67 lines
2.0 KiB
Python
67 lines
2.0 KiB
Python
|
"""
|
||
|
Note [ONNX operators that are added/updated from opset 7 to opset 8]
|
||
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
New operators:
|
||
|
Expand
|
||
|
|
||
|
Updated operators:
|
||
|
Min, Max, Sum, Mean: supports multidirectional broadcasting.
|
||
|
MaxPool: added optional indices output.
|
||
|
Scan
|
||
|
"""
|
||
|
|
||
|
import functools
|
||
|
import warnings
|
||
|
|
||
|
from torch.onnx import symbolic_helper, symbolic_opset9 as opset9
|
||
|
from torch.onnx._internal import jit_utils, registration
|
||
|
|
||
|
|
||
|
_onnx_symbolic = functools.partial(registration.onnx_symbolic, opset=7)
|
||
|
|
||
|
block_listed_operators = (
|
||
|
"scan",
|
||
|
"expand",
|
||
|
"expand_as",
|
||
|
"meshgrid",
|
||
|
"adaptive_max_pool1d",
|
||
|
"adaptive_max_pool2d",
|
||
|
"adaptive_max_pool3d",
|
||
|
"max_pool1d_with_indices",
|
||
|
"max_pool2d_with_indices",
|
||
|
"max_pool3d_with_indices",
|
||
|
)
|
||
|
|
||
|
|
||
|
# NOTE: max, min, sum, mean: broadcasting is not supported in opset 7.
|
||
|
# torch.max (same for torch.min) actually has two interfaces smashed together:
|
||
|
# torch.max(x, dim, keepdim) and torch.max(x, y)
|
||
|
@_onnx_symbolic("aten::max")
|
||
|
def max(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None):
|
||
|
# torch.max(input, other)
|
||
|
if keepdim is None and dim_or_y is not None:
|
||
|
warnings.warn(
|
||
|
"Multidirectional broadcasting is not supported in opset 7. "
|
||
|
"This might cause the onnx model to be incorrect, if inputs to max operators "
|
||
|
"have different shapes"
|
||
|
)
|
||
|
return opset9.max(g, self, dim_or_y, keepdim)
|
||
|
|
||
|
|
||
|
@_onnx_symbolic("aten::min")
|
||
|
def min(g: jit_utils.GraphContext, self, dim_or_y=None, keepdim=None):
|
||
|
# torch.min(input, other)
|
||
|
if keepdim is None and dim_or_y is not None:
|
||
|
warnings.warn(
|
||
|
"Multidirectional broadcasting is not supported in opset 7. "
|
||
|
"This might cause the onnx model to be incorrect, if inputs to min operators "
|
||
|
"have different shapes"
|
||
|
)
|
||
|
return opset9.min(g, self, dim_or_y, keepdim)
|
||
|
|
||
|
|
||
|
for block_listed_op in block_listed_operators:
|
||
|
_onnx_symbolic(f"aten::{block_listed_op}")(
|
||
|
symbolic_helper._block_list_in_opset(block_listed_op)
|
||
|
)
|