80 lines
3.2 KiB
Python
80 lines
3.2 KiB
Python
|
r"""Functional interface."""
|
||
|
import math
|
||
|
from torch import Tensor
|
||
|
from typing import List
|
||
|
|
||
|
from .adadelta import adadelta # type: ignore[attr-defined] # noqa: F401
|
||
|
from .adagrad import adagrad, _make_sparse # type: ignore[attr-defined] # noqa: F401
|
||
|
from .adam import adam # type: ignore[attr-defined] # noqa: F401
|
||
|
from .adamw import adamw # type: ignore[attr-defined] # noqa: F401
|
||
|
from .adamax import adamax # type: ignore[attr-defined] # noqa: F401
|
||
|
from .asgd import asgd # type: ignore[attr-defined] # noqa: F401
|
||
|
from .nadam import nadam # type: ignore[attr-defined] # noqa: F401
|
||
|
from .radam import radam # type: ignore[attr-defined] # noqa: F401
|
||
|
from .rmsprop import rmsprop # type: ignore[attr-defined] # noqa: F401
|
||
|
from .rprop import rprop # type: ignore[attr-defined] # noqa: F401
|
||
|
from .sgd import sgd # type: ignore[attr-defined] # noqa: F401
|
||
|
|
||
|
|
||
|
# TODO: use foreach API in optim._functional to do all the computation
|
||
|
|
||
|
|
||
|
def sparse_adam(params: List[Tensor],
|
||
|
grads: List[Tensor],
|
||
|
exp_avgs: List[Tensor],
|
||
|
exp_avg_sqs: List[Tensor],
|
||
|
state_steps: List[int],
|
||
|
*,
|
||
|
eps: float,
|
||
|
beta1: float,
|
||
|
beta2: float,
|
||
|
lr: float,
|
||
|
maximize: bool):
|
||
|
r"""Functional API that performs Sparse Adam algorithm computation.
|
||
|
|
||
|
See :class:`~torch.optim.SparseAdam` for details.
|
||
|
"""
|
||
|
for i, param in enumerate(params):
|
||
|
grad = grads[i]
|
||
|
grad = grad if not maximize else -grad
|
||
|
grad = grad.coalesce() # the update is non-linear so indices must be unique
|
||
|
grad_indices = grad._indices()
|
||
|
grad_values = grad._values()
|
||
|
if grad_values.numel() == 0:
|
||
|
# Skip update for empty grad
|
||
|
continue
|
||
|
size = grad.size()
|
||
|
|
||
|
exp_avg = exp_avgs[i]
|
||
|
exp_avg_sq = exp_avg_sqs[i]
|
||
|
step = state_steps[i]
|
||
|
|
||
|
|
||
|
def make_sparse(values):
|
||
|
constructor = grad.new
|
||
|
if grad_indices.dim() == 0 or values.dim() == 0:
|
||
|
return constructor().resize_as_(grad)
|
||
|
return constructor(grad_indices, values, size)
|
||
|
|
||
|
# Decay the first and second moment running average coefficient
|
||
|
# old <- b * old + (1 - b) * new
|
||
|
# <==> old += (1 - b) * (new - old)
|
||
|
old_exp_avg_values = exp_avg.sparse_mask(grad)._values()
|
||
|
exp_avg_update_values = grad_values.sub(old_exp_avg_values).mul_(1 - beta1)
|
||
|
exp_avg.add_(make_sparse(exp_avg_update_values))
|
||
|
old_exp_avg_sq_values = exp_avg_sq.sparse_mask(grad)._values()
|
||
|
exp_avg_sq_update_values = grad_values.pow(2).sub_(old_exp_avg_sq_values).mul_(1 - beta2)
|
||
|
exp_avg_sq.add_(make_sparse(exp_avg_sq_update_values))
|
||
|
|
||
|
# Dense addition again is intended, avoiding another sparse_mask
|
||
|
numer = exp_avg_update_values.add_(old_exp_avg_values)
|
||
|
exp_avg_sq_update_values.add_(old_exp_avg_sq_values)
|
||
|
denom = exp_avg_sq_update_values.sqrt_().add_(eps)
|
||
|
del exp_avg_update_values, exp_avg_sq_update_values
|
||
|
|
||
|
bias_correction1 = 1 - beta1 ** step
|
||
|
bias_correction2 = 1 - beta2 ** step
|
||
|
step_size = lr * math.sqrt(bias_correction2) / bias_correction1
|
||
|
|
||
|
param.add_(make_sparse(-step_size * numer.div_(denom)))
|