Traktor/myenv/Lib/site-packages/sklearn/utils/_mask.py

179 lines
4.7 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
from contextlib import suppress
import numpy as np
from scipy import sparse as sp
from ._missing import is_scalar_nan
from ._param_validation import validate_params
from .fixes import _object_dtype_isnan
def _get_dense_mask(X, value_to_mask):
with suppress(ImportError, AttributeError):
# We also suppress `AttributeError` because older versions of pandas do
# not have `NA`.
import pandas
if value_to_mask is pandas.NA:
return pandas.isna(X)
if is_scalar_nan(value_to_mask):
if X.dtype.kind == "f":
Xt = np.isnan(X)
elif X.dtype.kind in ("i", "u"):
# can't have NaNs in integer array.
Xt = np.zeros(X.shape, dtype=bool)
else:
# np.isnan does not work on object dtypes.
Xt = _object_dtype_isnan(X)
else:
Xt = X == value_to_mask
return Xt
def _get_mask(X, value_to_mask):
"""Compute the boolean mask X == value_to_mask.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Input data, where ``n_samples`` is the number of samples and
``n_features`` is the number of features.
value_to_mask : {int, float}
The value which is to be masked in X.
Returns
-------
X_mask : {ndarray, sparse matrix} of shape (n_samples, n_features)
Missing mask.
"""
if not sp.issparse(X):
# For all cases apart of a sparse input where we need to reconstruct
# a sparse output
return _get_dense_mask(X, value_to_mask)
Xt = _get_dense_mask(X.data, value_to_mask)
sparse_constructor = sp.csr_matrix if X.format == "csr" else sp.csc_matrix
Xt_sparse = sparse_constructor(
(Xt, X.indices.copy(), X.indptr.copy()), shape=X.shape, dtype=bool
)
return Xt_sparse
@validate_params(
{
"X": ["array-like", "sparse matrix"],
"mask": ["array-like"],
},
prefer_skip_nested_validation=True,
)
def safe_mask(X, mask):
"""Return a mask which is safe to use on X.
Parameters
----------
X : {array-like, sparse matrix}
Data on which to apply mask.
mask : array-like
Mask to be used on X.
Returns
-------
mask : ndarray
Array that is safe to use on X.
Examples
--------
>>> from sklearn.utils import safe_mask
>>> from scipy.sparse import csr_matrix
>>> data = csr_matrix([[1], [2], [3], [4], [5]])
>>> condition = [False, True, True, False, True]
>>> mask = safe_mask(data, condition)
>>> data[mask].toarray()
array([[2],
[3],
[5]])
"""
mask = np.asarray(mask)
if np.issubdtype(mask.dtype, np.signedinteger):
return mask
if hasattr(X, "toarray"):
ind = np.arange(mask.shape[0])
mask = ind[mask]
return mask
def axis0_safe_slice(X, mask, len_mask):
"""Return a mask which is safer to use on X than safe_mask.
This mask is safer than safe_mask since it returns an
empty array, when a sparse matrix is sliced with a boolean mask
with all False, instead of raising an unhelpful error in older
versions of SciPy.
See: https://github.com/scipy/scipy/issues/5361
Also note that we can avoid doing the dot product by checking if
the len_mask is not zero in _huber_loss_and_gradient but this
is not going to be the bottleneck, since the number of outliers
and non_outliers are typically non-zero and it makes the code
tougher to follow.
Parameters
----------
X : {array-like, sparse matrix}
Data on which to apply mask.
mask : ndarray
Mask to be used on X.
len_mask : int
The length of the mask.
Returns
-------
mask : ndarray
Array that is safe to use on X.
"""
if len_mask != 0:
return X[safe_mask(X, mask), :]
return np.zeros(shape=(0, X.shape[1]))
def indices_to_mask(indices, mask_length):
"""Convert list of indices to boolean mask.
Parameters
----------
indices : list-like
List of integers treated as indices.
mask_length : int
Length of boolean mask to be generated.
This parameter must be greater than max(indices).
Returns
-------
mask : 1d boolean nd-array
Boolean array that is True where indices are present, else False.
Examples
--------
>>> from sklearn.utils._mask import indices_to_mask
>>> indices = [1, 2 , 3, 4]
>>> indices_to_mask(indices, 5)
array([False, True, True, True, True])
"""
if mask_length <= np.max(indices):
raise ValueError("mask_length must be greater than max(indices)")
mask = np.zeros(mask_length, dtype=bool)
mask[indices] = True
return mask