127 lines
3.7 KiB
Python
127 lines
3.7 KiB
Python
|
from sympy.core import (Function, Pow, sympify, Expr)
|
||
|
from sympy.core.relational import Relational
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.polys import Poly, decompose
|
||
|
from sympy.utilities.misc import func_name
|
||
|
from sympy.functions.elementary.miscellaneous import Min, Max
|
||
|
|
||
|
|
||
|
def decompogen(f, symbol):
|
||
|
"""
|
||
|
Computes General functional decomposition of ``f``.
|
||
|
Given an expression ``f``, returns a list ``[f_1, f_2, ..., f_n]``,
|
||
|
where::
|
||
|
f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n))
|
||
|
|
||
|
Note: This is a General decomposition function. It also decomposes
|
||
|
Polynomials. For only Polynomial decomposition see ``decompose`` in polys.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy import decompogen, sqrt, sin, cos
|
||
|
>>> decompogen(sin(cos(x)), x)
|
||
|
[sin(x), cos(x)]
|
||
|
>>> decompogen(sin(x)**2 + sin(x) + 1, x)
|
||
|
[x**2 + x + 1, sin(x)]
|
||
|
>>> decompogen(sqrt(6*x**2 - 5), x)
|
||
|
[sqrt(x), 6*x**2 - 5]
|
||
|
>>> decompogen(sin(sqrt(cos(x**2 + 1))), x)
|
||
|
[sin(x), sqrt(x), cos(x), x**2 + 1]
|
||
|
>>> decompogen(x**4 + 2*x**3 - x - 1, x)
|
||
|
[x**2 - x - 1, x**2 + x]
|
||
|
|
||
|
"""
|
||
|
f = sympify(f)
|
||
|
if not isinstance(f, Expr) or isinstance(f, Relational):
|
||
|
raise TypeError('expecting Expr but got: `%s`' % func_name(f))
|
||
|
if symbol not in f.free_symbols:
|
||
|
return [f]
|
||
|
|
||
|
|
||
|
# ===== Simple Functions ===== #
|
||
|
if isinstance(f, (Function, Pow)):
|
||
|
if f.is_Pow and f.base == S.Exp1:
|
||
|
arg = f.exp
|
||
|
else:
|
||
|
arg = f.args[0]
|
||
|
if arg == symbol:
|
||
|
return [f]
|
||
|
return [f.subs(arg, symbol)] + decompogen(arg, symbol)
|
||
|
|
||
|
# ===== Min/Max Functions ===== #
|
||
|
if isinstance(f, (Min, Max)):
|
||
|
args = list(f.args)
|
||
|
d0 = None
|
||
|
for i, a in enumerate(args):
|
||
|
if not a.has_free(symbol):
|
||
|
continue
|
||
|
d = decompogen(a, symbol)
|
||
|
if len(d) == 1:
|
||
|
d = [symbol] + d
|
||
|
if d0 is None:
|
||
|
d0 = d[1:]
|
||
|
elif d[1:] != d0:
|
||
|
# decomposition is not the same for each arg:
|
||
|
# mark as having no decomposition
|
||
|
d = [symbol]
|
||
|
break
|
||
|
args[i] = d[0]
|
||
|
if d[0] == symbol:
|
||
|
return [f]
|
||
|
return [f.func(*args)] + d0
|
||
|
|
||
|
# ===== Convert to Polynomial ===== #
|
||
|
fp = Poly(f)
|
||
|
gens = list(filter(lambda x: symbol in x.free_symbols, fp.gens))
|
||
|
|
||
|
if len(gens) == 1 and gens[0] != symbol:
|
||
|
f1 = f.subs(gens[0], symbol)
|
||
|
f2 = gens[0]
|
||
|
return [f1] + decompogen(f2, symbol)
|
||
|
|
||
|
# ===== Polynomial decompose() ====== #
|
||
|
try:
|
||
|
return decompose(f)
|
||
|
except ValueError:
|
||
|
return [f]
|
||
|
|
||
|
|
||
|
def compogen(g_s, symbol):
|
||
|
"""
|
||
|
Returns the composition of functions.
|
||
|
Given a list of functions ``g_s``, returns their composition ``f``,
|
||
|
where:
|
||
|
f = g_1 o g_2 o .. o g_n
|
||
|
|
||
|
Note: This is a General composition function. It also composes Polynomials.
|
||
|
For only Polynomial composition see ``compose`` in polys.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.solvers.decompogen import compogen
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy import sqrt, sin, cos
|
||
|
>>> compogen([sin(x), cos(x)], x)
|
||
|
sin(cos(x))
|
||
|
>>> compogen([x**2 + x + 1, sin(x)], x)
|
||
|
sin(x)**2 + sin(x) + 1
|
||
|
>>> compogen([sqrt(x), 6*x**2 - 5], x)
|
||
|
sqrt(6*x**2 - 5)
|
||
|
>>> compogen([sin(x), sqrt(x), cos(x), x**2 + 1], x)
|
||
|
sin(sqrt(cos(x**2 + 1)))
|
||
|
>>> compogen([x**2 - x - 1, x**2 + x], x)
|
||
|
-x**2 - x + (x**2 + x)**2 - 1
|
||
|
"""
|
||
|
if len(g_s) == 1:
|
||
|
return g_s[0]
|
||
|
|
||
|
foo = g_s[0].subs(symbol, g_s[1])
|
||
|
|
||
|
if len(g_s) == 2:
|
||
|
return foo
|
||
|
|
||
|
return compogen([foo] + g_s[2:], symbol)
|