682 lines
29 KiB
Python
682 lines
29 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import inspect
|
||
|
import warnings
|
||
|
from collections import abc, defaultdict
|
||
|
from enum import Enum
|
||
|
from typing import Any, cast, Dict, Iterable, List, Optional, overload, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
__all__ = ["OptState", "GradScaler"]
|
||
|
|
||
|
|
||
|
class _MultiDeviceReplicator:
|
||
|
"""Lazily serves copies of a tensor to requested devices.
|
||
|
|
||
|
Copies are cached per-device.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, master_tensor: torch.Tensor) -> None:
|
||
|
self.master = master_tensor
|
||
|
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {}
|
||
|
|
||
|
def get(self, device: torch.device) -> torch.Tensor:
|
||
|
retval = self._per_device_tensors.get(device, None)
|
||
|
if retval is None:
|
||
|
retval = self.master.to(device=device, non_blocking=True, copy=True)
|
||
|
self._per_device_tensors[device] = retval
|
||
|
return retval
|
||
|
|
||
|
|
||
|
# Defines default_factory for GradScaler's _per_optimizer_states defaultdict,
|
||
|
# as well as associated "enum" values. Prefers defining these at top level because
|
||
|
# - Lambdas can't be pickled, so we don't want to supply a lambda as the factory.
|
||
|
# - Defining READY, UNSCALED, STEPPED and _refresh_per_optimizer_state within GradScaler
|
||
|
# causes a circular reference, which we'd rather avoid.
|
||
|
class OptState(Enum):
|
||
|
READY = 0
|
||
|
UNSCALED = 1
|
||
|
STEPPED = 2
|
||
|
|
||
|
|
||
|
def _refresh_per_optimizer_state() -> Dict[str, Any]:
|
||
|
return {"stage": OptState.READY, "found_inf_per_device": {}}
|
||
|
|
||
|
|
||
|
class GradScaler:
|
||
|
"""An instance ``scaler`` of :class:`GradScaler`.
|
||
|
|
||
|
Helps perform the steps of gradient scaling
|
||
|
conveniently.
|
||
|
|
||
|
* ``scaler.scale(loss)`` multiplies a given loss by ``scaler``'s current scale factor.
|
||
|
* ``scaler.step(optimizer)`` safely unscales gradients and calls ``optimizer.step()``.
|
||
|
* ``scaler.update()`` updates ``scaler``'s scale factor.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# Creates a GradScaler once at the beginning of training.
|
||
|
scaler = GradScaler()
|
||
|
|
||
|
for epoch in epochs:
|
||
|
for input, target in data:
|
||
|
optimizer.zero_grad()
|
||
|
output = model(input)
|
||
|
loss = loss_fn(output, target)
|
||
|
|
||
|
# Scales loss. Calls backward() on scaled loss to create scaled gradients.
|
||
|
scaler.scale(loss).backward()
|
||
|
|
||
|
# scaler.step() first unscales gradients of the optimizer's params.
|
||
|
# If gradients don't contain infs/NaNs, optimizer.step() is then called,
|
||
|
# otherwise, optimizer.step() is skipped.
|
||
|
scaler.step(optimizer)
|
||
|
|
||
|
# Updates the scale for next iteration.
|
||
|
scaler.update()
|
||
|
|
||
|
See the :ref:`Automatic Mixed Precision examples<amp-examples>` for usage
|
||
|
(along with autocasting) in more complex cases like gradient clipping, gradient accumulation, gradient penalty,
|
||
|
and multiple losses/optimizers.
|
||
|
|
||
|
``scaler`` dynamically estimates the scale factor each iteration. To minimize gradient underflow,
|
||
|
a large scale factor should be used. However, ``float16`` values can "overflow" (become inf or NaN) if
|
||
|
the scale factor is too large. Therefore, the optimal scale factor is the largest factor that can be used
|
||
|
without incurring inf or NaN gradient values.
|
||
|
``scaler`` approximates the optimal scale factor over time by checking the gradients for infs and NaNs during every
|
||
|
``scaler.step(optimizer)`` (or optional separate ``scaler.unscale_(optimizer)``, see :meth:`unscale_`).
|
||
|
|
||
|
* If infs/NaNs are found, ``scaler.step(optimizer)`` skips the underlying ``optimizer.step()`` (so the params
|
||
|
themselves remain uncorrupted) and ``update()`` multiplies the scale by ``backoff_factor``.
|
||
|
|
||
|
* If no infs/NaNs are found, ``scaler.step(optimizer)`` runs the underlying ``optimizer.step()`` as usual.
|
||
|
If ``growth_interval`` unskipped iterations occur consecutively, ``update()`` multiplies the scale by
|
||
|
``growth_factor``.
|
||
|
|
||
|
The scale factor often causes infs/NaNs to appear in gradients for the first few iterations as its
|
||
|
value calibrates. ``scaler.step`` will skip the underlying ``optimizer.step()`` for these
|
||
|
iterations. After that, step skipping should occur rarely (once every few hundred or thousand iterations).
|
||
|
|
||
|
Args:
|
||
|
device (str, optional, default="cuda"): Device type to use. Possible values are: 'cuda' and 'cpu'.
|
||
|
The type is the same as the `type` attribute of a :class:`torch.device`.
|
||
|
Thus, you may obtain the device type of a tensor using `Tensor.device.type`.
|
||
|
init_scale (float, optional, default=2.**16): Initial scale factor.
|
||
|
growth_factor (float, optional, default=2.0): Factor by which the scale is multiplied during
|
||
|
:meth:`update` if no inf/NaN gradients occur for ``growth_interval`` consecutive iterations.
|
||
|
backoff_factor (float, optional, default=0.5): Factor by which the scale is multiplied during
|
||
|
:meth:`update` if inf/NaN gradients occur in an iteration.
|
||
|
growth_interval (int, optional, default=2000): Number of consecutive iterations without inf/NaN gradients
|
||
|
that must occur for the scale to be multiplied by ``growth_factor``.
|
||
|
enabled (bool, optional): If ``False``, disables gradient scaling. :meth:`step` simply
|
||
|
invokes the underlying ``optimizer.step()``, and other methods become no-ops.
|
||
|
Default: ``True``
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
device: str = "cuda",
|
||
|
init_scale: float = 2.0**16,
|
||
|
growth_factor: float = 2.0,
|
||
|
backoff_factor: float = 0.5,
|
||
|
growth_interval: int = 2000,
|
||
|
enabled: bool = True,
|
||
|
) -> None:
|
||
|
self._device = device
|
||
|
self._enabled = enabled
|
||
|
if self._device == "cuda":
|
||
|
if enabled and torch.cuda.amp.common.amp_definitely_not_available():
|
||
|
warnings.warn(
|
||
|
"torch.cuda.amp.GradScaler is enabled, but CUDA is not available. Disabling."
|
||
|
)
|
||
|
self._enabled = False
|
||
|
|
||
|
if self._enabled:
|
||
|
assert growth_factor > 1.0, "The growth factor must be > 1.0."
|
||
|
assert backoff_factor < 1.0, "The backoff factor must be < 1.0."
|
||
|
|
||
|
self._init_scale = init_scale
|
||
|
# self._scale will be lazily initialized during the first call to scale()
|
||
|
self._scale: Optional[torch.Tensor] = None
|
||
|
self._growth_factor = growth_factor
|
||
|
self._backoff_factor = backoff_factor
|
||
|
self._growth_interval = growth_interval
|
||
|
self._init_growth_tracker = 0
|
||
|
# self._growth_tracker will be lazily initialized during the first call to scale()
|
||
|
self._growth_tracker: Optional[torch.Tensor] = None
|
||
|
self._per_optimizer_states: Dict[int, Dict[str, Any]] = defaultdict(
|
||
|
_refresh_per_optimizer_state
|
||
|
)
|
||
|
|
||
|
def _check_scale_growth_tracker(
|
||
|
self, funcname: str
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||
|
fix = "This may indicate your script did not use scaler.scale(loss or outputs) earlier in the iteration."
|
||
|
assert self._scale is not None, (
|
||
|
f"Attempted {funcname} but _scale is None. " + fix
|
||
|
)
|
||
|
assert self._growth_tracker is not None, (
|
||
|
f"Attempted {funcname} but _growth_tracker is None. " + fix
|
||
|
)
|
||
|
return (self._scale, self._growth_tracker)
|
||
|
|
||
|
def _lazy_init_scale_growth_tracker(self, dev: torch.device) -> None:
|
||
|
assert self._growth_tracker is None, "_growth_tracker initialized before _scale"
|
||
|
self._scale = torch.full((), self._init_scale, dtype=torch.float32, device=dev)
|
||
|
self._growth_tracker = torch.full(
|
||
|
(), self._init_growth_tracker, dtype=torch.int32, device=dev
|
||
|
)
|
||
|
|
||
|
@overload
|
||
|
def scale(self, outputs: torch.Tensor) -> torch.Tensor:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def scale(self, outputs: List[torch.Tensor]) -> List[torch.Tensor]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def scale(self, outputs: Tuple[torch.Tensor, ...]) -> Tuple[torch.Tensor, ...]:
|
||
|
...
|
||
|
|
||
|
@overload
|
||
|
def scale(self, outputs: Iterable[torch.Tensor]) -> Iterable[torch.Tensor]:
|
||
|
...
|
||
|
|
||
|
def scale(
|
||
|
self,
|
||
|
outputs: Union[torch.Tensor, Iterable[torch.Tensor]],
|
||
|
) -> Union[torch.Tensor, Iterable[torch.Tensor]]:
|
||
|
"""
|
||
|
Multiplies ('scales') a tensor or list of tensors by the scale factor.
|
||
|
|
||
|
Returns scaled outputs. If this instance of :class:`GradScaler` is not enabled, outputs are returned
|
||
|
unmodified.
|
||
|
|
||
|
Args:
|
||
|
outputs (Tensor or iterable of Tensors): Outputs to scale.
|
||
|
"""
|
||
|
if not self._enabled:
|
||
|
return outputs
|
||
|
|
||
|
# Short-circuit for the common case.
|
||
|
if isinstance(outputs, torch.Tensor):
|
||
|
if self._scale is None:
|
||
|
self._lazy_init_scale_growth_tracker(outputs.device)
|
||
|
assert self._scale is not None
|
||
|
return outputs * self._scale.to(device=outputs.device, non_blocking=True)
|
||
|
|
||
|
# Invoke the more complex machinery only if we're treating multiple outputs.
|
||
|
stash: List[
|
||
|
_MultiDeviceReplicator
|
||
|
] = [] # holds a reference that can be overwritten by apply_scale
|
||
|
|
||
|
def apply_scale(val: Union[torch.Tensor, Iterable[torch.Tensor]]):
|
||
|
if isinstance(val, torch.Tensor):
|
||
|
if len(stash) == 0:
|
||
|
if self._scale is None:
|
||
|
self._lazy_init_scale_growth_tracker(val.device)
|
||
|
assert self._scale is not None
|
||
|
stash.append(_MultiDeviceReplicator(self._scale))
|
||
|
return val * stash[0].get(val.device)
|
||
|
if isinstance(val, abc.Iterable):
|
||
|
iterable = map(apply_scale, val)
|
||
|
if isinstance(val, (list, tuple)):
|
||
|
return type(val)(iterable)
|
||
|
return iterable
|
||
|
raise ValueError("outputs must be a Tensor or an iterable of Tensors")
|
||
|
|
||
|
return apply_scale(outputs)
|
||
|
|
||
|
def _unscale_grads_(
|
||
|
self,
|
||
|
optimizer: torch.optim.Optimizer,
|
||
|
inv_scale: torch.Tensor,
|
||
|
found_inf: torch.Tensor,
|
||
|
allow_fp16: bool,
|
||
|
) -> Dict[torch.device, torch.Tensor]:
|
||
|
per_device_inv_scale = _MultiDeviceReplicator(inv_scale)
|
||
|
per_device_found_inf = _MultiDeviceReplicator(found_inf)
|
||
|
|
||
|
# To set up _amp_foreach_non_finite_check_and_unscale_, split grads by device and dtype.
|
||
|
# There could be hundreds of grads, so we'd like to iterate through them just once.
|
||
|
# However, we don't know their devices or dtypes in advance.
|
||
|
|
||
|
# https://stackoverflow.com/questions/5029934/defaultdict-of-defaultdict
|
||
|
# Google says mypy struggles with defaultdicts type annotations.
|
||
|
per_device_and_dtype_grads: Dict[
|
||
|
torch.device, Dict[torch.dtype, List[torch.Tensor]]
|
||
|
] = defaultdict(lambda: defaultdict(list))
|
||
|
with torch.no_grad():
|
||
|
for group in optimizer.param_groups:
|
||
|
for param in group["params"]:
|
||
|
assert isinstance(param, torch.Tensor)
|
||
|
if param.grad is None:
|
||
|
continue
|
||
|
if (not allow_fp16) and param.grad.dtype == torch.float16:
|
||
|
raise ValueError("Attempting to unscale FP16 gradients.")
|
||
|
if param.grad.is_sparse:
|
||
|
# is_coalesced() == False means the sparse grad has values with duplicate indices.
|
||
|
# coalesce() deduplicates indices and adds all values that have the same index.
|
||
|
# For scaled fp16 values, there's a good chance coalescing will cause overflow,
|
||
|
# so we should check the coalesced _values().
|
||
|
if param.grad.dtype is torch.float16:
|
||
|
param.grad = param.grad.coalesce()
|
||
|
to_unscale = param.grad._values()
|
||
|
else:
|
||
|
to_unscale = param.grad
|
||
|
|
||
|
# TODO: is there a way to split by device and dtype without appending in the inner loop?
|
||
|
per_device_and_dtype_grads[to_unscale.device][
|
||
|
to_unscale.dtype
|
||
|
].append(to_unscale)
|
||
|
|
||
|
for device, per_dtype_grads in per_device_and_dtype_grads.items():
|
||
|
for grads in per_dtype_grads.values():
|
||
|
torch._amp_foreach_non_finite_check_and_unscale_(
|
||
|
grads,
|
||
|
per_device_found_inf.get(device),
|
||
|
per_device_inv_scale.get(device),
|
||
|
)
|
||
|
|
||
|
return per_device_found_inf._per_device_tensors
|
||
|
|
||
|
def unscale_(self, optimizer: torch.optim.Optimizer) -> None:
|
||
|
"""
|
||
|
Divides ("unscales") the optimizer's gradient tensors by the scale factor.
|
||
|
|
||
|
:meth:`unscale_` is optional, serving cases where you need to
|
||
|
:ref:`modify or inspect gradients<working-with-unscaled-gradients>`
|
||
|
between the backward pass(es) and :meth:`step`.
|
||
|
If :meth:`unscale_` is not called explicitly, gradients will be unscaled automatically during :meth:`step`.
|
||
|
|
||
|
Simple example, using :meth:`unscale_` to enable clipping of unscaled gradients::
|
||
|
|
||
|
...
|
||
|
scaler.scale(loss).backward()
|
||
|
scaler.unscale_(optimizer)
|
||
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
|
||
|
scaler.step(optimizer)
|
||
|
scaler.update()
|
||
|
|
||
|
Args:
|
||
|
optimizer (torch.optim.Optimizer): Optimizer that owns the gradients to be unscaled.
|
||
|
|
||
|
.. note::
|
||
|
:meth:`unscale_` does not incur a CPU-GPU sync.
|
||
|
|
||
|
.. warning::
|
||
|
:meth:`unscale_` should only be called once per optimizer per :meth:`step` call,
|
||
|
and only after all gradients for that optimizer's assigned parameters have been accumulated.
|
||
|
Calling :meth:`unscale_` twice for a given optimizer between each :meth:`step` triggers a RuntimeError.
|
||
|
|
||
|
.. warning::
|
||
|
:meth:`unscale_` may unscale sparse gradients out of place, replacing the ``.grad`` attribute.
|
||
|
"""
|
||
|
if not self._enabled:
|
||
|
return
|
||
|
|
||
|
self._check_scale_growth_tracker("unscale_")
|
||
|
|
||
|
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
||
|
|
||
|
if optimizer_state["stage"] is OptState.UNSCALED:
|
||
|
raise RuntimeError(
|
||
|
"unscale_() has already been called on this optimizer since the last update()."
|
||
|
)
|
||
|
elif optimizer_state["stage"] is OptState.STEPPED:
|
||
|
raise RuntimeError("unscale_() is being called after step().")
|
||
|
|
||
|
# FP32 division can be imprecise for certain compile options, so we carry out the reciprocal in FP64.
|
||
|
assert self._scale is not None
|
||
|
inv_scale = self._scale.double().reciprocal().float()
|
||
|
found_inf = torch.full((), 0.0, dtype=torch.float32, device=self._scale.device)
|
||
|
|
||
|
optimizer_state["found_inf_per_device"] = self._unscale_grads_(
|
||
|
optimizer, inv_scale, found_inf, False
|
||
|
)
|
||
|
optimizer_state["stage"] = OptState.UNSCALED
|
||
|
|
||
|
def _maybe_opt_step(
|
||
|
self,
|
||
|
optimizer: torch.optim.Optimizer,
|
||
|
optimizer_state: Dict[str, Any],
|
||
|
*args: Any,
|
||
|
**kwargs: Any,
|
||
|
) -> Optional[float]:
|
||
|
retval: Optional[float] = None
|
||
|
if not sum(v.item() for v in optimizer_state["found_inf_per_device"].values()):
|
||
|
retval = optimizer.step(*args, **kwargs)
|
||
|
return retval
|
||
|
|
||
|
def step(
|
||
|
self, optimizer: torch.optim.Optimizer, *args: Any, **kwargs: Any
|
||
|
) -> Optional[float]:
|
||
|
"""Invoke ``unscale_(optimizer)`` followed by parameter update, if gradients are not infs/NaN.
|
||
|
|
||
|
:meth:`step` carries out the following two operations:
|
||
|
|
||
|
1. Internally invokes ``unscale_(optimizer)`` (unless :meth:`unscale_` was explicitly called for ``optimizer``
|
||
|
earlier in the iteration). As part of the :meth:`unscale_`, gradients are checked for infs/NaNs.
|
||
|
2. If no inf/NaN gradients are found, invokes ``optimizer.step()`` using the unscaled
|
||
|
gradients. Otherwise, ``optimizer.step()`` is skipped to avoid corrupting the params.
|
||
|
|
||
|
``*args`` and ``**kwargs`` are forwarded to ``optimizer.step()``.
|
||
|
|
||
|
Returns the return value of ``optimizer.step(*args, **kwargs)``.
|
||
|
|
||
|
Args:
|
||
|
optimizer (torch.optim.Optimizer): Optimizer that applies the gradients.
|
||
|
args: Any arguments.
|
||
|
kwargs: Any keyword arguments.
|
||
|
|
||
|
.. warning::
|
||
|
Closure use is not currently supported.
|
||
|
"""
|
||
|
if not self._enabled:
|
||
|
return optimizer.step(*args, **kwargs)
|
||
|
|
||
|
if "closure" in kwargs:
|
||
|
raise RuntimeError(
|
||
|
"Closure use is not currently supported if GradScaler is enabled."
|
||
|
)
|
||
|
|
||
|
self._check_scale_growth_tracker("step")
|
||
|
|
||
|
optimizer_state = self._per_optimizer_states[id(optimizer)]
|
||
|
|
||
|
if optimizer_state["stage"] is OptState.STEPPED:
|
||
|
raise RuntimeError(
|
||
|
"step() has already been called since the last update()."
|
||
|
)
|
||
|
|
||
|
retval: Optional[float] = None
|
||
|
|
||
|
if getattr(optimizer, "_step_supports_amp_scaling", False):
|
||
|
# This optimizer has customized scale-handling logic, so we can call optimizer.step() directly.
|
||
|
# The contract with custom optimizers is that their step() should accept an additional,
|
||
|
# optional grad_scaler kwarg. We append self to the kwargs so the custom optimizer has full information:
|
||
|
# it can query its own state, invoke unscale_ on itself, etc
|
||
|
# The contract above is being deprecated to avoid introducing `grad_scaler: GradScaler` argument
|
||
|
# to `Optimizer.step`. The new behavior is going to add two Tensor attributes of `grad_scale`
|
||
|
# and `found_inf` to the passed optimizer so that the optimizer can utilize those
|
||
|
# to skip the parameter updates or unscale gradients before updating parameters in
|
||
|
# the fused kernel, e.g. `FusedAdamMathFunctor`.
|
||
|
# In this behavior, `GradScaler._check_inf_per_device` is called if `OptState.READY`,
|
||
|
# while the method is expected to be called by users side, i.e. their optimizers.
|
||
|
kwargs_ = kwargs
|
||
|
has_grad_scaler_kwarg = (
|
||
|
"grad_scaler" in inspect.signature(optimizer.step).parameters
|
||
|
)
|
||
|
if has_grad_scaler_kwarg:
|
||
|
warnings.warn(
|
||
|
"GradScaler is going to stop passing itself as a keyword argument to the passed "
|
||
|
"optimizer. In the near future GradScaler registers `grad_scale: Tensor` and "
|
||
|
"`found_inf: Tensor` to the passed optimizer and let the optimizer use them directly.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
kwargs_.update({"grad_scaler": self})
|
||
|
else:
|
||
|
if optimizer_state["stage"] is OptState.READY:
|
||
|
self._check_inf_per_device(optimizer)
|
||
|
scaler = self._get_scale_async()
|
||
|
assert scaler is not None
|
||
|
found_inf = cast(
|
||
|
torch.Tensor,
|
||
|
sum(
|
||
|
[
|
||
|
t.to(scaler.device, non_blocking=True)
|
||
|
for t in optimizer_state["found_inf_per_device"].values()
|
||
|
]
|
||
|
),
|
||
|
)
|
||
|
optimizer.grad_scale = ( # type: ignore[attr-defined]
|
||
|
None if optimizer_state["stage"] == OptState.UNSCALED else scaler
|
||
|
)
|
||
|
optimizer.found_inf = found_inf # type: ignore[attr-defined]
|
||
|
retval = optimizer.step(*args, **kwargs_)
|
||
|
optimizer_state["stage"] = OptState.STEPPED
|
||
|
if not has_grad_scaler_kwarg:
|
||
|
del optimizer.grad_scale # type: ignore[attr-defined]
|
||
|
del optimizer.found_inf # type: ignore[attr-defined]
|
||
|
return retval
|
||
|
|
||
|
if optimizer_state["stage"] is OptState.READY:
|
||
|
self.unscale_(optimizer)
|
||
|
|
||
|
assert (
|
||
|
len(optimizer_state["found_inf_per_device"]) > 0
|
||
|
), "No inf checks were recorded for this optimizer."
|
||
|
|
||
|
retval = self._maybe_opt_step(optimizer, optimizer_state, *args, **kwargs)
|
||
|
|
||
|
optimizer_state["stage"] = OptState.STEPPED
|
||
|
|
||
|
return retval
|
||
|
|
||
|
def update(self, new_scale: Optional[Union[float, torch.Tensor]] = None) -> None:
|
||
|
"""Update the scale factor.
|
||
|
|
||
|
If any optimizer steps were skipped the scale is multiplied by ``backoff_factor``
|
||
|
to reduce it. If ``growth_interval`` unskipped iterations occurred consecutively,
|
||
|
the scale is multiplied by ``growth_factor`` to increase it.
|
||
|
|
||
|
Passing ``new_scale`` sets the new scale value manually. (``new_scale`` is not
|
||
|
used directly, it's used to fill GradScaler's internal scale tensor. So if
|
||
|
``new_scale`` was a tensor, later in-place changes to that tensor will not further
|
||
|
affect the scale GradScaler uses internally.)
|
||
|
|
||
|
Args:
|
||
|
new_scale (float or :class:`torch.Tensor`, optional, default=None): New scale factor.
|
||
|
|
||
|
.. warning::
|
||
|
:meth:`update` should only be called at the end of the iteration, after ``scaler.step(optimizer)`` has
|
||
|
been invoked for all optimizers used this iteration.
|
||
|
|
||
|
.. warning::
|
||
|
For performance reasons, we do not check the scale factor value to avoid synchronizations,
|
||
|
so the scale factor is not guaranteed to be above 1. If the scale falls below 1 and/or
|
||
|
you are seeing NaNs in your gradients or loss, something is likely wrong. For example,
|
||
|
bf16-pretrained models are often incompatible with AMP/fp16 due to differing dynamic ranges.
|
||
|
"""
|
||
|
if not self._enabled:
|
||
|
return
|
||
|
|
||
|
_scale, _growth_tracker = self._check_scale_growth_tracker("update")
|
||
|
|
||
|
if new_scale is not None:
|
||
|
assert self._scale is not None
|
||
|
# Accept a new user-defined scale.
|
||
|
if isinstance(new_scale, float):
|
||
|
self._scale.fill_(new_scale)
|
||
|
else:
|
||
|
reason = "new_scale should be a float or a 1-element torch.cuda.FloatTensor or \
|
||
|
torch.FloatTensor with requires_grad=False."
|
||
|
assert new_scale.device.type == self._device, reason
|
||
|
assert new_scale.numel() == 1, reason
|
||
|
assert new_scale.requires_grad is False, reason
|
||
|
self._scale.copy_(new_scale)
|
||
|
else:
|
||
|
# Consume shared inf/nan data collected from optimizers to update the scale.
|
||
|
# If all found_inf tensors are on the same device as self._scale, this operation is asynchronous.
|
||
|
found_infs = [
|
||
|
found_inf.to(device=_scale.device, non_blocking=True)
|
||
|
for state in self._per_optimizer_states.values()
|
||
|
for found_inf in state["found_inf_per_device"].values()
|
||
|
]
|
||
|
|
||
|
assert len(found_infs) > 0, "No inf checks were recorded prior to update."
|
||
|
|
||
|
found_inf_combined = found_infs[0]
|
||
|
if len(found_infs) > 1:
|
||
|
for i in range(1, len(found_infs)):
|
||
|
found_inf_combined += found_infs[i]
|
||
|
|
||
|
torch._amp_update_scale_(
|
||
|
_scale,
|
||
|
_growth_tracker,
|
||
|
found_inf_combined,
|
||
|
self._growth_factor,
|
||
|
self._backoff_factor,
|
||
|
self._growth_interval,
|
||
|
)
|
||
|
|
||
|
# To prepare for next iteration, clear the data collected from optimizers this iteration.
|
||
|
self._per_optimizer_states = defaultdict(_refresh_per_optimizer_state)
|
||
|
|
||
|
def _get_scale_async(self) -> Optional[torch.Tensor]:
|
||
|
return self._scale
|
||
|
|
||
|
def get_scale(self) -> float:
|
||
|
"""Return a Python float containing the current scale, or 1.0 if scaling is disabled.
|
||
|
|
||
|
.. warning::
|
||
|
:meth:`get_scale` incurs a CPU-GPU sync.
|
||
|
"""
|
||
|
if self._enabled:
|
||
|
return (
|
||
|
self._init_scale
|
||
|
if (scale := self._get_scale_async()) is None
|
||
|
else cast(float, scale.item())
|
||
|
)
|
||
|
return 1.0
|
||
|
|
||
|
def get_growth_factor(self) -> float:
|
||
|
r"""Return a Python float containing the scale growth factor."""
|
||
|
return self._growth_factor
|
||
|
|
||
|
def set_growth_factor(self, new_factor: float) -> None:
|
||
|
r"""Set a new scale growth factor.
|
||
|
|
||
|
Args:
|
||
|
new_scale (float): Value to use as the new scale growth factor.
|
||
|
"""
|
||
|
self._growth_factor = new_factor
|
||
|
|
||
|
def get_backoff_factor(self) -> float:
|
||
|
r"""Return a Python float containing the scale backoff factor."""
|
||
|
return self._backoff_factor
|
||
|
|
||
|
def set_backoff_factor(self, new_factor: float) -> None:
|
||
|
r"""Set a new scale backoff factor.
|
||
|
|
||
|
Args:
|
||
|
new_scale (float): Value to use as the new scale backoff factor.
|
||
|
"""
|
||
|
self._backoff_factor = new_factor
|
||
|
|
||
|
def get_growth_interval(self) -> int:
|
||
|
r"""Return a Python int containing the growth interval."""
|
||
|
return self._growth_interval
|
||
|
|
||
|
def set_growth_interval(self, new_interval: int) -> None:
|
||
|
r"""Set a new growth interval.
|
||
|
|
||
|
Args:
|
||
|
new_interval (int): Value to use as the new growth interval.
|
||
|
"""
|
||
|
self._growth_interval = new_interval
|
||
|
|
||
|
def _get_growth_tracker(self) -> int:
|
||
|
if self._enabled:
|
||
|
return (
|
||
|
self._init_growth_tracker
|
||
|
if self._growth_tracker is None
|
||
|
else cast(int, self._growth_tracker.item())
|
||
|
)
|
||
|
return 0
|
||
|
|
||
|
def is_enabled(self) -> bool:
|
||
|
r"""Return a bool indicating whether this instance is enabled."""
|
||
|
return self._enabled
|
||
|
|
||
|
def state_dict(self) -> Dict[str, Any]:
|
||
|
r"""Return the state of the scaler as a :class:`dict`.
|
||
|
|
||
|
It contains five entries:
|
||
|
|
||
|
* ``"scale"`` - a Python float containing the current scale
|
||
|
* ``"growth_factor"`` - a Python float containing the current growth factor
|
||
|
* ``"backoff_factor"`` - a Python float containing the current backoff factor
|
||
|
* ``"growth_interval"`` - a Python int containing the current growth interval
|
||
|
* ``"_growth_tracker"`` - a Python int containing the number of recent consecutive unskipped steps.
|
||
|
|
||
|
If this instance is not enabled, returns an empty dict.
|
||
|
|
||
|
.. note::
|
||
|
If you wish to checkpoint the scaler's state after a particular iteration, :meth:`state_dict`
|
||
|
should be called after :meth:`update`.
|
||
|
"""
|
||
|
if self._enabled:
|
||
|
return {
|
||
|
"scale": self.get_scale(),
|
||
|
"growth_factor": self._growth_factor,
|
||
|
"backoff_factor": self._backoff_factor,
|
||
|
"growth_interval": self._growth_interval,
|
||
|
"_growth_tracker": self._get_growth_tracker(),
|
||
|
}
|
||
|
return {}
|
||
|
|
||
|
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
||
|
r"""Load the scaler state.
|
||
|
|
||
|
If this instance is disabled, :meth:`load_state_dict` is a no-op.
|
||
|
|
||
|
Args:
|
||
|
state_dict(dict): scaler state. Should be an object returned from a call to :meth:`state_dict`.
|
||
|
"""
|
||
|
if not self._enabled:
|
||
|
return
|
||
|
|
||
|
if len(state_dict) == 0:
|
||
|
raise RuntimeError(
|
||
|
"The source state dict is empty, possibly because it was saved "
|
||
|
"from a disabled instance of GradScaler."
|
||
|
)
|
||
|
|
||
|
self._init_scale = cast(float, state_dict["scale"])
|
||
|
if self._scale is not None:
|
||
|
self._scale.fill_(state_dict["scale"])
|
||
|
self._growth_factor = cast(float, state_dict["growth_factor"])
|
||
|
self._backoff_factor = cast(float, state_dict["backoff_factor"])
|
||
|
self._growth_interval = cast(int, state_dict["growth_interval"])
|
||
|
self._init_growth_tracker = cast(int, state_dict["_growth_tracker"])
|
||
|
if self._growth_tracker is not None:
|
||
|
self._growth_tracker.fill_(state_dict["_growth_tracker"])
|
||
|
|
||
|
def __getstate__(self) -> Dict[str, Any]:
|
||
|
state = self.__dict__.copy()
|
||
|
if self._enabled:
|
||
|
assert len(self._per_optimizer_states) == 0, (
|
||
|
"A GradScaler instance may only be pickled at the beginning "
|
||
|
"of an iteration, or at the end after scaler.update()."
|
||
|
)
|
||
|
# Pickling _scale and _growth_tracker Tensors directly triggers
|
||
|
# "warnings.warn("pickle support for Storage will be removed in 1.5..."
|
||
|
# so instead, we set the unpickled instance up to reinitialize them lazily.
|
||
|
state["_init_scale"] = self.get_scale()
|
||
|
state["_init_growth_tracker"] = self._get_growth_tracker()
|
||
|
state["_scale"] = None
|
||
|
state["_growth_tracker"] = None
|
||
|
return state
|
||
|
|
||
|
def __setstate__(self, state: Dict[str, Any]) -> None:
|
||
|
self.__dict__.update(state)
|
||
|
|
||
|
def _check_inf_per_device(self, optimizer: torch.optim.Optimizer) -> Dict[str, Any]:
|
||
|
_scale, _ = self._check_scale_growth_tracker("_check_inf_per_device")
|
||
|
|
||
|
dummy_inv_scale = torch.full((), 1.0, dtype=torch.float32, device=_scale.device)
|
||
|
found_inf = torch.full((), 0.0, dtype=torch.float32, device=_scale.device)
|
||
|
|
||
|
self._per_optimizer_states[id(optimizer)][
|
||
|
"found_inf_per_device"
|
||
|
] = self._unscale_grads_(optimizer, dummy_inv_scale, found_inf, True)
|
||
|
|
||
|
return self._per_optimizer_states[id(optimizer)]["found_inf_per_device"]
|
||
|
|
||
|
def _found_inf_per_device(self, optimizer: torch.optim.Optimizer) -> Dict[str, Any]:
|
||
|
return self._per_optimizer_states[id(optimizer)]["found_inf_per_device"]
|