878 lines
24 KiB
Python
878 lines
24 KiB
Python
|
#!/usr/bin/python
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
##################################################################################################
|
||
|
# module for the eigenvalue problem
|
||
|
# Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
|
||
|
#
|
||
|
# todo:
|
||
|
# - implement balancing
|
||
|
# - agressive early deflation
|
||
|
#
|
||
|
##################################################################################################
|
||
|
|
||
|
"""
|
||
|
The eigenvalue problem
|
||
|
----------------------
|
||
|
|
||
|
This file contains routines for the eigenvalue problem.
|
||
|
|
||
|
high level routines:
|
||
|
|
||
|
hessenberg : reduction of a real or complex square matrix to upper Hessenberg form
|
||
|
schur : reduction of a real or complex square matrix to upper Schur form
|
||
|
eig : eigenvalues and eigenvectors of a real or complex square matrix
|
||
|
|
||
|
low level routines:
|
||
|
|
||
|
hessenberg_reduce_0 : reduction of a real or complex square matrix to upper Hessenberg form
|
||
|
hessenberg_reduce_1 : auxiliary routine to hessenberg_reduce_0
|
||
|
qr_step : a single implicitly shifted QR step for an upper Hessenberg matrix
|
||
|
hessenberg_qr : Schur decomposition of an upper Hessenberg matrix
|
||
|
eig_tr_r : right eigenvectors of an upper triangular matrix
|
||
|
eig_tr_l : left eigenvectors of an upper triangular matrix
|
||
|
"""
|
||
|
|
||
|
from ..libmp.backend import xrange
|
||
|
|
||
|
class Eigen(object):
|
||
|
pass
|
||
|
|
||
|
def defun(f):
|
||
|
setattr(Eigen, f.__name__, f)
|
||
|
return f
|
||
|
|
||
|
def hessenberg_reduce_0(ctx, A, T):
|
||
|
"""
|
||
|
This routine computes the (upper) Hessenberg decomposition of a square matrix A.
|
||
|
Given A, an unitary matrix Q is calculated such that
|
||
|
|
||
|
Q' A Q = H and Q' Q = Q Q' = 1
|
||
|
|
||
|
where H is an upper Hessenberg matrix, meaning that it only contains zeros
|
||
|
below the first subdiagonal. Here ' denotes the hermitian transpose (i.e.
|
||
|
transposition and conjugation).
|
||
|
|
||
|
parameters:
|
||
|
A (input/output) On input, A contains the square matrix A of
|
||
|
dimension (n,n). On output, A contains a compressed representation
|
||
|
of Q and H.
|
||
|
T (output) An array of length n containing the first elements of
|
||
|
the Householder reflectors.
|
||
|
"""
|
||
|
|
||
|
# internally we work with householder reflections from the right.
|
||
|
# let u be a row vector (i.e. u[i]=A[i,:i]). then
|
||
|
# Q is build up by reflectors of the type (1-v'v) where v is a suitable
|
||
|
# modification of u. these reflectors are applyed to A from the right.
|
||
|
# because we work with reflectors from the right we have to start with
|
||
|
# the bottom row of A and work then upwards (this corresponds to
|
||
|
# some kind of RQ decomposition).
|
||
|
# the first part of the vectors v (i.e. A[i,:(i-1)]) are stored as row vectors
|
||
|
# in the lower left part of A (excluding the diagonal and subdiagonal).
|
||
|
# the last entry of v is stored in T.
|
||
|
# the upper right part of A (including diagonal and subdiagonal) becomes H.
|
||
|
|
||
|
|
||
|
n = A.rows
|
||
|
if n <= 2: return
|
||
|
|
||
|
for i in xrange(n-1, 1, -1):
|
||
|
|
||
|
# scale the vector
|
||
|
|
||
|
scale = 0
|
||
|
for k in xrange(0, i):
|
||
|
scale += abs(ctx.re(A[i,k])) + abs(ctx.im(A[i,k]))
|
||
|
|
||
|
scale_inv = 0
|
||
|
if scale != 0:
|
||
|
scale_inv = 1 / scale
|
||
|
|
||
|
if scale == 0 or ctx.isinf(scale_inv):
|
||
|
# sadly there are floating point numbers not equal to zero whose reciprocal is infinity
|
||
|
T[i] = 0
|
||
|
A[i,i-1] = 0
|
||
|
continue
|
||
|
|
||
|
# calculate parameters for housholder transformation
|
||
|
|
||
|
H = 0
|
||
|
for k in xrange(0, i):
|
||
|
A[i,k] *= scale_inv
|
||
|
rr = ctx.re(A[i,k])
|
||
|
ii = ctx.im(A[i,k])
|
||
|
H += rr * rr + ii * ii
|
||
|
|
||
|
F = A[i,i-1]
|
||
|
f = abs(F)
|
||
|
G = ctx.sqrt(H)
|
||
|
A[i,i-1] = - G * scale
|
||
|
|
||
|
if f == 0:
|
||
|
T[i] = G
|
||
|
else:
|
||
|
ff = F / f
|
||
|
T[i] = F + G * ff
|
||
|
A[i,i-1] *= ff
|
||
|
|
||
|
H += G * f
|
||
|
H = 1 / ctx.sqrt(H)
|
||
|
|
||
|
T[i] *= H
|
||
|
for k in xrange(0, i - 1):
|
||
|
A[i,k] *= H
|
||
|
|
||
|
for j in xrange(0, i):
|
||
|
# apply housholder transformation (from right)
|
||
|
|
||
|
G = ctx.conj(T[i]) * A[j,i-1]
|
||
|
for k in xrange(0, i-1):
|
||
|
G += ctx.conj(A[i,k]) * A[j,k]
|
||
|
|
||
|
A[j,i-1] -= G * T[i]
|
||
|
for k in xrange(0, i-1):
|
||
|
A[j,k] -= G * A[i,k]
|
||
|
|
||
|
for j in xrange(0, n):
|
||
|
# apply housholder transformation (from left)
|
||
|
|
||
|
G = T[i] * A[i-1,j]
|
||
|
for k in xrange(0, i-1):
|
||
|
G += A[i,k] * A[k,j]
|
||
|
|
||
|
A[i-1,j] -= G * ctx.conj(T[i])
|
||
|
for k in xrange(0, i-1):
|
||
|
A[k,j] -= G * ctx.conj(A[i,k])
|
||
|
|
||
|
|
||
|
|
||
|
def hessenberg_reduce_1(ctx, A, T):
|
||
|
"""
|
||
|
This routine forms the unitary matrix Q described in hessenberg_reduce_0.
|
||
|
|
||
|
parameters:
|
||
|
A (input/output) On input, A is the same matrix as delivered by
|
||
|
hessenberg_reduce_0. On output, A is set to Q.
|
||
|
|
||
|
T (input) On input, T is the same array as delivered by hessenberg_reduce_0.
|
||
|
"""
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
if n == 1:
|
||
|
A[0,0] = 1
|
||
|
return
|
||
|
|
||
|
A[0,0] = A[1,1] = 1
|
||
|
A[0,1] = A[1,0] = 0
|
||
|
|
||
|
for i in xrange(2, n):
|
||
|
if T[i] != 0:
|
||
|
|
||
|
for j in xrange(0, i):
|
||
|
G = T[i] * A[i-1,j]
|
||
|
for k in xrange(0, i-1):
|
||
|
G += A[i,k] * A[k,j]
|
||
|
|
||
|
A[i-1,j] -= G * ctx.conj(T[i])
|
||
|
for k in xrange(0, i-1):
|
||
|
A[k,j] -= G * ctx.conj(A[i,k])
|
||
|
|
||
|
A[i,i] = 1
|
||
|
for j in xrange(0, i):
|
||
|
A[j,i] = A[i,j] = 0
|
||
|
|
||
|
|
||
|
|
||
|
@defun
|
||
|
def hessenberg(ctx, A, overwrite_a = False):
|
||
|
"""
|
||
|
This routine computes the Hessenberg decomposition of a square matrix A.
|
||
|
Given A, an unitary matrix Q is determined such that
|
||
|
|
||
|
Q' A Q = H and Q' Q = Q Q' = 1
|
||
|
|
||
|
where H is an upper right Hessenberg matrix. Here ' denotes the hermitian
|
||
|
transpose (i.e. transposition and conjugation).
|
||
|
|
||
|
input:
|
||
|
A : a real or complex square matrix
|
||
|
overwrite_a : if true, allows modification of A which may improve
|
||
|
performance. if false, A is not modified.
|
||
|
|
||
|
output:
|
||
|
Q : an unitary matrix
|
||
|
H : an upper right Hessenberg matrix
|
||
|
|
||
|
example:
|
||
|
>>> from mpmath import mp
|
||
|
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
||
|
>>> Q, H = mp.hessenberg(A)
|
||
|
>>> mp.nprint(H, 3) # doctest:+SKIP
|
||
|
[ 3.15 2.23 4.44]
|
||
|
[-0.769 4.85 3.05]
|
||
|
[ 0.0 3.61 7.0]
|
||
|
>>> print(mp.chop(A - Q * H * Q.transpose_conj()))
|
||
|
[0.0 0.0 0.0]
|
||
|
[0.0 0.0 0.0]
|
||
|
[0.0 0.0 0.0]
|
||
|
|
||
|
return value: (Q, H)
|
||
|
"""
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
if n == 1:
|
||
|
return (ctx.matrix([[1]]), A)
|
||
|
|
||
|
if not overwrite_a:
|
||
|
A = A.copy()
|
||
|
|
||
|
T = ctx.matrix(n, 1)
|
||
|
|
||
|
hessenberg_reduce_0(ctx, A, T)
|
||
|
Q = A.copy()
|
||
|
hessenberg_reduce_1(ctx, Q, T)
|
||
|
|
||
|
for x in xrange(n):
|
||
|
for y in xrange(x+2, n):
|
||
|
A[y,x] = 0
|
||
|
|
||
|
return Q, A
|
||
|
|
||
|
|
||
|
###########################################################################
|
||
|
|
||
|
|
||
|
def qr_step(ctx, n0, n1, A, Q, shift):
|
||
|
"""
|
||
|
This subroutine executes a single implicitly shifted QR step applied to an
|
||
|
upper Hessenberg matrix A. Given A and shift as input, first an QR
|
||
|
decomposition is calculated:
|
||
|
|
||
|
Q R = A - shift * 1 .
|
||
|
|
||
|
The output is then following matrix:
|
||
|
|
||
|
R Q + shift * 1
|
||
|
|
||
|
parameters:
|
||
|
n0, n1 (input) Two integers which specify the submatrix A[n0:n1,n0:n1]
|
||
|
on which this subroutine operators. The subdiagonal elements
|
||
|
to the left and below this submatrix must be deflated (i.e. zero).
|
||
|
following restriction is imposed: n1>=n0+2
|
||
|
A (input/output) On input, A is an upper Hessenberg matrix.
|
||
|
On output, A is replaced by "R Q + shift * 1"
|
||
|
Q (input/output) The parameter Q is multiplied by the unitary matrix
|
||
|
Q arising from the QR decomposition. Q can also be false, in which
|
||
|
case the unitary matrix Q is not computated.
|
||
|
shift (input) a complex number specifying the shift. idealy close to an
|
||
|
eigenvalue of the bottemmost part of the submatrix A[n0:n1,n0:n1].
|
||
|
|
||
|
references:
|
||
|
Stoer, Bulirsch - Introduction to Numerical Analysis.
|
||
|
Kresser : Numerical Methods for General and Structured Eigenvalue Problems
|
||
|
"""
|
||
|
|
||
|
# implicitly shifted and bulge chasing is explained at p.398/399 in "Stoer, Bulirsch - Introduction to Numerical Analysis"
|
||
|
# for bulge chasing see also "Watkins - The Matrix Eigenvalue Problem" sec.4.5,p.173
|
||
|
|
||
|
# the Givens rotation we used is determined as follows: let c,s be two complex
|
||
|
# numbers. then we have following relation:
|
||
|
#
|
||
|
# v = sqrt(|c|^2 + |s|^2)
|
||
|
#
|
||
|
# 1/v [ c~ s~] [c] = [v]
|
||
|
# [-s c ] [s] [0]
|
||
|
#
|
||
|
# the matrix on the left is our Givens rotation.
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
# first step
|
||
|
|
||
|
# calculate givens rotation
|
||
|
c = A[n0 ,n0] - shift
|
||
|
s = A[n0+1,n0]
|
||
|
|
||
|
v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s)))
|
||
|
|
||
|
if v == 0:
|
||
|
v = 1
|
||
|
c = 1
|
||
|
s = 0
|
||
|
else:
|
||
|
c /= v
|
||
|
s /= v
|
||
|
|
||
|
cc = ctx.conj(c)
|
||
|
cs = ctx.conj(s)
|
||
|
|
||
|
for k in xrange(n0, n):
|
||
|
# apply givens rotation from the left
|
||
|
x = A[n0 ,k]
|
||
|
y = A[n0+1,k]
|
||
|
A[n0 ,k] = cc * x + cs * y
|
||
|
A[n0+1,k] = c * y - s * x
|
||
|
|
||
|
for k in xrange(min(n1, n0+3)):
|
||
|
# apply givens rotation from the right
|
||
|
x = A[k,n0 ]
|
||
|
y = A[k,n0+1]
|
||
|
A[k,n0 ] = c * x + s * y
|
||
|
A[k,n0+1] = cc * y - cs * x
|
||
|
|
||
|
if not isinstance(Q, bool):
|
||
|
for k in xrange(n):
|
||
|
# eigenvectors
|
||
|
x = Q[k,n0 ]
|
||
|
y = Q[k,n0+1]
|
||
|
Q[k,n0 ] = c * x + s * y
|
||
|
Q[k,n0+1] = cc * y - cs * x
|
||
|
|
||
|
# chase the bulge
|
||
|
|
||
|
for j in xrange(n0, n1 - 2):
|
||
|
# calculate givens rotation
|
||
|
|
||
|
c = A[j+1,j]
|
||
|
s = A[j+2,j]
|
||
|
|
||
|
v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s)))
|
||
|
|
||
|
if v == 0:
|
||
|
A[j+1,j] = 0
|
||
|
v = 1
|
||
|
c = 1
|
||
|
s = 0
|
||
|
else:
|
||
|
A[j+1,j] = v
|
||
|
c /= v
|
||
|
s /= v
|
||
|
|
||
|
A[j+2,j] = 0
|
||
|
|
||
|
cc = ctx.conj(c)
|
||
|
cs = ctx.conj(s)
|
||
|
|
||
|
for k in xrange(j+1, n):
|
||
|
# apply givens rotation from the left
|
||
|
x = A[j+1,k]
|
||
|
y = A[j+2,k]
|
||
|
A[j+1,k] = cc * x + cs * y
|
||
|
A[j+2,k] = c * y - s * x
|
||
|
|
||
|
for k in xrange(0, min(n1, j+4)):
|
||
|
# apply givens rotation from the right
|
||
|
x = A[k,j+1]
|
||
|
y = A[k,j+2]
|
||
|
A[k,j+1] = c * x + s * y
|
||
|
A[k,j+2] = cc * y - cs * x
|
||
|
|
||
|
if not isinstance(Q, bool):
|
||
|
for k in xrange(0, n):
|
||
|
# eigenvectors
|
||
|
x = Q[k,j+1]
|
||
|
y = Q[k,j+2]
|
||
|
Q[k,j+1] = c * x + s * y
|
||
|
Q[k,j+2] = cc * y - cs * x
|
||
|
|
||
|
|
||
|
|
||
|
def hessenberg_qr(ctx, A, Q):
|
||
|
"""
|
||
|
This routine computes the Schur decomposition of an upper Hessenberg matrix A.
|
||
|
Given A, an unitary matrix Q is determined such that
|
||
|
|
||
|
Q' A Q = R and Q' Q = Q Q' = 1
|
||
|
|
||
|
where R is an upper right triangular matrix. Here ' denotes the hermitian
|
||
|
transpose (i.e. transposition and conjugation).
|
||
|
|
||
|
parameters:
|
||
|
A (input/output) On input, A contains an upper Hessenberg matrix.
|
||
|
On output, A is replace by the upper right triangluar matrix R.
|
||
|
|
||
|
Q (input/output) The parameter Q is multiplied by the unitary
|
||
|
matrix Q arising from the Schur decomposition. Q can also be
|
||
|
false, in which case the unitary matrix Q is not computated.
|
||
|
"""
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
norm = 0
|
||
|
for x in xrange(n):
|
||
|
for y in xrange(min(x+2, n)):
|
||
|
norm += ctx.re(A[y,x]) ** 2 + ctx.im(A[y,x]) ** 2
|
||
|
norm = ctx.sqrt(norm) / n
|
||
|
|
||
|
if norm == 0:
|
||
|
return
|
||
|
|
||
|
n0 = 0
|
||
|
n1 = n
|
||
|
|
||
|
eps = ctx.eps / (100 * n)
|
||
|
maxits = ctx.dps * 4
|
||
|
|
||
|
its = totalits = 0
|
||
|
|
||
|
while 1:
|
||
|
# kressner p.32 algo 3
|
||
|
# the active submatrix is A[n0:n1,n0:n1]
|
||
|
|
||
|
k = n0
|
||
|
|
||
|
while k + 1 < n1:
|
||
|
s = abs(ctx.re(A[k,k])) + abs(ctx.im(A[k,k])) + abs(ctx.re(A[k+1,k+1])) + abs(ctx.im(A[k+1,k+1]))
|
||
|
if s < eps * norm:
|
||
|
s = norm
|
||
|
if abs(A[k+1,k]) < eps * s:
|
||
|
break
|
||
|
k += 1
|
||
|
|
||
|
if k + 1 < n1:
|
||
|
# deflation found at position (k+1, k)
|
||
|
|
||
|
A[k+1,k] = 0
|
||
|
n0 = k + 1
|
||
|
|
||
|
its = 0
|
||
|
|
||
|
if n0 + 1 >= n1:
|
||
|
# block of size at most two has converged
|
||
|
n0 = 0
|
||
|
n1 = k + 1
|
||
|
if n1 < 2:
|
||
|
# QR algorithm has converged
|
||
|
return
|
||
|
else:
|
||
|
if (its % 30) == 10:
|
||
|
# exceptional shift
|
||
|
shift = A[n1-1,n1-2]
|
||
|
elif (its % 30) == 20:
|
||
|
# exceptional shift
|
||
|
shift = abs(A[n1-1,n1-2])
|
||
|
elif (its % 30) == 29:
|
||
|
# exceptional shift
|
||
|
shift = norm
|
||
|
else:
|
||
|
# A = [ a b ] det(x-A)=x*x-x*tr(A)+det(A)
|
||
|
# [ c d ]
|
||
|
#
|
||
|
# eigenvalues bad: (tr(A)+sqrt((tr(A))**2-4*det(A)))/2
|
||
|
# bad because of cancellation if |c| is small and |a-d| is small, too.
|
||
|
#
|
||
|
# eigenvalues good: (a+d+sqrt((a-d)**2+4*b*c))/2
|
||
|
|
||
|
t = A[n1-2,n1-2] + A[n1-1,n1-1]
|
||
|
s = (A[n1-1,n1-1] - A[n1-2,n1-2]) ** 2 + 4 * A[n1-1,n1-2] * A[n1-2,n1-1]
|
||
|
if ctx.re(s) > 0:
|
||
|
s = ctx.sqrt(s)
|
||
|
else:
|
||
|
s = ctx.sqrt(-s) * 1j
|
||
|
a = (t + s) / 2
|
||
|
b = (t - s) / 2
|
||
|
if abs(A[n1-1,n1-1] - a) > abs(A[n1-1,n1-1] - b):
|
||
|
shift = b
|
||
|
else:
|
||
|
shift = a
|
||
|
|
||
|
its += 1
|
||
|
totalits += 1
|
||
|
|
||
|
qr_step(ctx, n0, n1, A, Q, shift)
|
||
|
|
||
|
if its > maxits:
|
||
|
raise RuntimeError("qr: failed to converge after %d steps" % its)
|
||
|
|
||
|
|
||
|
@defun
|
||
|
def schur(ctx, A, overwrite_a = False):
|
||
|
"""
|
||
|
This routine computes the Schur decomposition of a square matrix A.
|
||
|
Given A, an unitary matrix Q is determined such that
|
||
|
|
||
|
Q' A Q = R and Q' Q = Q Q' = 1
|
||
|
|
||
|
where R is an upper right triangular matrix. Here ' denotes the
|
||
|
hermitian transpose (i.e. transposition and conjugation).
|
||
|
|
||
|
input:
|
||
|
A : a real or complex square matrix
|
||
|
overwrite_a : if true, allows modification of A which may improve
|
||
|
performance. if false, A is not modified.
|
||
|
|
||
|
output:
|
||
|
Q : an unitary matrix
|
||
|
R : an upper right triangular matrix
|
||
|
|
||
|
return value: (Q, R)
|
||
|
|
||
|
example:
|
||
|
>>> from mpmath import mp
|
||
|
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
||
|
>>> Q, R = mp.schur(A)
|
||
|
>>> mp.nprint(R, 3) # doctest:+SKIP
|
||
|
[2.0 0.417 -2.53]
|
||
|
[0.0 4.0 -4.74]
|
||
|
[0.0 0.0 9.0]
|
||
|
>>> print(mp.chop(A - Q * R * Q.transpose_conj()))
|
||
|
[0.0 0.0 0.0]
|
||
|
[0.0 0.0 0.0]
|
||
|
[0.0 0.0 0.0]
|
||
|
|
||
|
warning: The Schur decomposition is not unique.
|
||
|
"""
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
if n == 1:
|
||
|
return (ctx.matrix([[1]]), A)
|
||
|
|
||
|
if not overwrite_a:
|
||
|
A = A.copy()
|
||
|
|
||
|
T = ctx.matrix(n, 1)
|
||
|
|
||
|
hessenberg_reduce_0(ctx, A, T)
|
||
|
Q = A.copy()
|
||
|
hessenberg_reduce_1(ctx, Q, T)
|
||
|
|
||
|
for x in xrange(n):
|
||
|
for y in xrange(x + 2, n):
|
||
|
A[y,x] = 0
|
||
|
|
||
|
hessenberg_qr(ctx, A, Q)
|
||
|
|
||
|
return Q, A
|
||
|
|
||
|
|
||
|
def eig_tr_r(ctx, A):
|
||
|
"""
|
||
|
This routine calculates the right eigenvectors of an upper right triangular matrix.
|
||
|
|
||
|
input:
|
||
|
A an upper right triangular matrix
|
||
|
|
||
|
output:
|
||
|
ER a matrix whose columns form the right eigenvectors of A
|
||
|
|
||
|
return value: ER
|
||
|
"""
|
||
|
|
||
|
# this subroutine is inspired by the lapack routines ctrevc.f,clatrs.f
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
ER = ctx.eye(n)
|
||
|
|
||
|
eps = ctx.eps
|
||
|
|
||
|
unfl = ctx.ldexp(ctx.one, -ctx.prec * 30)
|
||
|
# since mpmath effectively has no limits on the exponent, we simply scale doubles up
|
||
|
# original double has prec*20
|
||
|
|
||
|
smlnum = unfl * (n / eps)
|
||
|
simin = 1 / ctx.sqrt(eps)
|
||
|
|
||
|
rmax = 1
|
||
|
|
||
|
for i in xrange(1, n):
|
||
|
s = A[i,i]
|
||
|
|
||
|
smin = max(eps * abs(s), smlnum)
|
||
|
|
||
|
for j in xrange(i - 1, -1, -1):
|
||
|
|
||
|
r = 0
|
||
|
for k in xrange(j + 1, i + 1):
|
||
|
r += A[j,k] * ER[k,i]
|
||
|
|
||
|
t = A[j,j] - s
|
||
|
if abs(t) < smin:
|
||
|
t = smin
|
||
|
|
||
|
r = -r / t
|
||
|
ER[j,i] = r
|
||
|
|
||
|
rmax = max(rmax, abs(r))
|
||
|
if rmax > simin:
|
||
|
for k in xrange(j, i+1):
|
||
|
ER[k,i] /= rmax
|
||
|
rmax = 1
|
||
|
|
||
|
if rmax != 1:
|
||
|
for k in xrange(0, i + 1):
|
||
|
ER[k,i] /= rmax
|
||
|
|
||
|
return ER
|
||
|
|
||
|
def eig_tr_l(ctx, A):
|
||
|
"""
|
||
|
This routine calculates the left eigenvectors of an upper right triangular matrix.
|
||
|
|
||
|
input:
|
||
|
A an upper right triangular matrix
|
||
|
|
||
|
output:
|
||
|
EL a matrix whose rows form the left eigenvectors of A
|
||
|
|
||
|
return value: EL
|
||
|
"""
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
EL = ctx.eye(n)
|
||
|
|
||
|
eps = ctx.eps
|
||
|
|
||
|
unfl = ctx.ldexp(ctx.one, -ctx.prec * 30)
|
||
|
# since mpmath effectively has no limits on the exponent, we simply scale doubles up
|
||
|
# original double has prec*20
|
||
|
|
||
|
smlnum = unfl * (n / eps)
|
||
|
simin = 1 / ctx.sqrt(eps)
|
||
|
|
||
|
rmax = 1
|
||
|
|
||
|
for i in xrange(0, n - 1):
|
||
|
s = A[i,i]
|
||
|
|
||
|
smin = max(eps * abs(s), smlnum)
|
||
|
|
||
|
for j in xrange(i + 1, n):
|
||
|
|
||
|
r = 0
|
||
|
for k in xrange(i, j):
|
||
|
r += EL[i,k] * A[k,j]
|
||
|
|
||
|
t = A[j,j] - s
|
||
|
if abs(t) < smin:
|
||
|
t = smin
|
||
|
|
||
|
r = -r / t
|
||
|
EL[i,j] = r
|
||
|
|
||
|
rmax = max(rmax, abs(r))
|
||
|
if rmax > simin:
|
||
|
for k in xrange(i, j + 1):
|
||
|
EL[i,k] /= rmax
|
||
|
rmax = 1
|
||
|
|
||
|
if rmax != 1:
|
||
|
for k in xrange(i, n):
|
||
|
EL[i,k] /= rmax
|
||
|
|
||
|
return EL
|
||
|
|
||
|
@defun
|
||
|
def eig(ctx, A, left = False, right = True, overwrite_a = False):
|
||
|
"""
|
||
|
This routine computes the eigenvalues and optionally the left and right
|
||
|
eigenvectors of a square matrix A. Given A, a vector E and matrices ER
|
||
|
and EL are calculated such that
|
||
|
|
||
|
A ER[:,i] = E[i] ER[:,i]
|
||
|
EL[i,:] A = EL[i,:] E[i]
|
||
|
|
||
|
E contains the eigenvalues of A. The columns of ER contain the right eigenvectors
|
||
|
of A whereas the rows of EL contain the left eigenvectors.
|
||
|
|
||
|
|
||
|
input:
|
||
|
A : a real or complex square matrix of shape (n, n)
|
||
|
left : if true, the left eigenvectors are calculated.
|
||
|
right : if true, the right eigenvectors are calculated.
|
||
|
overwrite_a : if true, allows modification of A which may improve
|
||
|
performance. if false, A is not modified.
|
||
|
|
||
|
output:
|
||
|
E : a list of length n containing the eigenvalues of A.
|
||
|
ER : a matrix whose columns contain the right eigenvectors of A.
|
||
|
EL : a matrix whose rows contain the left eigenvectors of A.
|
||
|
|
||
|
return values:
|
||
|
E if left and right are both false.
|
||
|
(E, ER) if right is true and left is false.
|
||
|
(E, EL) if left is true and right is false.
|
||
|
(E, EL, ER) if left and right are true.
|
||
|
|
||
|
|
||
|
examples:
|
||
|
>>> from mpmath import mp
|
||
|
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
||
|
>>> E, ER = mp.eig(A)
|
||
|
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
|
||
|
[0.0]
|
||
|
[0.0]
|
||
|
[0.0]
|
||
|
|
||
|
>>> E, EL, ER = mp.eig(A,left = True, right = True)
|
||
|
>>> E, EL, ER = mp.eig_sort(E, EL, ER)
|
||
|
>>> mp.nprint(E)
|
||
|
[2.0, 4.0, 9.0]
|
||
|
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
|
||
|
[0.0]
|
||
|
[0.0]
|
||
|
[0.0]
|
||
|
>>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0]))
|
||
|
[0.0 0.0 0.0]
|
||
|
|
||
|
warning:
|
||
|
- If there are multiple eigenvalues, the eigenvectors do not necessarily
|
||
|
span the whole vectorspace, i.e. ER and EL may have not full rank.
|
||
|
Furthermore in that case the eigenvectors are numerical ill-conditioned.
|
||
|
- In the general case the eigenvalues have no natural order.
|
||
|
|
||
|
see also:
|
||
|
- eigh (or eigsy, eighe) for the symmetric eigenvalue problem.
|
||
|
- eig_sort for sorting of eigenvalues and eigenvectors
|
||
|
"""
|
||
|
|
||
|
n = A.rows
|
||
|
|
||
|
if n == 1:
|
||
|
if left and (not right):
|
||
|
return ([A[0]], ctx.matrix([[1]]))
|
||
|
|
||
|
if right and (not left):
|
||
|
return ([A[0]], ctx.matrix([[1]]))
|
||
|
|
||
|
return ([A[0]], ctx.matrix([[1]]), ctx.matrix([[1]]))
|
||
|
|
||
|
if not overwrite_a:
|
||
|
A = A.copy()
|
||
|
|
||
|
T = ctx.zeros(n, 1)
|
||
|
|
||
|
hessenberg_reduce_0(ctx, A, T)
|
||
|
|
||
|
if left or right:
|
||
|
Q = A.copy()
|
||
|
hessenberg_reduce_1(ctx, Q, T)
|
||
|
else:
|
||
|
Q = False
|
||
|
|
||
|
for x in xrange(n):
|
||
|
for y in xrange(x + 2, n):
|
||
|
A[y,x] = 0
|
||
|
|
||
|
hessenberg_qr(ctx, A, Q)
|
||
|
|
||
|
E = [0 for i in xrange(n)]
|
||
|
for i in xrange(n):
|
||
|
E[i] = A[i,i]
|
||
|
|
||
|
if not (left or right):
|
||
|
return E
|
||
|
|
||
|
if left:
|
||
|
EL = eig_tr_l(ctx, A)
|
||
|
EL = EL * Q.transpose_conj()
|
||
|
|
||
|
if right:
|
||
|
ER = eig_tr_r(ctx, A)
|
||
|
ER = Q * ER
|
||
|
|
||
|
if left and (not right):
|
||
|
return (E, EL)
|
||
|
|
||
|
if right and (not left):
|
||
|
return (E, ER)
|
||
|
|
||
|
return (E, EL, ER)
|
||
|
|
||
|
@defun
|
||
|
def eig_sort(ctx, E, EL = False, ER = False, f = "real"):
|
||
|
"""
|
||
|
This routine sorts the eigenvalues and eigenvectors delivered by ``eig``.
|
||
|
|
||
|
parameters:
|
||
|
E : the eigenvalues as delivered by eig
|
||
|
EL : the left eigenvectors as delivered by eig, or false
|
||
|
ER : the right eigenvectors as delivered by eig, or false
|
||
|
f : either a string ("real" sort by increasing real part, "imag" sort by
|
||
|
increasing imag part, "abs" sort by absolute value) or a function
|
||
|
mapping complexs to the reals, i.e. ``f = lambda x: -mp.re(x) ``
|
||
|
would sort the eigenvalues by decreasing real part.
|
||
|
|
||
|
return values:
|
||
|
E if EL and ER are both false.
|
||
|
(E, ER) if ER is not false and left is false.
|
||
|
(E, EL) if EL is not false and right is false.
|
||
|
(E, EL, ER) if EL and ER are not false.
|
||
|
|
||
|
example:
|
||
|
>>> from mpmath import mp
|
||
|
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]])
|
||
|
>>> E, EL, ER = mp.eig(A,left = True, right = True)
|
||
|
>>> E, EL, ER = mp.eig_sort(E, EL, ER)
|
||
|
>>> mp.nprint(E)
|
||
|
[2.0, 4.0, 9.0]
|
||
|
>>> E, EL, ER = mp.eig_sort(E, EL, ER,f = lambda x: -mp.re(x))
|
||
|
>>> mp.nprint(E)
|
||
|
[9.0, 4.0, 2.0]
|
||
|
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0]))
|
||
|
[0.0]
|
||
|
[0.0]
|
||
|
[0.0]
|
||
|
>>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0]))
|
||
|
[0.0 0.0 0.0]
|
||
|
"""
|
||
|
|
||
|
if isinstance(f, str):
|
||
|
if f == "real":
|
||
|
f = ctx.re
|
||
|
elif f == "imag":
|
||
|
f = ctx.im
|
||
|
elif f == "abs":
|
||
|
f = abs
|
||
|
else:
|
||
|
raise RuntimeError("unknown function %s" % f)
|
||
|
|
||
|
n = len(E)
|
||
|
|
||
|
# Sort eigenvalues (bubble-sort)
|
||
|
|
||
|
for i in xrange(n):
|
||
|
imax = i
|
||
|
s = f(E[i]) # s is the current maximal element
|
||
|
|
||
|
for j in xrange(i + 1, n):
|
||
|
c = f(E[j])
|
||
|
if c < s:
|
||
|
s = c
|
||
|
imax = j
|
||
|
|
||
|
if imax != i:
|
||
|
# swap eigenvalues
|
||
|
|
||
|
z = E[i]
|
||
|
E[i] = E[imax]
|
||
|
E[imax] = z
|
||
|
|
||
|
if not isinstance(EL, bool):
|
||
|
for j in xrange(n):
|
||
|
z = EL[i,j]
|
||
|
EL[i,j] = EL[imax,j]
|
||
|
EL[imax,j] = z
|
||
|
|
||
|
if not isinstance(ER, bool):
|
||
|
for j in xrange(n):
|
||
|
z = ER[j,i]
|
||
|
ER[j,i] = ER[j,imax]
|
||
|
ER[j,imax] = z
|
||
|
|
||
|
if isinstance(EL, bool) and isinstance(ER, bool):
|
||
|
return E
|
||
|
|
||
|
if isinstance(EL, bool) and not(isinstance(ER, bool)):
|
||
|
return (E, ER)
|
||
|
|
||
|
if isinstance(ER, bool) and not(isinstance(EL, bool)):
|
||
|
return (E, EL)
|
||
|
|
||
|
return (E, EL, ER)
|