92 lines
3.7 KiB
Python
92 lines
3.7 KiB
Python
|
import pytest
|
||
|
import numpy as np
|
||
|
from numpy.testing import assert_, assert_array_equal, assert_allclose
|
||
|
|
||
|
try:
|
||
|
import matplotlib
|
||
|
matplotlib.rcParams['backend'] = 'Agg'
|
||
|
import matplotlib.pyplot as plt
|
||
|
has_matplotlib = True
|
||
|
except Exception:
|
||
|
has_matplotlib = False
|
||
|
|
||
|
from scipy.spatial import \
|
||
|
delaunay_plot_2d, voronoi_plot_2d, convex_hull_plot_2d, \
|
||
|
Delaunay, Voronoi, ConvexHull
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(not has_matplotlib, reason="Matplotlib not available")
|
||
|
class TestPlotting:
|
||
|
points = [(0,0), (0,1), (1,0), (1,1)]
|
||
|
|
||
|
def test_delaunay(self):
|
||
|
# Smoke test
|
||
|
fig = plt.figure()
|
||
|
obj = Delaunay(self.points)
|
||
|
s_before = obj.simplices.copy()
|
||
|
r = delaunay_plot_2d(obj, ax=fig.gca())
|
||
|
assert_array_equal(obj.simplices, s_before) # shouldn't modify
|
||
|
assert_(r is fig)
|
||
|
delaunay_plot_2d(obj, ax=fig.gca())
|
||
|
|
||
|
def test_voronoi(self):
|
||
|
# Smoke test
|
||
|
fig = plt.figure()
|
||
|
obj = Voronoi(self.points)
|
||
|
r = voronoi_plot_2d(obj, ax=fig.gca())
|
||
|
assert_(r is fig)
|
||
|
voronoi_plot_2d(obj)
|
||
|
voronoi_plot_2d(obj, show_vertices=False)
|
||
|
|
||
|
def test_convex_hull(self):
|
||
|
# Smoke test
|
||
|
fig = plt.figure()
|
||
|
tri = ConvexHull(self.points)
|
||
|
r = convex_hull_plot_2d(tri, ax=fig.gca())
|
||
|
assert_(r is fig)
|
||
|
convex_hull_plot_2d(tri)
|
||
|
|
||
|
def test_gh_19653(self):
|
||
|
# aspect ratio sensitivity of voronoi_plot_2d
|
||
|
# infinite Voronoi edges
|
||
|
points = np.array([[245.059986986012, 10.971011721360075],
|
||
|
[320.49044143557785, 10.970258360366753],
|
||
|
[239.79023081978914, 13.108487516946218],
|
||
|
[263.38325791238833, 12.93241352743668],
|
||
|
[219.53334398353175, 13.346107628161008]])
|
||
|
vor = Voronoi(points)
|
||
|
fig = voronoi_plot_2d(vor)
|
||
|
ax = fig.gca()
|
||
|
infinite_segments = ax.collections[1].get_segments()
|
||
|
expected_segments = np.array([[[282.77256, -254.76904],
|
||
|
[282.729714, -4544.744698]],
|
||
|
[[282.77256014, -254.76904029],
|
||
|
[430.08561382, 4032.67658742]],
|
||
|
[[229.26733285, -20.39957514],
|
||
|
[-168.17167404, -4291.92545966]],
|
||
|
[[289.93433364, 5151.40412217],
|
||
|
[330.40553385, 9441.18887532]]])
|
||
|
assert_allclose(infinite_segments, expected_segments)
|
||
|
|
||
|
def test_gh_19653_smaller_aspect(self):
|
||
|
# reasonable behavior for less extreme aspect
|
||
|
# ratio
|
||
|
points = np.array([[24.059986986012, 10.971011721360075],
|
||
|
[32.49044143557785, 10.970258360366753],
|
||
|
[23.79023081978914, 13.108487516946218],
|
||
|
[26.38325791238833, 12.93241352743668],
|
||
|
[21.53334398353175, 13.346107628161008]])
|
||
|
vor = Voronoi(points)
|
||
|
fig = voronoi_plot_2d(vor)
|
||
|
ax = fig.gca()
|
||
|
infinite_segments = ax.collections[1].get_segments()
|
||
|
expected_segments = np.array([[[28.274979, 8.335027],
|
||
|
[28.270463, -42.19763338]],
|
||
|
[[28.27497869, 8.33502697],
|
||
|
[43.73223829, 56.44555501]],
|
||
|
[[22.51805823, 11.8621754],
|
||
|
[-12.09266506, -24.95694485]],
|
||
|
[[29.53092448, 78.46952378],
|
||
|
[33.82572726, 128.81934455]]])
|
||
|
assert_allclose(infinite_segments, expected_segments)
|