619 lines
20 KiB
Python
619 lines
20 KiB
Python
|
"""List of Lists sparse matrix class
|
||
|
"""
|
||
|
|
||
|
__docformat__ = "restructuredtext en"
|
||
|
|
||
|
__all__ = ['lil_array', 'lil_matrix', 'isspmatrix_lil']
|
||
|
|
||
|
from bisect import bisect_left
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from ._matrix import spmatrix
|
||
|
from ._base import _spbase, sparray, issparse
|
||
|
from ._index import IndexMixin, INT_TYPES, _broadcast_arrays
|
||
|
from ._sputils import (getdtype, isshape, isscalarlike, upcast_scalar,
|
||
|
check_shape, check_reshape_kwargs)
|
||
|
from . import _csparsetools
|
||
|
|
||
|
|
||
|
class _lil_base(_spbase, IndexMixin):
|
||
|
_format = 'lil'
|
||
|
|
||
|
def __init__(self, arg1, shape=None, dtype=None, copy=False):
|
||
|
_spbase.__init__(self)
|
||
|
self.dtype = getdtype(dtype, arg1, default=float)
|
||
|
|
||
|
# First get the shape
|
||
|
if issparse(arg1):
|
||
|
if arg1.format == "lil" and copy:
|
||
|
A = arg1.copy()
|
||
|
else:
|
||
|
A = arg1.tolil()
|
||
|
|
||
|
if dtype is not None:
|
||
|
A = A.astype(dtype, copy=False)
|
||
|
|
||
|
self._shape = check_shape(A.shape)
|
||
|
self.dtype = A.dtype
|
||
|
self.rows = A.rows
|
||
|
self.data = A.data
|
||
|
elif isinstance(arg1,tuple):
|
||
|
if isshape(arg1):
|
||
|
if shape is not None:
|
||
|
raise ValueError('invalid use of shape parameter')
|
||
|
M, N = arg1
|
||
|
self._shape = check_shape((M, N))
|
||
|
self.rows = np.empty((M,), dtype=object)
|
||
|
self.data = np.empty((M,), dtype=object)
|
||
|
for i in range(M):
|
||
|
self.rows[i] = []
|
||
|
self.data[i] = []
|
||
|
else:
|
||
|
raise TypeError('unrecognized lil_array constructor usage')
|
||
|
else:
|
||
|
# assume A is dense
|
||
|
try:
|
||
|
A = self._ascontainer(arg1)
|
||
|
except TypeError as e:
|
||
|
raise TypeError('unsupported matrix type') from e
|
||
|
else:
|
||
|
A = self._csr_container(A, dtype=dtype).tolil()
|
||
|
|
||
|
self._shape = check_shape(A.shape)
|
||
|
self.dtype = A.dtype
|
||
|
self.rows = A.rows
|
||
|
self.data = A.data
|
||
|
|
||
|
def __iadd__(self,other):
|
||
|
self[:,:] = self + other
|
||
|
return self
|
||
|
|
||
|
def __isub__(self,other):
|
||
|
self[:,:] = self - other
|
||
|
return self
|
||
|
|
||
|
def __imul__(self,other):
|
||
|
if isscalarlike(other):
|
||
|
self[:,:] = self * other
|
||
|
return self
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
def __itruediv__(self,other):
|
||
|
if isscalarlike(other):
|
||
|
self[:,:] = self / other
|
||
|
return self
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
# Whenever the dimensions change, empty lists should be created for each
|
||
|
# row
|
||
|
|
||
|
def _getnnz(self, axis=None):
|
||
|
if axis is None:
|
||
|
return sum([len(rowvals) for rowvals in self.data])
|
||
|
if axis < 0:
|
||
|
axis += 2
|
||
|
if axis == 0:
|
||
|
out = np.zeros(self.shape[1], dtype=np.intp)
|
||
|
for row in self.rows:
|
||
|
out[row] += 1
|
||
|
return out
|
||
|
elif axis == 1:
|
||
|
return np.array([len(rowvals) for rowvals in self.data], dtype=np.intp)
|
||
|
else:
|
||
|
raise ValueError('axis out of bounds')
|
||
|
|
||
|
def count_nonzero(self):
|
||
|
return sum(np.count_nonzero(rowvals) for rowvals in self.data)
|
||
|
|
||
|
_getnnz.__doc__ = _spbase._getnnz.__doc__
|
||
|
count_nonzero.__doc__ = _spbase.count_nonzero.__doc__
|
||
|
|
||
|
def __str__(self):
|
||
|
val = ''
|
||
|
for i, row in enumerate(self.rows):
|
||
|
for pos, j in enumerate(row):
|
||
|
val += f" {str((i, j))}\t{str(self.data[i][pos])}\n"
|
||
|
return val[:-1]
|
||
|
|
||
|
def getrowview(self, i):
|
||
|
"""Returns a view of the 'i'th row (without copying).
|
||
|
"""
|
||
|
new = self._lil_container((1, self.shape[1]), dtype=self.dtype)
|
||
|
new.rows[0] = self.rows[i]
|
||
|
new.data[0] = self.data[i]
|
||
|
return new
|
||
|
|
||
|
def getrow(self, i):
|
||
|
"""Returns a copy of the 'i'th row.
|
||
|
"""
|
||
|
M, N = self.shape
|
||
|
if i < 0:
|
||
|
i += M
|
||
|
if i < 0 or i >= M:
|
||
|
raise IndexError('row index out of bounds')
|
||
|
new = self._lil_container((1, N), dtype=self.dtype)
|
||
|
new.rows[0] = self.rows[i][:]
|
||
|
new.data[0] = self.data[i][:]
|
||
|
return new
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
# Fast path for simple (int, int) indexing.
|
||
|
if (isinstance(key, tuple) and len(key) == 2 and
|
||
|
isinstance(key[0], INT_TYPES) and
|
||
|
isinstance(key[1], INT_TYPES)):
|
||
|
# lil_get1 handles validation for us.
|
||
|
return self._get_intXint(*key)
|
||
|
# Everything else takes the normal path.
|
||
|
return IndexMixin.__getitem__(self, key)
|
||
|
|
||
|
def _asindices(self, idx, N):
|
||
|
# LIL routines handle bounds-checking for us, so don't do it here.
|
||
|
try:
|
||
|
x = np.asarray(idx)
|
||
|
except (ValueError, TypeError, MemoryError) as e:
|
||
|
raise IndexError('invalid index') from e
|
||
|
if x.ndim not in (1, 2):
|
||
|
raise IndexError('Index dimension must be <= 2')
|
||
|
return x
|
||
|
|
||
|
def _get_intXint(self, row, col):
|
||
|
v = _csparsetools.lil_get1(self.shape[0], self.shape[1], self.rows,
|
||
|
self.data, row, col)
|
||
|
return self.dtype.type(v)
|
||
|
|
||
|
def _get_sliceXint(self, row, col):
|
||
|
row = range(*row.indices(self.shape[0]))
|
||
|
return self._get_row_ranges(row, slice(col, col+1))
|
||
|
|
||
|
def _get_arrayXint(self, row, col):
|
||
|
row = row.squeeze()
|
||
|
return self._get_row_ranges(row, slice(col, col+1))
|
||
|
|
||
|
def _get_intXslice(self, row, col):
|
||
|
return self._get_row_ranges((row,), col)
|
||
|
|
||
|
def _get_sliceXslice(self, row, col):
|
||
|
row = range(*row.indices(self.shape[0]))
|
||
|
return self._get_row_ranges(row, col)
|
||
|
|
||
|
def _get_arrayXslice(self, row, col):
|
||
|
return self._get_row_ranges(row, col)
|
||
|
|
||
|
def _get_intXarray(self, row, col):
|
||
|
row = np.array(row, dtype=col.dtype, ndmin=1)
|
||
|
return self._get_columnXarray(row, col)
|
||
|
|
||
|
def _get_sliceXarray(self, row, col):
|
||
|
row = np.arange(*row.indices(self.shape[0]))
|
||
|
return self._get_columnXarray(row, col)
|
||
|
|
||
|
def _get_columnXarray(self, row, col):
|
||
|
# outer indexing
|
||
|
row, col = _broadcast_arrays(row[:,None], col)
|
||
|
return self._get_arrayXarray(row, col)
|
||
|
|
||
|
def _get_arrayXarray(self, row, col):
|
||
|
# inner indexing
|
||
|
i, j = map(np.atleast_2d, _prepare_index_for_memoryview(row, col))
|
||
|
new = self._lil_container(i.shape, dtype=self.dtype)
|
||
|
_csparsetools.lil_fancy_get(self.shape[0], self.shape[1],
|
||
|
self.rows, self.data,
|
||
|
new.rows, new.data,
|
||
|
i, j)
|
||
|
return new
|
||
|
|
||
|
def _get_row_ranges(self, rows, col_slice):
|
||
|
"""
|
||
|
Fast path for indexing in the case where column index is slice.
|
||
|
|
||
|
This gains performance improvement over brute force by more
|
||
|
efficient skipping of zeros, by accessing the elements
|
||
|
column-wise in order.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
rows : sequence or range
|
||
|
Rows indexed. If range, must be within valid bounds.
|
||
|
col_slice : slice
|
||
|
Columns indexed
|
||
|
|
||
|
"""
|
||
|
j_start, j_stop, j_stride = col_slice.indices(self.shape[1])
|
||
|
col_range = range(j_start, j_stop, j_stride)
|
||
|
nj = len(col_range)
|
||
|
new = self._lil_container((len(rows), nj), dtype=self.dtype)
|
||
|
|
||
|
_csparsetools.lil_get_row_ranges(self.shape[0], self.shape[1],
|
||
|
self.rows, self.data,
|
||
|
new.rows, new.data,
|
||
|
rows,
|
||
|
j_start, j_stop, j_stride, nj)
|
||
|
|
||
|
return new
|
||
|
|
||
|
def _set_intXint(self, row, col, x):
|
||
|
_csparsetools.lil_insert(self.shape[0], self.shape[1], self.rows,
|
||
|
self.data, row, col, x)
|
||
|
|
||
|
def _set_arrayXarray(self, row, col, x):
|
||
|
i, j, x = map(np.atleast_2d, _prepare_index_for_memoryview(row, col, x))
|
||
|
_csparsetools.lil_fancy_set(self.shape[0], self.shape[1],
|
||
|
self.rows, self.data,
|
||
|
i, j, x)
|
||
|
|
||
|
def _set_arrayXarray_sparse(self, row, col, x):
|
||
|
# Fall back to densifying x
|
||
|
x = np.asarray(x.toarray(), dtype=self.dtype)
|
||
|
x, _ = _broadcast_arrays(x, row)
|
||
|
self._set_arrayXarray(row, col, x)
|
||
|
|
||
|
def __setitem__(self, key, x):
|
||
|
if isinstance(key, tuple) and len(key) == 2:
|
||
|
row, col = key
|
||
|
# Fast path for simple (int, int) indexing.
|
||
|
if isinstance(row, INT_TYPES) and isinstance(col, INT_TYPES):
|
||
|
x = self.dtype.type(x)
|
||
|
if x.size > 1:
|
||
|
raise ValueError("Trying to assign a sequence to an item")
|
||
|
return self._set_intXint(row, col, x)
|
||
|
# Fast path for full-matrix sparse assignment.
|
||
|
if (isinstance(row, slice) and isinstance(col, slice) and
|
||
|
row == slice(None) and col == slice(None) and
|
||
|
issparse(x) and x.shape == self.shape):
|
||
|
x = self._lil_container(x, dtype=self.dtype)
|
||
|
self.rows = x.rows
|
||
|
self.data = x.data
|
||
|
return
|
||
|
# Everything else takes the normal path.
|
||
|
IndexMixin.__setitem__(self, key, x)
|
||
|
|
||
|
def _mul_scalar(self, other):
|
||
|
if other == 0:
|
||
|
# Multiply by zero: return the zero matrix
|
||
|
new = self._lil_container(self.shape, dtype=self.dtype)
|
||
|
else:
|
||
|
res_dtype = upcast_scalar(self.dtype, other)
|
||
|
|
||
|
new = self.copy()
|
||
|
new = new.astype(res_dtype)
|
||
|
# Multiply this scalar by every element.
|
||
|
for j, rowvals in enumerate(new.data):
|
||
|
new.data[j] = [val*other for val in rowvals]
|
||
|
return new
|
||
|
|
||
|
def __truediv__(self, other): # self / other
|
||
|
if isscalarlike(other):
|
||
|
new = self.copy()
|
||
|
new.dtype = np.result_type(self, other)
|
||
|
# Divide every element by this scalar
|
||
|
for j, rowvals in enumerate(new.data):
|
||
|
new.data[j] = [val/other for val in rowvals]
|
||
|
return new
|
||
|
else:
|
||
|
return self.tocsr() / other
|
||
|
|
||
|
def copy(self):
|
||
|
M, N = self.shape
|
||
|
new = self._lil_container(self.shape, dtype=self.dtype)
|
||
|
# This is ~14x faster than calling deepcopy() on rows and data.
|
||
|
_csparsetools.lil_get_row_ranges(M, N, self.rows, self.data,
|
||
|
new.rows, new.data, range(M),
|
||
|
0, N, 1, N)
|
||
|
return new
|
||
|
|
||
|
copy.__doc__ = _spbase.copy.__doc__
|
||
|
|
||
|
def reshape(self, *args, **kwargs):
|
||
|
shape = check_shape(args, self.shape)
|
||
|
order, copy = check_reshape_kwargs(kwargs)
|
||
|
|
||
|
# Return early if reshape is not required
|
||
|
if shape == self.shape:
|
||
|
if copy:
|
||
|
return self.copy()
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
new = self._lil_container(shape, dtype=self.dtype)
|
||
|
|
||
|
if order == 'C':
|
||
|
ncols = self.shape[1]
|
||
|
for i, row in enumerate(self.rows):
|
||
|
for col, j in enumerate(row):
|
||
|
new_r, new_c = np.unravel_index(i * ncols + j, shape)
|
||
|
new[new_r, new_c] = self[i, j]
|
||
|
elif order == 'F':
|
||
|
nrows = self.shape[0]
|
||
|
for i, row in enumerate(self.rows):
|
||
|
for col, j in enumerate(row):
|
||
|
new_r, new_c = np.unravel_index(i + j * nrows, shape, order)
|
||
|
new[new_r, new_c] = self[i, j]
|
||
|
else:
|
||
|
raise ValueError("'order' must be 'C' or 'F'")
|
||
|
|
||
|
return new
|
||
|
|
||
|
reshape.__doc__ = _spbase.reshape.__doc__
|
||
|
|
||
|
def resize(self, *shape):
|
||
|
shape = check_shape(shape)
|
||
|
new_M, new_N = shape
|
||
|
M, N = self.shape
|
||
|
|
||
|
if new_M < M:
|
||
|
self.rows = self.rows[:new_M]
|
||
|
self.data = self.data[:new_M]
|
||
|
elif new_M > M:
|
||
|
self.rows = np.resize(self.rows, new_M)
|
||
|
self.data = np.resize(self.data, new_M)
|
||
|
for i in range(M, new_M):
|
||
|
self.rows[i] = []
|
||
|
self.data[i] = []
|
||
|
|
||
|
if new_N < N:
|
||
|
for row, data in zip(self.rows, self.data):
|
||
|
trunc = bisect_left(row, new_N)
|
||
|
del row[trunc:]
|
||
|
del data[trunc:]
|
||
|
|
||
|
self._shape = shape
|
||
|
|
||
|
resize.__doc__ = _spbase.resize.__doc__
|
||
|
|
||
|
def toarray(self, order=None, out=None):
|
||
|
d = self._process_toarray_args(order, out)
|
||
|
for i, row in enumerate(self.rows):
|
||
|
for pos, j in enumerate(row):
|
||
|
d[i, j] = self.data[i][pos]
|
||
|
return d
|
||
|
|
||
|
toarray.__doc__ = _spbase.toarray.__doc__
|
||
|
|
||
|
def transpose(self, axes=None, copy=False):
|
||
|
return self.tocsr(copy=copy).transpose(axes=axes, copy=False).tolil(copy=False)
|
||
|
|
||
|
transpose.__doc__ = _spbase.transpose.__doc__
|
||
|
|
||
|
def tolil(self, copy=False):
|
||
|
if copy:
|
||
|
return self.copy()
|
||
|
else:
|
||
|
return self
|
||
|
|
||
|
tolil.__doc__ = _spbase.tolil.__doc__
|
||
|
|
||
|
def tocsr(self, copy=False):
|
||
|
M, N = self.shape
|
||
|
if M == 0 or N == 0:
|
||
|
return self._csr_container((M, N), dtype=self.dtype)
|
||
|
|
||
|
# construct indptr array
|
||
|
if M*N <= np.iinfo(np.int32).max:
|
||
|
# fast path: it is known that 64-bit indexing will not be needed.
|
||
|
idx_dtype = np.int32
|
||
|
indptr = np.empty(M + 1, dtype=idx_dtype)
|
||
|
indptr[0] = 0
|
||
|
_csparsetools.lil_get_lengths(self.rows, indptr[1:])
|
||
|
np.cumsum(indptr, out=indptr)
|
||
|
nnz = indptr[-1]
|
||
|
else:
|
||
|
idx_dtype = self._get_index_dtype(maxval=N)
|
||
|
lengths = np.empty(M, dtype=idx_dtype)
|
||
|
_csparsetools.lil_get_lengths(self.rows, lengths)
|
||
|
nnz = lengths.sum(dtype=np.int64)
|
||
|
idx_dtype = self._get_index_dtype(maxval=max(N, nnz))
|
||
|
indptr = np.empty(M + 1, dtype=idx_dtype)
|
||
|
indptr[0] = 0
|
||
|
np.cumsum(lengths, dtype=idx_dtype, out=indptr[1:])
|
||
|
|
||
|
indices = np.empty(nnz, dtype=idx_dtype)
|
||
|
data = np.empty(nnz, dtype=self.dtype)
|
||
|
_csparsetools.lil_flatten_to_array(self.rows, indices)
|
||
|
_csparsetools.lil_flatten_to_array(self.data, data)
|
||
|
|
||
|
# init csr matrix
|
||
|
return self._csr_container((data, indices, indptr), shape=self.shape)
|
||
|
|
||
|
tocsr.__doc__ = _spbase.tocsr.__doc__
|
||
|
|
||
|
|
||
|
def _prepare_index_for_memoryview(i, j, x=None):
|
||
|
"""
|
||
|
Convert index and data arrays to form suitable for passing to the
|
||
|
Cython fancy getset routines.
|
||
|
|
||
|
The conversions are necessary since to (i) ensure the integer
|
||
|
index arrays are in one of the accepted types, and (ii) to ensure
|
||
|
the arrays are writable so that Cython memoryview support doesn't
|
||
|
choke on them.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
i, j
|
||
|
Index arrays
|
||
|
x : optional
|
||
|
Data arrays
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
i, j, x
|
||
|
Re-formatted arrays (x is omitted, if input was None)
|
||
|
|
||
|
"""
|
||
|
if i.dtype > j.dtype:
|
||
|
j = j.astype(i.dtype)
|
||
|
elif i.dtype < j.dtype:
|
||
|
i = i.astype(j.dtype)
|
||
|
|
||
|
if not i.flags.writeable or i.dtype not in (np.int32, np.int64):
|
||
|
i = i.astype(np.intp)
|
||
|
if not j.flags.writeable or j.dtype not in (np.int32, np.int64):
|
||
|
j = j.astype(np.intp)
|
||
|
|
||
|
if x is not None:
|
||
|
if not x.flags.writeable:
|
||
|
x = x.copy()
|
||
|
return i, j, x
|
||
|
else:
|
||
|
return i, j
|
||
|
|
||
|
|
||
|
def isspmatrix_lil(x):
|
||
|
"""Is `x` of lil_matrix type?
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
x
|
||
|
object to check for being a lil matrix
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
True if `x` is a lil matrix, False otherwise
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from scipy.sparse import lil_array, lil_matrix, coo_matrix, isspmatrix_lil
|
||
|
>>> isspmatrix_lil(lil_matrix([[5]]))
|
||
|
True
|
||
|
>>> isspmatrix_lil(lil_array([[5]]))
|
||
|
False
|
||
|
>>> isspmatrix_lil(coo_matrix([[5]]))
|
||
|
False
|
||
|
"""
|
||
|
return isinstance(x, lil_matrix)
|
||
|
|
||
|
|
||
|
# This namespace class separates array from matrix with isinstance
|
||
|
class lil_array(_lil_base, sparray):
|
||
|
"""
|
||
|
Row-based LIst of Lists sparse array.
|
||
|
|
||
|
This is a structure for constructing sparse arrays incrementally.
|
||
|
Note that inserting a single item can take linear time in the worst case;
|
||
|
to construct the array efficiently, make sure the items are pre-sorted by
|
||
|
index, per row.
|
||
|
|
||
|
This can be instantiated in several ways:
|
||
|
lil_array(D)
|
||
|
where D is a 2-D ndarray
|
||
|
|
||
|
lil_array(S)
|
||
|
with another sparse array or matrix S (equivalent to S.tolil())
|
||
|
|
||
|
lil_array((M, N), [dtype])
|
||
|
to construct an empty array with shape (M, N)
|
||
|
dtype is optional, defaulting to dtype='d'.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
dtype : dtype
|
||
|
Data type of the array
|
||
|
shape : 2-tuple
|
||
|
Shape of the array
|
||
|
ndim : int
|
||
|
Number of dimensions (this is always 2)
|
||
|
nnz
|
||
|
size
|
||
|
data
|
||
|
LIL format data array of the array
|
||
|
rows
|
||
|
LIL format row index array of the array
|
||
|
T
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Sparse arrays can be used in arithmetic operations: they support
|
||
|
addition, subtraction, multiplication, division, and matrix power.
|
||
|
|
||
|
Advantages of the LIL format
|
||
|
- supports flexible slicing
|
||
|
- changes to the array sparsity structure are efficient
|
||
|
|
||
|
Disadvantages of the LIL format
|
||
|
- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
|
||
|
- slow column slicing (consider CSC)
|
||
|
- slow matrix vector products (consider CSR or CSC)
|
||
|
|
||
|
Intended Usage
|
||
|
- LIL is a convenient format for constructing sparse arrays
|
||
|
- once an array has been constructed, convert to CSR or
|
||
|
CSC format for fast arithmetic and matrix vector operations
|
||
|
- consider using the COO format when constructing large arrays
|
||
|
|
||
|
Data Structure
|
||
|
- An array (``self.rows``) of rows, each of which is a sorted
|
||
|
list of column indices of non-zero elements.
|
||
|
- The corresponding nonzero values are stored in similar
|
||
|
fashion in ``self.data``.
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
class lil_matrix(spmatrix, _lil_base):
|
||
|
"""
|
||
|
Row-based LIst of Lists sparse matrix.
|
||
|
|
||
|
This is a structure for constructing sparse matrices incrementally.
|
||
|
Note that inserting a single item can take linear time in the worst case;
|
||
|
to construct the matrix efficiently, make sure the items are pre-sorted by
|
||
|
index, per row.
|
||
|
|
||
|
This can be instantiated in several ways:
|
||
|
lil_matrix(D)
|
||
|
where D is a 2-D ndarray
|
||
|
|
||
|
lil_matrix(S)
|
||
|
with another sparse array or matrix S (equivalent to S.tolil())
|
||
|
|
||
|
lil_matrix((M, N), [dtype])
|
||
|
to construct an empty matrix with shape (M, N)
|
||
|
dtype is optional, defaulting to dtype='d'.
|
||
|
|
||
|
Attributes
|
||
|
----------
|
||
|
dtype : dtype
|
||
|
Data type of the matrix
|
||
|
shape : 2-tuple
|
||
|
Shape of the matrix
|
||
|
ndim : int
|
||
|
Number of dimensions (this is always 2)
|
||
|
nnz
|
||
|
size
|
||
|
data
|
||
|
LIL format data array of the matrix
|
||
|
rows
|
||
|
LIL format row index array of the matrix
|
||
|
T
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Sparse matrices can be used in arithmetic operations: they support
|
||
|
addition, subtraction, multiplication, division, and matrix power.
|
||
|
|
||
|
Advantages of the LIL format
|
||
|
- supports flexible slicing
|
||
|
- changes to the matrix sparsity structure are efficient
|
||
|
|
||
|
Disadvantages of the LIL format
|
||
|
- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
|
||
|
- slow column slicing (consider CSC)
|
||
|
- slow matrix vector products (consider CSR or CSC)
|
||
|
|
||
|
Intended Usage
|
||
|
- LIL is a convenient format for constructing sparse matrices
|
||
|
- once a matrix has been constructed, convert to CSR or
|
||
|
CSC format for fast arithmetic and matrix vector operations
|
||
|
- consider using the COO format when constructing large matrices
|
||
|
|
||
|
Data Structure
|
||
|
- An array (``self.rows``) of rows, each of which is a sorted
|
||
|
list of column indices of non-zero elements.
|
||
|
- The corresponding nonzero values are stored in similar
|
||
|
fashion in ``self.data``.
|
||
|
|
||
|
"""
|