102 lines
3.7 KiB
Python
102 lines
3.7 KiB
Python
|
"""Async API.
|
||
|
|
||
|
This module contains the API for parallelism in TorchScript, notably:
|
||
|
* torch.jit.fork
|
||
|
* torch.jit.wait
|
||
|
|
||
|
This is not intended to be imported directly; please use the exposed
|
||
|
functionalities in `torch.jit`.
|
||
|
"""
|
||
|
|
||
|
import torch
|
||
|
from torch._jit_internal import Future
|
||
|
from torch.jit._builtins import _register_builtin
|
||
|
|
||
|
from torch.utils import set_module
|
||
|
|
||
|
set_module(Future, "torch.jit")
|
||
|
|
||
|
|
||
|
def fork(func, *args, **kwargs):
|
||
|
r"""
|
||
|
Create an asynchronous task executing `func` and a reference to the value of the result of this execution.
|
||
|
|
||
|
`fork` will return immediately, so the return value of `func` may not have been computed yet. To force completion
|
||
|
of the task and access the return value invoke `torch.jit.wait` on the Future. `fork` invoked
|
||
|
with a `func` which returns `T` is typed as `torch.jit.Future[T]`. `fork` calls can be arbitrarily
|
||
|
nested, and may be invoked with positional and keyword arguments.
|
||
|
Asynchronous execution will only occur when run in TorchScript. If run in pure python,
|
||
|
`fork` will not execute in parallel. `fork` will also not execute in parallel when invoked
|
||
|
while tracing, however the `fork` and `wait` calls will be captured in the exported IR Graph.
|
||
|
|
||
|
.. warning::
|
||
|
`fork` tasks will execute non-deterministically. We recommend only spawning
|
||
|
parallel fork tasks for pure functions that do not modify their inputs,
|
||
|
module attributes, or global state.
|
||
|
|
||
|
Args:
|
||
|
func (callable or torch.nn.Module): A Python function or `torch.nn.Module`
|
||
|
that will be invoked. If executed in TorchScript, it will execute asynchronously,
|
||
|
otherwise it will not. Traced invocations of fork will be captured in the IR.
|
||
|
``*args``, ``**kwargs``: arguments to invoke `func` with.
|
||
|
Returns:
|
||
|
`torch.jit.Future[T]`: a reference to the execution of `func`. The value `T`
|
||
|
can only be accessed by forcing completion of `func` through `torch.jit.wait`.
|
||
|
|
||
|
Example (fork a free function):
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
import torch
|
||
|
from torch import Tensor
|
||
|
def foo(a : Tensor, b : int) -> Tensor:
|
||
|
return a + b
|
||
|
def bar(a):
|
||
|
fut : torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2)
|
||
|
return torch.jit.wait(fut)
|
||
|
script_bar = torch.jit.script(bar)
|
||
|
input = torch.tensor(2)
|
||
|
# only the scripted version executes asynchronously
|
||
|
assert script_bar(input) == bar(input)
|
||
|
# trace is not run asynchronously, but fork is captured in IR
|
||
|
graph = torch.jit.trace(bar, (input,)).graph
|
||
|
assert "fork" in str(graph)
|
||
|
|
||
|
Example (fork a module method):
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
import torch
|
||
|
from torch import Tensor
|
||
|
class AddMod(torch.nn.Module):
|
||
|
def forward(self, a: Tensor, b : int):
|
||
|
return a + b
|
||
|
class Mod(torch.nn.Module):
|
||
|
def __init__(self):
|
||
|
super(self).__init__()
|
||
|
self.mod = AddMod()
|
||
|
def forward(self, input):
|
||
|
fut = torch.jit.fork(self.mod, a, b=2)
|
||
|
return torch.jit.wait(fut)
|
||
|
input = torch.tensor(2)
|
||
|
mod = Mod()
|
||
|
assert mod(input) == torch.jit.script(mod).forward(input)
|
||
|
"""
|
||
|
return torch._C.fork(func, *args, **kwargs)
|
||
|
|
||
|
|
||
|
def wait(future):
|
||
|
r"""
|
||
|
Force completion of a `torch.jit.Future[T]` asynchronous task, returning the result of the task.
|
||
|
|
||
|
See :func:`~fork` for docs and examples.
|
||
|
Args:
|
||
|
future (torch.jit.Future[T]): an asynchronous task reference, created through `torch.jit.fork`
|
||
|
Returns:
|
||
|
`T`: the return value of the completed task
|
||
|
"""
|
||
|
return torch._C.wait(future)
|
||
|
|
||
|
|
||
|
_register_builtin(wait, "aten::wait")
|