310 lines
11 KiB
Python
310 lines
11 KiB
Python
|
from fontTools.varLib.models import supportScalar
|
||
|
from fontTools.misc.fixedTools import MAX_F2DOT14
|
||
|
from functools import lru_cache
|
||
|
|
||
|
__all__ = ["rebaseTent"]
|
||
|
|
||
|
EPSILON = 1 / (1 << 14)
|
||
|
|
||
|
|
||
|
def _reverse_negate(v):
|
||
|
return (-v[2], -v[1], -v[0])
|
||
|
|
||
|
|
||
|
def _solve(tent, axisLimit, negative=False):
|
||
|
axisMin, axisDef, axisMax, _distanceNegative, _distancePositive = axisLimit
|
||
|
lower, peak, upper = tent
|
||
|
|
||
|
# Mirror the problem such that axisDef <= peak
|
||
|
if axisDef > peak:
|
||
|
return [
|
||
|
(scalar, _reverse_negate(t) if t is not None else None)
|
||
|
for scalar, t in _solve(
|
||
|
_reverse_negate(tent),
|
||
|
axisLimit.reverse_negate(),
|
||
|
not negative,
|
||
|
)
|
||
|
]
|
||
|
# axisDef <= peak
|
||
|
|
||
|
# case 1: The whole deltaset falls outside the new limit; we can drop it
|
||
|
#
|
||
|
# peak
|
||
|
# 1.........................................o..........
|
||
|
# / \
|
||
|
# / \
|
||
|
# / \
|
||
|
# / \
|
||
|
# 0---|-----------|----------|-------- o o----1
|
||
|
# axisMin axisDef axisMax lower upper
|
||
|
#
|
||
|
if axisMax <= lower and axisMax < peak:
|
||
|
return [] # No overlap
|
||
|
|
||
|
# case 2: Only the peak and outermost bound fall outside the new limit;
|
||
|
# we keep the deltaset, update peak and outermost bound and and scale deltas
|
||
|
# by the scalar value for the restricted axis at the new limit, and solve
|
||
|
# recursively.
|
||
|
#
|
||
|
# |peak
|
||
|
# 1...............................|.o..........
|
||
|
# |/ \
|
||
|
# / \
|
||
|
# /| \
|
||
|
# / | \
|
||
|
# 0--------------------------- o | o----1
|
||
|
# lower | upper
|
||
|
# |
|
||
|
# axisMax
|
||
|
#
|
||
|
# Convert to:
|
||
|
#
|
||
|
# 1............................................
|
||
|
# |
|
||
|
# o peak
|
||
|
# /|
|
||
|
# /x|
|
||
|
# 0--------------------------- o o upper ----1
|
||
|
# lower |
|
||
|
# |
|
||
|
# axisMax
|
||
|
if axisMax < peak:
|
||
|
mult = supportScalar({"tag": axisMax}, {"tag": tent})
|
||
|
tent = (lower, axisMax, axisMax)
|
||
|
return [(scalar * mult, t) for scalar, t in _solve(tent, axisLimit)]
|
||
|
|
||
|
# lower <= axisDef <= peak <= axisMax
|
||
|
|
||
|
gain = supportScalar({"tag": axisDef}, {"tag": tent})
|
||
|
out = [(gain, None)]
|
||
|
|
||
|
# First, the positive side
|
||
|
|
||
|
# outGain is the scalar of axisMax at the tent.
|
||
|
outGain = supportScalar({"tag": axisMax}, {"tag": tent})
|
||
|
|
||
|
# Case 3a: Gain is more than outGain. The tent down-slope crosses
|
||
|
# the axis into negative. We have to split it into multiples.
|
||
|
#
|
||
|
# | peak |
|
||
|
# 1...................|.o.....|..............
|
||
|
# |/x\_ |
|
||
|
# gain................+....+_.|..............
|
||
|
# /| |y\|
|
||
|
# ................../.|....|..+_......outGain
|
||
|
# / | | | \
|
||
|
# 0---|-----------o | | | o----------1
|
||
|
# axisMin lower | | | upper
|
||
|
# | | |
|
||
|
# axisDef | axisMax
|
||
|
# |
|
||
|
# crossing
|
||
|
if gain >= outGain:
|
||
|
# Note that this is the branch taken if both gain and outGain are 0.
|
||
|
|
||
|
# Crossing point on the axis.
|
||
|
crossing = peak + (1 - gain) * (upper - peak)
|
||
|
|
||
|
loc = (max(lower, axisDef), peak, crossing)
|
||
|
scalar = 1
|
||
|
|
||
|
# The part before the crossing point.
|
||
|
out.append((scalar - gain, loc))
|
||
|
|
||
|
# The part after the crossing point may use one or two tents,
|
||
|
# depending on whether upper is before axisMax or not, in one
|
||
|
# case we need to keep it down to eternity.
|
||
|
|
||
|
# Case 3a1, similar to case 1neg; just one tent needed, as in
|
||
|
# the drawing above.
|
||
|
if upper >= axisMax:
|
||
|
loc = (crossing, axisMax, axisMax)
|
||
|
scalar = outGain
|
||
|
|
||
|
out.append((scalar - gain, loc))
|
||
|
|
||
|
# Case 3a2: Similar to case 2neg; two tents needed, to keep
|
||
|
# down to eternity.
|
||
|
#
|
||
|
# | peak |
|
||
|
# 1...................|.o................|...
|
||
|
# |/ \_ |
|
||
|
# gain................+....+_............|...
|
||
|
# /| | \xxxxxxxxxxy|
|
||
|
# / | | \_xxxxxyyyy|
|
||
|
# / | | \xxyyyyyy|
|
||
|
# 0---|-----------o | | o-------|--1
|
||
|
# axisMin lower | | upper |
|
||
|
# | | |
|
||
|
# axisDef | axisMax
|
||
|
# |
|
||
|
# crossing
|
||
|
else:
|
||
|
# A tent's peak cannot fall on axis default. Nudge it.
|
||
|
if upper == axisDef:
|
||
|
upper += EPSILON
|
||
|
|
||
|
# Downslope.
|
||
|
loc1 = (crossing, upper, axisMax)
|
||
|
scalar1 = 0
|
||
|
|
||
|
# Eternity justify.
|
||
|
loc2 = (upper, axisMax, axisMax)
|
||
|
scalar2 = 0
|
||
|
|
||
|
out.append((scalar1 - gain, loc1))
|
||
|
out.append((scalar2 - gain, loc2))
|
||
|
|
||
|
else:
|
||
|
# Special-case if peak is at axisMax.
|
||
|
if axisMax == peak:
|
||
|
upper = peak
|
||
|
|
||
|
# Case 3:
|
||
|
# We keep delta as is and only scale the axis upper to achieve
|
||
|
# the desired new tent if feasible.
|
||
|
#
|
||
|
# peak
|
||
|
# 1.....................o....................
|
||
|
# / \_|
|
||
|
# ..................../....+_.........outGain
|
||
|
# / | \
|
||
|
# gain..............+......|..+_.............
|
||
|
# /| | | \
|
||
|
# 0---|-----------o | | | o----------1
|
||
|
# axisMin lower| | | upper
|
||
|
# | | newUpper
|
||
|
# axisDef axisMax
|
||
|
#
|
||
|
newUpper = peak + (1 - gain) * (upper - peak)
|
||
|
assert axisMax <= newUpper # Because outGain > gain
|
||
|
# Disabled because ots doesn't like us:
|
||
|
# https://github.com/fonttools/fonttools/issues/3350
|
||
|
if False and newUpper <= axisDef + (axisMax - axisDef) * 2:
|
||
|
upper = newUpper
|
||
|
if not negative and axisDef + (axisMax - axisDef) * MAX_F2DOT14 < upper:
|
||
|
# we clamp +2.0 to the max F2Dot14 (~1.99994) for convenience
|
||
|
upper = axisDef + (axisMax - axisDef) * MAX_F2DOT14
|
||
|
assert peak < upper
|
||
|
|
||
|
loc = (max(axisDef, lower), peak, upper)
|
||
|
scalar = 1
|
||
|
|
||
|
out.append((scalar - gain, loc))
|
||
|
|
||
|
# Case 4: New limit doesn't fit; we need to chop into two tents,
|
||
|
# because the shape of a triangle with part of one side cut off
|
||
|
# cannot be represented as a triangle itself.
|
||
|
#
|
||
|
# | peak |
|
||
|
# 1.........|......o.|....................
|
||
|
# ..........|...../x\|.............outGain
|
||
|
# | |xxy|\_
|
||
|
# | /xxxy| \_
|
||
|
# | |xxxxy| \_
|
||
|
# | /xxxxy| \_
|
||
|
# 0---|-----|-oxxxxxx| o----------1
|
||
|
# axisMin | lower | upper
|
||
|
# | |
|
||
|
# axisDef axisMax
|
||
|
#
|
||
|
else:
|
||
|
loc1 = (max(axisDef, lower), peak, axisMax)
|
||
|
scalar1 = 1
|
||
|
|
||
|
loc2 = (peak, axisMax, axisMax)
|
||
|
scalar2 = outGain
|
||
|
|
||
|
out.append((scalar1 - gain, loc1))
|
||
|
# Don't add a dirac delta!
|
||
|
if peak < axisMax:
|
||
|
out.append((scalar2 - gain, loc2))
|
||
|
|
||
|
# Now, the negative side
|
||
|
|
||
|
# Case 1neg: Lower extends beyond axisMin: we chop. Simple.
|
||
|
#
|
||
|
# | |peak
|
||
|
# 1..................|...|.o.................
|
||
|
# | |/ \
|
||
|
# gain...............|...+...\...............
|
||
|
# |x_/| \
|
||
|
# |/ | \
|
||
|
# _/| | \
|
||
|
# 0---------------o | | o----------1
|
||
|
# lower | | upper
|
||
|
# | |
|
||
|
# axisMin axisDef
|
||
|
#
|
||
|
if lower <= axisMin:
|
||
|
loc = (axisMin, axisMin, axisDef)
|
||
|
scalar = supportScalar({"tag": axisMin}, {"tag": tent})
|
||
|
|
||
|
out.append((scalar - gain, loc))
|
||
|
|
||
|
# Case 2neg: Lower is betwen axisMin and axisDef: we add two
|
||
|
# tents to keep it down all the way to eternity.
|
||
|
#
|
||
|
# | |peak
|
||
|
# 1...|...............|.o.................
|
||
|
# | |/ \
|
||
|
# gain|...............+...\...............
|
||
|
# |yxxxxxxxxxxxxx/| \
|
||
|
# |yyyyyyxxxxxxx/ | \
|
||
|
# |yyyyyyyyyyyx/ | \
|
||
|
# 0---|-----------o | o----------1
|
||
|
# axisMin lower | upper
|
||
|
# |
|
||
|
# axisDef
|
||
|
#
|
||
|
else:
|
||
|
# A tent's peak cannot fall on axis default. Nudge it.
|
||
|
if lower == axisDef:
|
||
|
lower -= EPSILON
|
||
|
|
||
|
# Downslope.
|
||
|
loc1 = (axisMin, lower, axisDef)
|
||
|
scalar1 = 0
|
||
|
|
||
|
# Eternity justify.
|
||
|
loc2 = (axisMin, axisMin, lower)
|
||
|
scalar2 = 0
|
||
|
|
||
|
out.append((scalar1 - gain, loc1))
|
||
|
out.append((scalar2 - gain, loc2))
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
@lru_cache(128)
|
||
|
def rebaseTent(tent, axisLimit):
|
||
|
"""Given a tuple (lower,peak,upper) "tent" and new axis limits
|
||
|
(axisMin,axisDefault,axisMax), solves how to represent the tent
|
||
|
under the new axis configuration. All values are in normalized
|
||
|
-1,0,+1 coordinate system. Tent values can be outside this range.
|
||
|
|
||
|
Return value is a list of tuples. Each tuple is of the form
|
||
|
(scalar,tent), where scalar is a multipler to multiply any
|
||
|
delta-sets by, and tent is a new tent for that output delta-set.
|
||
|
If tent value is None, that is a special deltaset that should
|
||
|
be always-enabled (called "gain")."""
|
||
|
|
||
|
axisMin, axisDef, axisMax, _distanceNegative, _distancePositive = axisLimit
|
||
|
assert -1 <= axisMin <= axisDef <= axisMax <= +1
|
||
|
|
||
|
lower, peak, upper = tent
|
||
|
assert -2 <= lower <= peak <= upper <= +2
|
||
|
|
||
|
assert peak != 0
|
||
|
|
||
|
sols = _solve(tent, axisLimit)
|
||
|
|
||
|
n = lambda v: axisLimit.renormalizeValue(v)
|
||
|
sols = [
|
||
|
(scalar, (n(v[0]), n(v[1]), n(v[2])) if v is not None else None)
|
||
|
for scalar, v in sols
|
||
|
if scalar
|
||
|
]
|
||
|
|
||
|
return sols
|