420 lines
17 KiB
Python
420 lines
17 KiB
Python
|
import torch
|
||
|
from torch import Tensor
|
||
|
from .optimizer import (Optimizer, _use_grad_for_differentiable, _default_to_fused_or_foreach,
|
||
|
_differentiable_doc, _foreach_doc, _maximize_doc, _fused_doc)
|
||
|
from typing import List, Optional
|
||
|
|
||
|
__all__ = ['SGD', 'sgd']
|
||
|
|
||
|
|
||
|
class SGD(Optimizer):
|
||
|
def __init__(self, params, lr=1e-3, momentum=0, dampening=0,
|
||
|
weight_decay=0, nesterov=False, *, maximize: bool = False, foreach: Optional[bool] = None,
|
||
|
differentiable: bool = False, fused: Optional[bool] = None):
|
||
|
if lr < 0.0:
|
||
|
raise ValueError(f"Invalid learning rate: {lr}")
|
||
|
if momentum < 0.0:
|
||
|
raise ValueError(f"Invalid momentum value: {momentum}")
|
||
|
if weight_decay < 0.0:
|
||
|
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
|
||
|
|
||
|
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
|
||
|
weight_decay=weight_decay, nesterov=nesterov,
|
||
|
maximize=maximize, foreach=foreach,
|
||
|
differentiable=differentiable, fused=fused)
|
||
|
if nesterov and (momentum <= 0 or dampening != 0):
|
||
|
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
|
||
|
super().__init__(params, defaults)
|
||
|
|
||
|
if fused:
|
||
|
self._step_supports_amp_scaling = True
|
||
|
if differentiable:
|
||
|
raise RuntimeError("`fused` does not support `differentiable`")
|
||
|
if foreach:
|
||
|
raise RuntimeError("`fused` and `foreach` cannot be `True` together.")
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super().__setstate__(state)
|
||
|
for group in self.param_groups:
|
||
|
group.setdefault('nesterov', False)
|
||
|
group.setdefault('maximize', False)
|
||
|
group.setdefault('foreach', None)
|
||
|
group.setdefault('differentiable', False)
|
||
|
group.setdefault('fused', False)
|
||
|
|
||
|
def _init_group(self, group, params_with_grad, d_p_list, momentum_buffer_list):
|
||
|
has_sparse_grad = False
|
||
|
|
||
|
for p in group['params']:
|
||
|
if p.grad is not None:
|
||
|
params_with_grad.append(p)
|
||
|
d_p_list.append(p.grad)
|
||
|
if p.grad.is_sparse:
|
||
|
has_sparse_grad = True
|
||
|
|
||
|
state = self.state[p]
|
||
|
momentum_buffer_list.append(state.get('momentum_buffer'))
|
||
|
|
||
|
return has_sparse_grad
|
||
|
|
||
|
@_use_grad_for_differentiable
|
||
|
def step(self, closure=None):
|
||
|
"""Performs a single optimization step.
|
||
|
|
||
|
Args:
|
||
|
closure (Callable, optional): A closure that reevaluates the model
|
||
|
and returns the loss.
|
||
|
"""
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
with torch.enable_grad():
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
params_with_grad = []
|
||
|
d_p_list = []
|
||
|
momentum_buffer_list = []
|
||
|
|
||
|
has_sparse_grad = self._init_group(group, params_with_grad, d_p_list, momentum_buffer_list)
|
||
|
|
||
|
sgd(params_with_grad,
|
||
|
d_p_list,
|
||
|
momentum_buffer_list,
|
||
|
weight_decay=group['weight_decay'],
|
||
|
momentum=group['momentum'],
|
||
|
lr=group['lr'],
|
||
|
dampening=group['dampening'],
|
||
|
nesterov=group['nesterov'],
|
||
|
maximize=group['maximize'],
|
||
|
has_sparse_grad=has_sparse_grad,
|
||
|
foreach=group['foreach'],
|
||
|
fused=group['fused'],
|
||
|
grad_scale=getattr(self, "grad_scale", None),
|
||
|
found_inf=getattr(self, "found_inf", None))
|
||
|
|
||
|
# update momentum_buffers in state
|
||
|
for p, momentum_buffer in zip(params_with_grad, momentum_buffer_list):
|
||
|
state = self.state[p]
|
||
|
state['momentum_buffer'] = momentum_buffer
|
||
|
|
||
|
return loss
|
||
|
|
||
|
|
||
|
SGD.__doc__ = r"""Implements stochastic gradient descent (optionally with momentum).
|
||
|
|
||
|
.. math::
|
||
|
\begin{aligned}
|
||
|
&\rule{110mm}{0.4pt} \\
|
||
|
&\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta)
|
||
|
\text{ (objective)}, \: \lambda \text{ (weight decay)}, \\
|
||
|
&\hspace{13mm} \:\mu \text{ (momentum)}, \:\tau \text{ (dampening)},
|
||
|
\:\textit{ nesterov,}\:\textit{ maximize} \\[-1.ex]
|
||
|
&\rule{110mm}{0.4pt} \\
|
||
|
&\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\
|
||
|
&\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\
|
||
|
&\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\
|
||
|
&\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
|
||
|
&\hspace{5mm}\textbf{if} \: \mu \neq 0 \\
|
||
|
&\hspace{10mm}\textbf{if} \: t > 1 \\
|
||
|
&\hspace{15mm} \textbf{b}_t \leftarrow \mu \textbf{b}_{t-1} + (1-\tau) g_t \\
|
||
|
&\hspace{10mm}\textbf{else} \\
|
||
|
&\hspace{15mm} \textbf{b}_t \leftarrow g_t \\
|
||
|
&\hspace{10mm}\textbf{if} \: \textit{nesterov} \\
|
||
|
&\hspace{15mm} g_t \leftarrow g_{t} + \mu \textbf{b}_t \\
|
||
|
&\hspace{10mm}\textbf{else} \\[-1.ex]
|
||
|
&\hspace{15mm} g_t \leftarrow \textbf{b}_t \\
|
||
|
&\hspace{5mm}\textbf{if} \: \textit{maximize} \\
|
||
|
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} + \gamma g_t \\[-1.ex]
|
||
|
&\hspace{5mm}\textbf{else} \\[-1.ex]
|
||
|
&\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma g_t \\[-1.ex]
|
||
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
||
|
&\bf{return} \: \theta_t \\[-1.ex]
|
||
|
&\rule{110mm}{0.4pt} \\[-1.ex]
|
||
|
\end{aligned}
|
||
|
|
||
|
Nesterov momentum is based on the formula from
|
||
|
`On the importance of initialization and momentum in deep learning`__.
|
||
|
""" + fr"""
|
||
|
Args:
|
||
|
params (iterable): iterable of parameters to optimize or dicts defining
|
||
|
parameter groups
|
||
|
lr (float, optional): learning rate (default: 1e-3)
|
||
|
momentum (float, optional): momentum factor (default: 0)
|
||
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
|
||
|
dampening (float, optional): dampening for momentum (default: 0)
|
||
|
nesterov (bool, optional): enables Nesterov momentum (default: False)
|
||
|
{_maximize_doc}
|
||
|
{_foreach_doc}
|
||
|
{_differentiable_doc}
|
||
|
{_fused_doc}
|
||
|
""" + r"""
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
|
||
|
>>> optimizer.zero_grad()
|
||
|
>>> loss_fn(model(input), target).backward()
|
||
|
>>> optimizer.step()
|
||
|
|
||
|
__ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf
|
||
|
|
||
|
.. note::
|
||
|
The implementation of SGD with Momentum/Nesterov subtly differs from
|
||
|
Sutskever et. al. and implementations in some other frameworks.
|
||
|
|
||
|
Considering the specific case of Momentum, the update can be written as
|
||
|
|
||
|
.. math::
|
||
|
\begin{aligned}
|
||
|
v_{t+1} & = \mu * v_{t} + g_{t+1}, \\
|
||
|
p_{t+1} & = p_{t} - \text{lr} * v_{t+1},
|
||
|
\end{aligned}
|
||
|
|
||
|
where :math:`p`, :math:`g`, :math:`v` and :math:`\mu` denote the
|
||
|
parameters, gradient, velocity, and momentum respectively.
|
||
|
|
||
|
This is in contrast to Sutskever et. al. and
|
||
|
other frameworks which employ an update of the form
|
||
|
|
||
|
.. math::
|
||
|
\begin{aligned}
|
||
|
v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\
|
||
|
p_{t+1} & = p_{t} - v_{t+1}.
|
||
|
\end{aligned}
|
||
|
|
||
|
The Nesterov version is analogously modified.
|
||
|
|
||
|
Moreover, the initial value of the momentum buffer is set to the
|
||
|
gradient value at the first step. This is in contrast to some other
|
||
|
frameworks that initialize it to all zeros.
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def sgd(params: List[Tensor],
|
||
|
d_p_list: List[Tensor],
|
||
|
momentum_buffer_list: List[Optional[Tensor]],
|
||
|
# kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
|
||
|
# setting this as kwarg for now as functional API is compiled by torch/distributed/optim
|
||
|
has_sparse_grad: bool = None,
|
||
|
foreach: Optional[bool] = None,
|
||
|
fused: Optional[bool] = None,
|
||
|
grad_scale: Optional[Tensor] = None,
|
||
|
found_inf: Optional[Tensor] = None,
|
||
|
*,
|
||
|
weight_decay: float,
|
||
|
momentum: float,
|
||
|
lr: float,
|
||
|
dampening: float,
|
||
|
nesterov: bool,
|
||
|
maximize: bool):
|
||
|
r"""Functional API that performs SGD algorithm computation.
|
||
|
|
||
|
See :class:`~torch.optim.SGD` for details.
|
||
|
"""
|
||
|
|
||
|
# Respect when the user inputs False/True for foreach or fused. We only want to change
|
||
|
# the default when neither have been user-specified. Note that we default to foreach
|
||
|
# and pass False to use_fused. This is not a mistake--we want to give the fused impl
|
||
|
# bake-in time before making it the default, even if it is typically faster.
|
||
|
if foreach is None and fused is None:
|
||
|
# why must we be explicit about an if statement for torch.jit.is_scripting here?
|
||
|
# because JIT can't handle Optionals nor fancy conditionals when scripting
|
||
|
if not torch.jit.is_scripting():
|
||
|
fused, foreach = _default_to_fused_or_foreach(params, differentiable=False, use_fused=False)
|
||
|
else:
|
||
|
foreach = False
|
||
|
fused = False
|
||
|
if foreach is None:
|
||
|
foreach = False
|
||
|
if fused is None:
|
||
|
fused = False
|
||
|
|
||
|
if foreach and torch.jit.is_scripting():
|
||
|
raise RuntimeError('torch.jit.script not supported with foreach optimizers')
|
||
|
if fused and torch.jit.is_scripting():
|
||
|
raise RuntimeError('torch.jit.script not supported with fused optimizers')
|
||
|
|
||
|
if foreach and not torch.jit.is_scripting():
|
||
|
func = _multi_tensor_sgd
|
||
|
elif fused and not torch.jit.is_scripting():
|
||
|
func = _fused_sgd
|
||
|
else:
|
||
|
func = _single_tensor_sgd
|
||
|
|
||
|
func(params,
|
||
|
d_p_list,
|
||
|
momentum_buffer_list,
|
||
|
weight_decay=weight_decay,
|
||
|
momentum=momentum,
|
||
|
lr=lr,
|
||
|
dampening=dampening,
|
||
|
nesterov=nesterov,
|
||
|
has_sparse_grad=has_sparse_grad,
|
||
|
maximize=maximize,
|
||
|
grad_scale=grad_scale,
|
||
|
found_inf=found_inf)
|
||
|
|
||
|
def _single_tensor_sgd(params: List[Tensor],
|
||
|
d_p_list: List[Tensor],
|
||
|
momentum_buffer_list: List[Optional[Tensor]],
|
||
|
grad_scale: Optional[Tensor],
|
||
|
found_inf: Optional[Tensor],
|
||
|
*,
|
||
|
weight_decay: float,
|
||
|
momentum: float,
|
||
|
lr: float,
|
||
|
dampening: float,
|
||
|
nesterov: bool,
|
||
|
maximize: bool,
|
||
|
has_sparse_grad: bool):
|
||
|
assert grad_scale is None and found_inf is None
|
||
|
|
||
|
for i, param in enumerate(params):
|
||
|
d_p = d_p_list[i] if not maximize else -d_p_list[i]
|
||
|
|
||
|
if weight_decay != 0:
|
||
|
d_p = d_p.add(param, alpha=weight_decay)
|
||
|
|
||
|
if momentum != 0:
|
||
|
buf = momentum_buffer_list[i]
|
||
|
|
||
|
if buf is None:
|
||
|
buf = torch.clone(d_p).detach()
|
||
|
momentum_buffer_list[i] = buf
|
||
|
else:
|
||
|
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
|
||
|
|
||
|
if nesterov:
|
||
|
d_p = d_p.add(buf, alpha=momentum)
|
||
|
else:
|
||
|
d_p = buf
|
||
|
|
||
|
param.add_(d_p, alpha=-lr)
|
||
|
|
||
|
|
||
|
def _multi_tensor_sgd(params: List[Tensor],
|
||
|
grads: List[Tensor],
|
||
|
momentum_buffer_list: List[Optional[Tensor]],
|
||
|
grad_scale: Optional[Tensor],
|
||
|
found_inf: Optional[Tensor],
|
||
|
*,
|
||
|
weight_decay: float,
|
||
|
momentum: float,
|
||
|
lr: float,
|
||
|
dampening: float,
|
||
|
nesterov: bool,
|
||
|
maximize: bool,
|
||
|
has_sparse_grad: bool):
|
||
|
assert grad_scale is None and found_inf is None
|
||
|
|
||
|
if len(params) == 0:
|
||
|
return
|
||
|
|
||
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype([params, grads, momentum_buffer_list], with_indices=True)
|
||
|
for ((device_params, device_grads, device_momentum_buffer_list), indices) in grouped_tensors.values():
|
||
|
device_has_sparse_grad = has_sparse_grad and any(grad.is_sparse for grad in device_grads)
|
||
|
|
||
|
if maximize:
|
||
|
device_grads = torch._foreach_neg(device_grads)
|
||
|
|
||
|
if weight_decay != 0:
|
||
|
# Re-use the intermediate memory (device_grads) already allocated for maximize
|
||
|
if maximize:
|
||
|
torch._foreach_add_(device_grads, device_params, alpha=weight_decay)
|
||
|
else:
|
||
|
device_grads = torch._foreach_add(device_grads, device_params, alpha=weight_decay)
|
||
|
|
||
|
if momentum != 0:
|
||
|
bufs = []
|
||
|
|
||
|
all_states_with_momentum_buffer = True
|
||
|
for i in range(len(device_momentum_buffer_list)):
|
||
|
if device_momentum_buffer_list[i] is None:
|
||
|
all_states_with_momentum_buffer = False
|
||
|
break
|
||
|
else:
|
||
|
bufs.append(device_momentum_buffer_list[i])
|
||
|
|
||
|
if all_states_with_momentum_buffer:
|
||
|
torch._foreach_mul_(bufs, momentum)
|
||
|
torch._foreach_add_(bufs, device_grads, alpha=1 - dampening)
|
||
|
else:
|
||
|
bufs = []
|
||
|
for i in range(len(device_momentum_buffer_list)):
|
||
|
if device_momentum_buffer_list[i] is None:
|
||
|
buf = device_momentum_buffer_list[i] = momentum_buffer_list[indices[i]] = \
|
||
|
torch.clone(device_grads[i]).detach()
|
||
|
else:
|
||
|
buf = device_momentum_buffer_list[i]
|
||
|
buf.mul_(momentum).add_(device_grads[i], alpha=1 - dampening)
|
||
|
|
||
|
bufs.append(buf)
|
||
|
|
||
|
if nesterov:
|
||
|
torch._foreach_add_(device_grads, bufs, alpha=momentum)
|
||
|
else:
|
||
|
device_grads = bufs
|
||
|
|
||
|
if not device_has_sparse_grad:
|
||
|
torch._foreach_add_(device_params, device_grads, alpha=-lr)
|
||
|
else:
|
||
|
# foreach APIs don't support sparse
|
||
|
for i in range(len(device_params)):
|
||
|
device_params[i].add_(device_grads[i], alpha=-lr)
|
||
|
|
||
|
|
||
|
def _fused_sgd(
|
||
|
params: List[Tensor],
|
||
|
grads: List[Tensor],
|
||
|
momentum_buffer_list: List[Optional[Tensor]],
|
||
|
grad_scale: Optional[Tensor],
|
||
|
found_inf: Optional[Tensor],
|
||
|
*,
|
||
|
weight_decay: float,
|
||
|
momentum: float,
|
||
|
lr: float,
|
||
|
dampening: float,
|
||
|
nesterov: bool,
|
||
|
maximize: bool,
|
||
|
has_sparse_grad: bool,
|
||
|
) -> None:
|
||
|
if not params:
|
||
|
return
|
||
|
if has_sparse_grad:
|
||
|
raise RuntimeError("`_fused_sgd` does not support sparse gradients")
|
||
|
grad_scale_dict = {grad_scale.device: grad_scale} if grad_scale is not None else None
|
||
|
found_inf_dict = {found_inf.device: found_inf} if found_inf is not None else None
|
||
|
|
||
|
no_momentum_buffer = momentum == 0
|
||
|
is_first_step = all(t is None for t in momentum_buffer_list) and not no_momentum_buffer
|
||
|
if is_first_step:
|
||
|
for i, g in enumerate(grads):
|
||
|
momentum_buffer_list[i] = torch.empty_like(g)
|
||
|
grouped_tensors = Optimizer._group_tensors_by_device_and_dtype(
|
||
|
[params, grads, momentum_buffer_list], with_indices=False)
|
||
|
for (device, dtype), ((device_params, device_grads, device_momentum_buffer_list), _) in grouped_tensors.items():
|
||
|
device_grad_scale, device_found_inf = None, None
|
||
|
if grad_scale is not None:
|
||
|
if device not in grad_scale_dict:
|
||
|
grad_scale_dict[device] = grad_scale.to(device)
|
||
|
device_grad_scale = grad_scale_dict[device]
|
||
|
if found_inf is not None:
|
||
|
if device not in found_inf_dict:
|
||
|
found_inf_dict[device] = found_inf.to(device)
|
||
|
device_found_inf = found_inf_dict[device]
|
||
|
torch._fused_sgd_(
|
||
|
device_params,
|
||
|
device_grads,
|
||
|
[] if no_momentum_buffer else device_momentum_buffer_list,
|
||
|
weight_decay=weight_decay,
|
||
|
momentum=momentum,
|
||
|
lr=lr,
|
||
|
dampening=dampening,
|
||
|
nesterov=nesterov,
|
||
|
maximize=maximize,
|
||
|
is_first_step=is_first_step,
|
||
|
grad_scale=device_grad_scale,
|
||
|
found_inf=device_found_inf,
|
||
|
)
|