165 lines
5.4 KiB
Python
165 lines
5.4 KiB
Python
|
import numpy as np
|
||
|
from scipy.linalg import solve, LinAlgWarning
|
||
|
import warnings
|
||
|
|
||
|
__all__ = ['nnls']
|
||
|
|
||
|
|
||
|
def nnls(A, b, maxiter=None, *, atol=None):
|
||
|
"""
|
||
|
Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``.
|
||
|
|
||
|
This problem, often called as NonNegative Least Squares, is a convex
|
||
|
optimization problem with convex constraints. It typically arises when
|
||
|
the ``x`` models quantities for which only nonnegative values are
|
||
|
attainable; weight of ingredients, component costs and so on.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
A : (m, n) ndarray
|
||
|
Coefficient array
|
||
|
b : (m,) ndarray, float
|
||
|
Right-hand side vector.
|
||
|
maxiter: int, optional
|
||
|
Maximum number of iterations, optional. Default value is ``3 * n``.
|
||
|
atol: float
|
||
|
Tolerance value used in the algorithm to assess closeness to zero in
|
||
|
the projected residual ``(A.T @ (A x - b)`` entries. Increasing this
|
||
|
value relaxes the solution constraints. A typical relaxation value can
|
||
|
be selected as ``max(m, n) * np.linalg.norm(a, 1) * np.spacing(1.)``.
|
||
|
This value is not set as default since the norm operation becomes
|
||
|
expensive for large problems hence can be used only when necessary.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
x : ndarray
|
||
|
Solution vector.
|
||
|
rnorm : float
|
||
|
The 2-norm of the residual, ``|| Ax-b ||_2``.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
lsq_linear : Linear least squares with bounds on the variables
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The code is based on [2]_ which is an improved version of the classical
|
||
|
algorithm of [1]_. It utilizes an active set method and solves the KKT
|
||
|
(Karush-Kuhn-Tucker) conditions for the non-negative least squares problem.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] : Lawson C., Hanson R.J., "Solving Least Squares Problems", SIAM,
|
||
|
1995, :doi:`10.1137/1.9781611971217`
|
||
|
.. [2] : Bro, Rasmus and de Jong, Sijmen, "A Fast Non-Negativity-
|
||
|
Constrained Least Squares Algorithm", Journal Of Chemometrics, 1997,
|
||
|
:doi:`10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> import numpy as np
|
||
|
>>> from scipy.optimize import nnls
|
||
|
...
|
||
|
>>> A = np.array([[1, 0], [1, 0], [0, 1]])
|
||
|
>>> b = np.array([2, 1, 1])
|
||
|
>>> nnls(A, b)
|
||
|
(array([1.5, 1. ]), 0.7071067811865475)
|
||
|
|
||
|
>>> b = np.array([-1, -1, -1])
|
||
|
>>> nnls(A, b)
|
||
|
(array([0., 0.]), 1.7320508075688772)
|
||
|
|
||
|
"""
|
||
|
|
||
|
A = np.asarray_chkfinite(A)
|
||
|
b = np.asarray_chkfinite(b)
|
||
|
|
||
|
if len(A.shape) != 2:
|
||
|
raise ValueError("Expected a two-dimensional array (matrix)" +
|
||
|
f", but the shape of A is {A.shape}")
|
||
|
if len(b.shape) != 1:
|
||
|
raise ValueError("Expected a one-dimensional array (vector)" +
|
||
|
f", but the shape of b is {b.shape}")
|
||
|
|
||
|
m, n = A.shape
|
||
|
|
||
|
if m != b.shape[0]:
|
||
|
raise ValueError(
|
||
|
"Incompatible dimensions. The first dimension of " +
|
||
|
f"A is {m}, while the shape of b is {(b.shape[0], )}")
|
||
|
|
||
|
x, rnorm, mode = _nnls(A, b, maxiter, tol=atol)
|
||
|
if mode != 1:
|
||
|
raise RuntimeError("Maximum number of iterations reached.")
|
||
|
|
||
|
return x, rnorm
|
||
|
|
||
|
|
||
|
def _nnls(A, b, maxiter=None, tol=None):
|
||
|
"""
|
||
|
This is a single RHS algorithm from ref [2] above. For multiple RHS
|
||
|
support, the algorithm is given in :doi:`10.1002/cem.889`
|
||
|
"""
|
||
|
m, n = A.shape
|
||
|
|
||
|
AtA = A.T @ A
|
||
|
Atb = b @ A # Result is 1D - let NumPy figure it out
|
||
|
|
||
|
if not maxiter:
|
||
|
maxiter = 3*n
|
||
|
if tol is None:
|
||
|
tol = 10 * max(m, n) * np.spacing(1.)
|
||
|
|
||
|
# Initialize vars
|
||
|
x = np.zeros(n, dtype=np.float64)
|
||
|
s = np.zeros(n, dtype=np.float64)
|
||
|
# Inactive constraint switches
|
||
|
P = np.zeros(n, dtype=bool)
|
||
|
|
||
|
# Projected residual
|
||
|
w = Atb.copy().astype(np.float64) # x=0. Skip (-AtA @ x) term
|
||
|
|
||
|
# Overall iteration counter
|
||
|
# Outer loop is not counted, inner iter is counted across outer spins
|
||
|
iter = 0
|
||
|
|
||
|
while (not P.all()) and (w[~P] > tol).any(): # B
|
||
|
# Get the "most" active coeff index and move to inactive set
|
||
|
k = np.argmax(w * (~P)) # B.2
|
||
|
P[k] = True # B.3
|
||
|
|
||
|
# Iteration solution
|
||
|
s[:] = 0.
|
||
|
# B.4
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings('ignore', message='Ill-conditioned matrix',
|
||
|
category=LinAlgWarning)
|
||
|
s[P] = solve(AtA[np.ix_(P, P)], Atb[P], assume_a='sym', check_finite=False)
|
||
|
|
||
|
# Inner loop
|
||
|
while (iter < maxiter) and (s[P].min() < 0): # C.1
|
||
|
iter += 1
|
||
|
inds = P * (s < 0)
|
||
|
alpha = (x[inds] / (x[inds] - s[inds])).min() # C.2
|
||
|
x *= (1 - alpha)
|
||
|
x += alpha*s
|
||
|
P[x <= tol] = False
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings('ignore', message='Ill-conditioned matrix',
|
||
|
category=LinAlgWarning)
|
||
|
s[P] = solve(AtA[np.ix_(P, P)], Atb[P], assume_a='sym',
|
||
|
check_finite=False)
|
||
|
s[~P] = 0 # C.6
|
||
|
|
||
|
x[:] = s[:]
|
||
|
w[:] = Atb - AtA @ x
|
||
|
|
||
|
if iter == maxiter:
|
||
|
# Typically following line should return
|
||
|
# return x, np.linalg.norm(A@x - b), -1
|
||
|
# however at the top level, -1 raises an exception wasting norm
|
||
|
# Instead return dummy number 0.
|
||
|
return x, 0., -1
|
||
|
|
||
|
return x, np.linalg.norm(A@x - b), 1
|