389 lines
16 KiB
Python
389 lines
16 KiB
Python
|
from typing import Dict, List, Optional, Tuple
|
||
|
|
||
|
import torch
|
||
|
from torch import nn, Tensor
|
||
|
from torch.nn import functional as F
|
||
|
from torchvision.ops import boxes as box_ops, Conv2dNormActivation
|
||
|
|
||
|
from . import _utils as det_utils
|
||
|
|
||
|
# Import AnchorGenerator to keep compatibility.
|
||
|
from .anchor_utils import AnchorGenerator # noqa: 401
|
||
|
from .image_list import ImageList
|
||
|
|
||
|
|
||
|
class RPNHead(nn.Module):
|
||
|
"""
|
||
|
Adds a simple RPN Head with classification and regression heads
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): number of channels of the input feature
|
||
|
num_anchors (int): number of anchors to be predicted
|
||
|
conv_depth (int, optional): number of convolutions
|
||
|
"""
|
||
|
|
||
|
_version = 2
|
||
|
|
||
|
def __init__(self, in_channels: int, num_anchors: int, conv_depth=1) -> None:
|
||
|
super().__init__()
|
||
|
convs = []
|
||
|
for _ in range(conv_depth):
|
||
|
convs.append(Conv2dNormActivation(in_channels, in_channels, kernel_size=3, norm_layer=None))
|
||
|
self.conv = nn.Sequential(*convs)
|
||
|
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
|
||
|
self.bbox_pred = nn.Conv2d(in_channels, num_anchors * 4, kernel_size=1, stride=1)
|
||
|
|
||
|
for layer in self.modules():
|
||
|
if isinstance(layer, nn.Conv2d):
|
||
|
torch.nn.init.normal_(layer.weight, std=0.01) # type: ignore[arg-type]
|
||
|
if layer.bias is not None:
|
||
|
torch.nn.init.constant_(layer.bias, 0) # type: ignore[arg-type]
|
||
|
|
||
|
def _load_from_state_dict(
|
||
|
self,
|
||
|
state_dict,
|
||
|
prefix,
|
||
|
local_metadata,
|
||
|
strict,
|
||
|
missing_keys,
|
||
|
unexpected_keys,
|
||
|
error_msgs,
|
||
|
):
|
||
|
version = local_metadata.get("version", None)
|
||
|
|
||
|
if version is None or version < 2:
|
||
|
for type in ["weight", "bias"]:
|
||
|
old_key = f"{prefix}conv.{type}"
|
||
|
new_key = f"{prefix}conv.0.0.{type}"
|
||
|
if old_key in state_dict:
|
||
|
state_dict[new_key] = state_dict.pop(old_key)
|
||
|
|
||
|
super()._load_from_state_dict(
|
||
|
state_dict,
|
||
|
prefix,
|
||
|
local_metadata,
|
||
|
strict,
|
||
|
missing_keys,
|
||
|
unexpected_keys,
|
||
|
error_msgs,
|
||
|
)
|
||
|
|
||
|
def forward(self, x: List[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
|
||
|
logits = []
|
||
|
bbox_reg = []
|
||
|
for feature in x:
|
||
|
t = self.conv(feature)
|
||
|
logits.append(self.cls_logits(t))
|
||
|
bbox_reg.append(self.bbox_pred(t))
|
||
|
return logits, bbox_reg
|
||
|
|
||
|
|
||
|
def permute_and_flatten(layer: Tensor, N: int, A: int, C: int, H: int, W: int) -> Tensor:
|
||
|
layer = layer.view(N, -1, C, H, W)
|
||
|
layer = layer.permute(0, 3, 4, 1, 2)
|
||
|
layer = layer.reshape(N, -1, C)
|
||
|
return layer
|
||
|
|
||
|
|
||
|
def concat_box_prediction_layers(box_cls: List[Tensor], box_regression: List[Tensor]) -> Tuple[Tensor, Tensor]:
|
||
|
box_cls_flattened = []
|
||
|
box_regression_flattened = []
|
||
|
# for each feature level, permute the outputs to make them be in the
|
||
|
# same format as the labels. Note that the labels are computed for
|
||
|
# all feature levels concatenated, so we keep the same representation
|
||
|
# for the objectness and the box_regression
|
||
|
for box_cls_per_level, box_regression_per_level in zip(box_cls, box_regression):
|
||
|
N, AxC, H, W = box_cls_per_level.shape
|
||
|
Ax4 = box_regression_per_level.shape[1]
|
||
|
A = Ax4 // 4
|
||
|
C = AxC // A
|
||
|
box_cls_per_level = permute_and_flatten(box_cls_per_level, N, A, C, H, W)
|
||
|
box_cls_flattened.append(box_cls_per_level)
|
||
|
|
||
|
box_regression_per_level = permute_and_flatten(box_regression_per_level, N, A, 4, H, W)
|
||
|
box_regression_flattened.append(box_regression_per_level)
|
||
|
# concatenate on the first dimension (representing the feature levels), to
|
||
|
# take into account the way the labels were generated (with all feature maps
|
||
|
# being concatenated as well)
|
||
|
box_cls = torch.cat(box_cls_flattened, dim=1).flatten(0, -2)
|
||
|
box_regression = torch.cat(box_regression_flattened, dim=1).reshape(-1, 4)
|
||
|
return box_cls, box_regression
|
||
|
|
||
|
|
||
|
class RegionProposalNetwork(torch.nn.Module):
|
||
|
"""
|
||
|
Implements Region Proposal Network (RPN).
|
||
|
|
||
|
Args:
|
||
|
anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
|
||
|
maps.
|
||
|
head (nn.Module): module that computes the objectness and regression deltas
|
||
|
fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
|
||
|
considered as positive during training of the RPN.
|
||
|
bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
|
||
|
considered as negative during training of the RPN.
|
||
|
batch_size_per_image (int): number of anchors that are sampled during training of the RPN
|
||
|
for computing the loss
|
||
|
positive_fraction (float): proportion of positive anchors in a mini-batch during training
|
||
|
of the RPN
|
||
|
pre_nms_top_n (Dict[str, int]): number of proposals to keep before applying NMS. It should
|
||
|
contain two fields: training and testing, to allow for different values depending
|
||
|
on training or evaluation
|
||
|
post_nms_top_n (Dict[str, int]): number of proposals to keep after applying NMS. It should
|
||
|
contain two fields: training and testing, to allow for different values depending
|
||
|
on training or evaluation
|
||
|
nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
|
||
|
score_thresh (float): only return proposals with an objectness score greater than score_thresh
|
||
|
|
||
|
"""
|
||
|
|
||
|
__annotations__ = {
|
||
|
"box_coder": det_utils.BoxCoder,
|
||
|
"proposal_matcher": det_utils.Matcher,
|
||
|
"fg_bg_sampler": det_utils.BalancedPositiveNegativeSampler,
|
||
|
}
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
anchor_generator: AnchorGenerator,
|
||
|
head: nn.Module,
|
||
|
# Faster-RCNN Training
|
||
|
fg_iou_thresh: float,
|
||
|
bg_iou_thresh: float,
|
||
|
batch_size_per_image: int,
|
||
|
positive_fraction: float,
|
||
|
# Faster-RCNN Inference
|
||
|
pre_nms_top_n: Dict[str, int],
|
||
|
post_nms_top_n: Dict[str, int],
|
||
|
nms_thresh: float,
|
||
|
score_thresh: float = 0.0,
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.anchor_generator = anchor_generator
|
||
|
self.head = head
|
||
|
self.box_coder = det_utils.BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
|
||
|
|
||
|
# used during training
|
||
|
self.box_similarity = box_ops.box_iou
|
||
|
|
||
|
self.proposal_matcher = det_utils.Matcher(
|
||
|
fg_iou_thresh,
|
||
|
bg_iou_thresh,
|
||
|
allow_low_quality_matches=True,
|
||
|
)
|
||
|
|
||
|
self.fg_bg_sampler = det_utils.BalancedPositiveNegativeSampler(batch_size_per_image, positive_fraction)
|
||
|
# used during testing
|
||
|
self._pre_nms_top_n = pre_nms_top_n
|
||
|
self._post_nms_top_n = post_nms_top_n
|
||
|
self.nms_thresh = nms_thresh
|
||
|
self.score_thresh = score_thresh
|
||
|
self.min_size = 1e-3
|
||
|
|
||
|
def pre_nms_top_n(self) -> int:
|
||
|
if self.training:
|
||
|
return self._pre_nms_top_n["training"]
|
||
|
return self._pre_nms_top_n["testing"]
|
||
|
|
||
|
def post_nms_top_n(self) -> int:
|
||
|
if self.training:
|
||
|
return self._post_nms_top_n["training"]
|
||
|
return self._post_nms_top_n["testing"]
|
||
|
|
||
|
def assign_targets_to_anchors(
|
||
|
self, anchors: List[Tensor], targets: List[Dict[str, Tensor]]
|
||
|
) -> Tuple[List[Tensor], List[Tensor]]:
|
||
|
|
||
|
labels = []
|
||
|
matched_gt_boxes = []
|
||
|
for anchors_per_image, targets_per_image in zip(anchors, targets):
|
||
|
gt_boxes = targets_per_image["boxes"]
|
||
|
|
||
|
if gt_boxes.numel() == 0:
|
||
|
# Background image (negative example)
|
||
|
device = anchors_per_image.device
|
||
|
matched_gt_boxes_per_image = torch.zeros(anchors_per_image.shape, dtype=torch.float32, device=device)
|
||
|
labels_per_image = torch.zeros((anchors_per_image.shape[0],), dtype=torch.float32, device=device)
|
||
|
else:
|
||
|
match_quality_matrix = self.box_similarity(gt_boxes, anchors_per_image)
|
||
|
matched_idxs = self.proposal_matcher(match_quality_matrix)
|
||
|
# get the targets corresponding GT for each proposal
|
||
|
# NB: need to clamp the indices because we can have a single
|
||
|
# GT in the image, and matched_idxs can be -2, which goes
|
||
|
# out of bounds
|
||
|
matched_gt_boxes_per_image = gt_boxes[matched_idxs.clamp(min=0)]
|
||
|
|
||
|
labels_per_image = matched_idxs >= 0
|
||
|
labels_per_image = labels_per_image.to(dtype=torch.float32)
|
||
|
|
||
|
# Background (negative examples)
|
||
|
bg_indices = matched_idxs == self.proposal_matcher.BELOW_LOW_THRESHOLD
|
||
|
labels_per_image[bg_indices] = 0.0
|
||
|
|
||
|
# discard indices that are between thresholds
|
||
|
inds_to_discard = matched_idxs == self.proposal_matcher.BETWEEN_THRESHOLDS
|
||
|
labels_per_image[inds_to_discard] = -1.0
|
||
|
|
||
|
labels.append(labels_per_image)
|
||
|
matched_gt_boxes.append(matched_gt_boxes_per_image)
|
||
|
return labels, matched_gt_boxes
|
||
|
|
||
|
def _get_top_n_idx(self, objectness: Tensor, num_anchors_per_level: List[int]) -> Tensor:
|
||
|
r = []
|
||
|
offset = 0
|
||
|
for ob in objectness.split(num_anchors_per_level, 1):
|
||
|
num_anchors = ob.shape[1]
|
||
|
pre_nms_top_n = det_utils._topk_min(ob, self.pre_nms_top_n(), 1)
|
||
|
_, top_n_idx = ob.topk(pre_nms_top_n, dim=1)
|
||
|
r.append(top_n_idx + offset)
|
||
|
offset += num_anchors
|
||
|
return torch.cat(r, dim=1)
|
||
|
|
||
|
def filter_proposals(
|
||
|
self,
|
||
|
proposals: Tensor,
|
||
|
objectness: Tensor,
|
||
|
image_shapes: List[Tuple[int, int]],
|
||
|
num_anchors_per_level: List[int],
|
||
|
) -> Tuple[List[Tensor], List[Tensor]]:
|
||
|
|
||
|
num_images = proposals.shape[0]
|
||
|
device = proposals.device
|
||
|
# do not backprop through objectness
|
||
|
objectness = objectness.detach()
|
||
|
objectness = objectness.reshape(num_images, -1)
|
||
|
|
||
|
levels = [
|
||
|
torch.full((n,), idx, dtype=torch.int64, device=device) for idx, n in enumerate(num_anchors_per_level)
|
||
|
]
|
||
|
levels = torch.cat(levels, 0)
|
||
|
levels = levels.reshape(1, -1).expand_as(objectness)
|
||
|
|
||
|
# select top_n boxes independently per level before applying nms
|
||
|
top_n_idx = self._get_top_n_idx(objectness, num_anchors_per_level)
|
||
|
|
||
|
image_range = torch.arange(num_images, device=device)
|
||
|
batch_idx = image_range[:, None]
|
||
|
|
||
|
objectness = objectness[batch_idx, top_n_idx]
|
||
|
levels = levels[batch_idx, top_n_idx]
|
||
|
proposals = proposals[batch_idx, top_n_idx]
|
||
|
|
||
|
objectness_prob = torch.sigmoid(objectness)
|
||
|
|
||
|
final_boxes = []
|
||
|
final_scores = []
|
||
|
for boxes, scores, lvl, img_shape in zip(proposals, objectness_prob, levels, image_shapes):
|
||
|
boxes = box_ops.clip_boxes_to_image(boxes, img_shape)
|
||
|
|
||
|
# remove small boxes
|
||
|
keep = box_ops.remove_small_boxes(boxes, self.min_size)
|
||
|
boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
|
||
|
|
||
|
# remove low scoring boxes
|
||
|
# use >= for Backwards compatibility
|
||
|
keep = torch.where(scores >= self.score_thresh)[0]
|
||
|
boxes, scores, lvl = boxes[keep], scores[keep], lvl[keep]
|
||
|
|
||
|
# non-maximum suppression, independently done per level
|
||
|
keep = box_ops.batched_nms(boxes, scores, lvl, self.nms_thresh)
|
||
|
|
||
|
# keep only topk scoring predictions
|
||
|
keep = keep[: self.post_nms_top_n()]
|
||
|
boxes, scores = boxes[keep], scores[keep]
|
||
|
|
||
|
final_boxes.append(boxes)
|
||
|
final_scores.append(scores)
|
||
|
return final_boxes, final_scores
|
||
|
|
||
|
def compute_loss(
|
||
|
self, objectness: Tensor, pred_bbox_deltas: Tensor, labels: List[Tensor], regression_targets: List[Tensor]
|
||
|
) -> Tuple[Tensor, Tensor]:
|
||
|
"""
|
||
|
Args:
|
||
|
objectness (Tensor)
|
||
|
pred_bbox_deltas (Tensor)
|
||
|
labels (List[Tensor])
|
||
|
regression_targets (List[Tensor])
|
||
|
|
||
|
Returns:
|
||
|
objectness_loss (Tensor)
|
||
|
box_loss (Tensor)
|
||
|
"""
|
||
|
|
||
|
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
|
||
|
sampled_pos_inds = torch.where(torch.cat(sampled_pos_inds, dim=0))[0]
|
||
|
sampled_neg_inds = torch.where(torch.cat(sampled_neg_inds, dim=0))[0]
|
||
|
|
||
|
sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)
|
||
|
|
||
|
objectness = objectness.flatten()
|
||
|
|
||
|
labels = torch.cat(labels, dim=0)
|
||
|
regression_targets = torch.cat(regression_targets, dim=0)
|
||
|
|
||
|
box_loss = F.smooth_l1_loss(
|
||
|
pred_bbox_deltas[sampled_pos_inds],
|
||
|
regression_targets[sampled_pos_inds],
|
||
|
beta=1 / 9,
|
||
|
reduction="sum",
|
||
|
) / (sampled_inds.numel())
|
||
|
|
||
|
objectness_loss = F.binary_cross_entropy_with_logits(objectness[sampled_inds], labels[sampled_inds])
|
||
|
|
||
|
return objectness_loss, box_loss
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
images: ImageList,
|
||
|
features: Dict[str, Tensor],
|
||
|
targets: Optional[List[Dict[str, Tensor]]] = None,
|
||
|
) -> Tuple[List[Tensor], Dict[str, Tensor]]:
|
||
|
|
||
|
"""
|
||
|
Args:
|
||
|
images (ImageList): images for which we want to compute the predictions
|
||
|
features (Dict[str, Tensor]): features computed from the images that are
|
||
|
used for computing the predictions. Each tensor in the list
|
||
|
correspond to different feature levels
|
||
|
targets (List[Dict[str, Tensor]]): ground-truth boxes present in the image (optional).
|
||
|
If provided, each element in the dict should contain a field `boxes`,
|
||
|
with the locations of the ground-truth boxes.
|
||
|
|
||
|
Returns:
|
||
|
boxes (List[Tensor]): the predicted boxes from the RPN, one Tensor per
|
||
|
image.
|
||
|
losses (Dict[str, Tensor]): the losses for the model during training. During
|
||
|
testing, it is an empty dict.
|
||
|
"""
|
||
|
# RPN uses all feature maps that are available
|
||
|
features = list(features.values())
|
||
|
objectness, pred_bbox_deltas = self.head(features)
|
||
|
anchors = self.anchor_generator(images, features)
|
||
|
|
||
|
num_images = len(anchors)
|
||
|
num_anchors_per_level_shape_tensors = [o[0].shape for o in objectness]
|
||
|
num_anchors_per_level = [s[0] * s[1] * s[2] for s in num_anchors_per_level_shape_tensors]
|
||
|
objectness, pred_bbox_deltas = concat_box_prediction_layers(objectness, pred_bbox_deltas)
|
||
|
# apply pred_bbox_deltas to anchors to obtain the decoded proposals
|
||
|
# note that we detach the deltas because Faster R-CNN do not backprop through
|
||
|
# the proposals
|
||
|
proposals = self.box_coder.decode(pred_bbox_deltas.detach(), anchors)
|
||
|
proposals = proposals.view(num_images, -1, 4)
|
||
|
boxes, scores = self.filter_proposals(proposals, objectness, images.image_sizes, num_anchors_per_level)
|
||
|
|
||
|
losses = {}
|
||
|
if self.training:
|
||
|
if targets is None:
|
||
|
raise ValueError("targets should not be None")
|
||
|
labels, matched_gt_boxes = self.assign_targets_to_anchors(anchors, targets)
|
||
|
regression_targets = self.box_coder.encode(matched_gt_boxes, anchors)
|
||
|
loss_objectness, loss_rpn_box_reg = self.compute_loss(
|
||
|
objectness, pred_bbox_deltas, labels, regression_targets
|
||
|
)
|
||
|
losses = {
|
||
|
"loss_objectness": loss_objectness,
|
||
|
"loss_rpn_box_reg": loss_rpn_box_reg,
|
||
|
}
|
||
|
return boxes, losses
|