||
|
return None
|
||
|
ra, rb, rr = rval
|
||
|
if rb:
|
||
|
y = Dummy('y', positive=True)
|
||
|
try:
|
||
|
newa = Poly(a.subs(sqrt(rr), (y**2 - ra)/rb), y)
|
||
|
except PolynomialError:
|
||
|
return None
|
||
|
if newa.degree() == 2:
|
||
|
ca, cb, cc = newa.all_coeffs()
|
||
|
cb += b
|
||
|
if _mexpand(cb**2 - 4*ca*cc).equals(0):
|
||
|
z = sqrt(ca*(sqrt(r) + cb/(2*ca))**2)
|
||
|
if z.is_number:
|
||
|
z = _mexpand(Mul._from_args(z.as_content_primitive()))
|
||
|
return z
|
||
|
|
||
|
|
||
|
def _sqrt_numeric_denest(a, b, r, d2):
|
||
|
r"""Helper that denest
|
||
|
$\sqrt{a + b \sqrt{r}}, d^2 = a^2 - b^2 r > 0$
|
||
|
|
||
|
If it cannot be denested, it returns ``None``.
|
||
|
"""
|
||
|
d = sqrt(d2)
|
||
|
s = a + d
|
||
|
# sqrt_depth(res) <= sqrt_depth(s) + 1
|
||
|
# sqrt_depth(expr) = sqrt_depth(r) + 2
|
||
|
# there is denesting if sqrt_depth(s) + 1 < sqrt_depth(r) + 2
|
||
|
# if s**2 is Number there is a fourth root
|
||
|
if sqrt_depth(s) < sqrt_depth(r) + 1 or (s**2).is_Rational:
|
||
|
s1, s2 = sign(s), sign(b)
|
||
|
if s1 == s2 == -1:
|
||
|
s1 = s2 = 1
|
||
|
res = (s1 * sqrt(a + d) + s2 * sqrt(a - d)) * sqrt(2) / 2
|
||
|
return res.expand()
|
||
|
|
||
|
|
||
|
def sqrt_biquadratic_denest(expr, a, b, r, d2):
|
||
|
"""denest expr = sqrt(a + b*sqrt(r))
|
||
|
where a, b, r are linear combinations of square roots of
|
||
|
positive rationals on the rationals (SQRR) and r > 0, b != 0,
|
||
|
d2 = a**2 - b**2*r > 0
|
||
|
|
||
|
If it cannot denest it returns None.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Search for a solution A of type SQRR of the biquadratic equation
|
||
|
4*A**4 - 4*a*A**2 + b**2*r = 0 (1)
|
||
|
sqd = sqrt(a**2 - b**2*r)
|
||
|
Choosing the sqrt to be positive, the possible solutions are
|
||
|
A = sqrt(a/2 +/- sqd/2)
|
||
|
Since a, b, r are SQRR, then a**2 - b**2*r is a SQRR,
|
||
|
so if sqd can be denested, it is done by
|
||
|
_sqrtdenest_rec, and the result is a SQRR.
|
||
|
Similarly for A.
|
||
|
Examples of solutions (in both cases a and sqd are positive):
|
||
|
|
||
|
Example of expr with solution sqrt(a/2 + sqd/2) but not
|
||
|
solution sqrt(a/2 - sqd/2):
|
||
|
expr = sqrt(-sqrt(15) - sqrt(2)*sqrt(-sqrt(5) + 5) - sqrt(3) + 8)
|
||
|
a = -sqrt(15) - sqrt(3) + 8; sqd = -2*sqrt(5) - 2 + 4*sqrt(3)
|
||
|
|
||
|
Example of expr with solution sqrt(a/2 - sqd/2) but not
|
||
|
solution sqrt(a/2 + sqd/2):
|
||
|
w = 2 + r2 + r3 + (1 + r3)*sqrt(2 + r2 + 5*r3)
|
||
|
expr = sqrt((w**2).expand())
|
||
|
a = 4*sqrt(6) + 8*sqrt(2) + 47 + 28*sqrt(3)
|
||
|
sqd = 29 + 20*sqrt(3)
|
||
|
|
||
|
Define B = b/2*A; eq.(1) implies a = A**2 + B**2*r; then
|
||
|
expr**2 = a + b*sqrt(r) = (A + B*sqrt(r))**2
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt
|
||
|
>>> from sympy.simplify.sqrtdenest import _sqrt_match, sqrt_biquadratic_denest
|
||
|
>>> z = sqrt((2*sqrt(2) + 4)*sqrt(2 + sqrt(2)) + 5*sqrt(2) + 8)
|
||
|
>>> a, b, r = _sqrt_match(z**2)
|
||
|
>>> d2 = a**2 - b**2*r
|
||
|
>>> sqrt_biquadratic_denest(z, a, b, r, d2)
|
||
|
sqrt(2) + sqrt(sqrt(2) + 2) + 2
|
||
|
"""
|
||
|
from sympy.simplify.radsimp import radsimp, rad_rationalize
|
||
|
if r <= 0 or d2 < 0 or not b or sqrt_depth(expr.base) < 2:
|
||
|
return None
|
||
|
for x in (a, b, r):
|
||
|
for y in x.args:
|
||
|
y2 = y**2
|
||
|
if not y2.is_Integer or not y2.is_positive:
|
||
|
return None
|
||
|
sqd = _mexpand(sqrtdenest(sqrt(radsimp(d2))))
|
||
|
if sqrt_depth(sqd) > 1:
|
||
|
return None
|
||
|
x1, x2 = [a/2 + sqd/2, a/2 - sqd/2]
|
||
|
# look for a solution A with depth 1
|
||
|
for x in (x1, x2):
|
||
|
A = sqrtdenest(sqrt(x))
|
||
|
if sqrt_depth(A) > 1:
|
||
|
continue
|
||
|
Bn, Bd = rad_rationalize(b, _mexpand(2*A))
|
||
|
B = Bn/Bd
|
||
|
z = A + B*sqrt(r)
|
||
|
if z < 0:
|
||
|
z = -z
|
||
|
return _mexpand(z)
|
||
|
return None
|
||
|
|
||
|
|
||
|
def _denester(nested, av0, h, max_depth_level):
|
||
|
"""Denests a list of expressions that contain nested square roots.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Algorithm based on <http://www.almaden.ibm.com/cs/people/fagin/symb85.pdf>.
|
||
|
|
||
|
It is assumed that all of the elements of 'nested' share the same
|
||
|
bottom-level radicand. (This is stated in the paper, on page 177, in
|
||
|
the paragraph immediately preceding the algorithm.)
|
||
|
|
||
|
When evaluating all of the arguments in parallel, the bottom-level
|
||
|
radicand only needs to be denested once. This means that calling
|
||
|
_denester with x arguments results in a recursive invocation with x+1
|
||
|
arguments; hence _denester has polynomial complexity.
|
||
|
|
||
|
However, if the arguments were evaluated separately, each call would
|
||
|
result in two recursive invocations, and the algorithm would have
|
||
|
exponential complexity.
|
||
|
|
||
|
This is discussed in the paper in the middle paragraph of page 179.
|
||
|
"""
|
||
|
from sympy.simplify.simplify import radsimp
|
||
|
if h > max_depth_level:
|
||
|
return None, None
|
||
|
if av0[1] is None:
|
||
|
return None, None
|
||
|
if (av0[0] is None and
|
||
|
all(n.is_Number for n in nested)): # no arguments are nested
|
||
|
for f in _subsets(len(nested)): # test subset 'f' of nested
|
||
|
p = _mexpand(Mul(*[nested[i] for i in range(len(f)) if f[i]]))
|
||
|
if f.count(1) > 1 and f[-1]:
|
||
|
p = -p
|
||
|
sqp = sqrt(p)
|
||
|
if sqp.is_Rational:
|
||
|
return sqp, f # got a perfect square so return its square root.
|
||
|
# Otherwise, return the radicand from the previous invocation.
|
||
|
return sqrt(nested[-1]), [0]*len(nested)
|
||
|
else:
|
||
|
R = None
|
||
|
if av0[0] is not None:
|
||
|
values = [av0[:2]]
|
||
|
R = av0[2]
|
||
|
nested2 = [av0[3], R]
|
||
|
av0[0] = None
|
||
|
else:
|
||
|
values = list(filter(None, [_sqrt_match(expr) for expr in nested]))
|
||
|
for v in values:
|
||
|
if v[2]: # Since if b=0, r is not defined
|
||
|
if R is not None:
|
||
|
if R != v[2]:
|
||
|
av0[1] = None
|
||
|
return None, None
|
||
|
else:
|
||
|
R = v[2]
|
||
|
if R is None:
|
||
|
# return the radicand from the previous invocation
|
||
|
return sqrt(nested[-1]), [0]*len(nested)
|
||
|
nested2 = [_mexpand(v[0]**2) -
|
||
|
_mexpand(R*v[1]**2) for v in values] + [R]
|
||
|
d, f = _denester(nested2, av0, h + 1, max_depth_level)
|
||
|
if not f:
|
||
|
return None, None
|
||
|
if not any(f[i] for i in range(len(nested))):
|
||
|
v = values[-1]
|
||
|
return sqrt(v[0] + _mexpand(v[1]*d)), f
|
||
|
else:
|
||
|
p = Mul(*[nested[i] for i in range(len(nested)) if f[i]])
|
||
|
v = _sqrt_match(p)
|
||
|
if 1 in f and f.index(1) < len(nested) - 1 and f[len(nested) - 1]:
|
||
|
v[0] = -v[0]
|
||
|
v[1] = -v[1]
|
||
|
if not f[len(nested)]: # Solution denests with square roots
|
||
|
vad = _mexpand(v[0] + d)
|
||
|
if vad <= 0:
|
||
|
# return the radicand from the previous invocation.
|
||
|
return sqrt(nested[-1]), [0]*len(nested)
|
||
|
if not(sqrt_depth(vad) <= sqrt_depth(R) + 1 or
|
||
|
(vad**2).is_Number):
|
||
|
av0[1] = None
|
||
|
return None, None
|
||
|
|
||
|
sqvad = _sqrtdenest1(sqrt(vad), denester=False)
|
||
|
if not (sqrt_depth(sqvad) <= sqrt_depth(R) + 1):
|
||
|
av0[1] = None
|
||
|
return None, None
|
||
|
sqvad1 = radsimp(1/sqvad)
|
||
|
res = _mexpand(sqvad/sqrt(2) + (v[1]*sqrt(R)*sqvad1/sqrt(2)))
|
||
|
return res, f
|
||
|
|
||
|
# sign(v[1])*sqrt(_mexpand(v[1]**2*R*vad1/2))), f
|
||
|
else: # Solution requires a fourth root
|
||
|
s2 = _mexpand(v[1]*R) + d
|
||
|
if s2 <= 0:
|
||
|
return sqrt(nested[-1]), [0]*len(nested)
|
||
|
FR, s = root(_mexpand(R), 4), sqrt(s2)
|
||
|
return _mexpand(s/(sqrt(2)*FR) + v[0]*FR/(sqrt(2)*s)), f
|
||
|
|
||
|
|
||
|
def _sqrt_ratcomb(cs, args):
|
||
|
"""Denest rational combinations of radicals.
|
||
|
|
||
|
Based on section 5 of [1].
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt
|
||
|
>>> from sympy.simplify.sqrtdenest import sqrtdenest
|
||
|
>>> z = sqrt(1+sqrt(3)) + sqrt(3+3*sqrt(3)) - sqrt(10+6*sqrt(3))
|
||
|
>>> sqrtdenest(z)
|
||
|
0
|
||
|
"""
|
||
|
from sympy.simplify.radsimp import radsimp
|
||
|
|
||
|
# check if there exists a pair of sqrt that can be denested
|
||
|
def find(a):
|
||
|
n = len(a)
|
||
|
for i in range(n - 1):
|
||
|
for j in range(i + 1, n):
|
||
|
s1 = a[i].base
|
||
|
s2 = a[j].base
|
||
|
p = _mexpand(s1 * s2)
|
||
|
s = sqrtdenest(sqrt(p))
|
||
|
if s != sqrt(p):
|
||
|
return s, i, j
|
||
|
|
||
|
indices = find(args)
|
||
|
if indices is None:
|
||
|
return Add(*[c * arg for c, arg in zip(cs, args)])
|
||
|
|
||
|
s, i1, i2 = indices
|
||
|
|
||
|
c2 = cs.pop(i2)
|
||
|
args.pop(i2)
|
||
|
a1 = args[i1]
|
||
|
|
||
|
# replace a2 by s/a1
|
||
|
cs[i1] += radsimp(c2 * s / a1.base)
|
||
|
|
||
|
return _sqrt_ratcomb(cs, args)
|