476 lines
14 KiB
Python
476 lines
14 KiB
Python
|
"""Provides explicit constructions of expander graphs.
|
|||
|
|
|||
|
"""
|
|||
|
import itertools
|
|||
|
|
|||
|
import networkx as nx
|
|||
|
|
|||
|
__all__ = [
|
|||
|
"margulis_gabber_galil_graph",
|
|||
|
"chordal_cycle_graph",
|
|||
|
"paley_graph",
|
|||
|
"maybe_regular_expander",
|
|||
|
"is_regular_expander",
|
|||
|
"random_regular_expander_graph",
|
|||
|
]
|
|||
|
|
|||
|
|
|||
|
# Other discrete torus expanders can be constructed by using the following edge
|
|||
|
# sets. For more information, see Chapter 4, "Expander Graphs", in
|
|||
|
# "Pseudorandomness", by Salil Vadhan.
|
|||
|
#
|
|||
|
# For a directed expander, add edges from (x, y) to:
|
|||
|
#
|
|||
|
# (x, y),
|
|||
|
# ((x + 1) % n, y),
|
|||
|
# (x, (y + 1) % n),
|
|||
|
# (x, (x + y) % n),
|
|||
|
# (-y % n, x)
|
|||
|
#
|
|||
|
# For an undirected expander, add the reverse edges.
|
|||
|
#
|
|||
|
# Also appearing in the paper of Gabber and Galil:
|
|||
|
#
|
|||
|
# (x, y),
|
|||
|
# (x, (x + y) % n),
|
|||
|
# (x, (x + y + 1) % n),
|
|||
|
# ((x + y) % n, y),
|
|||
|
# ((x + y + 1) % n, y)
|
|||
|
#
|
|||
|
# and:
|
|||
|
#
|
|||
|
# (x, y),
|
|||
|
# ((x + 2*y) % n, y),
|
|||
|
# ((x + (2*y + 1)) % n, y),
|
|||
|
# ((x + (2*y + 2)) % n, y),
|
|||
|
# (x, (y + 2*x) % n),
|
|||
|
# (x, (y + (2*x + 1)) % n),
|
|||
|
# (x, (y + (2*x + 2)) % n),
|
|||
|
#
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def margulis_gabber_galil_graph(n, create_using=None):
|
|||
|
r"""Returns the Margulis-Gabber-Galil undirected MultiGraph on `n^2` nodes.
|
|||
|
|
|||
|
The undirected MultiGraph is regular with degree `8`. Nodes are integer
|
|||
|
pairs. The second-largest eigenvalue of the adjacency matrix of the graph
|
|||
|
is at most `5 \sqrt{2}`, regardless of `n`.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
n : int
|
|||
|
Determines the number of nodes in the graph: `n^2`.
|
|||
|
create_using : NetworkX graph constructor, optional (default MultiGraph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : graph
|
|||
|
The constructed undirected multigraph.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
If the graph is directed or not a multigraph.
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
|||
|
if G.is_directed() or not G.is_multigraph():
|
|||
|
msg = "`create_using` must be an undirected multigraph."
|
|||
|
raise nx.NetworkXError(msg)
|
|||
|
|
|||
|
for x, y in itertools.product(range(n), repeat=2):
|
|||
|
for u, v in (
|
|||
|
((x + 2 * y) % n, y),
|
|||
|
((x + (2 * y + 1)) % n, y),
|
|||
|
(x, (y + 2 * x) % n),
|
|||
|
(x, (y + (2 * x + 1)) % n),
|
|||
|
):
|
|||
|
G.add_edge((x, y), (u, v))
|
|||
|
G.graph["name"] = f"margulis_gabber_galil_graph({n})"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def chordal_cycle_graph(p, create_using=None):
|
|||
|
"""Returns the chordal cycle graph on `p` nodes.
|
|||
|
|
|||
|
The returned graph is a cycle graph on `p` nodes with chords joining each
|
|||
|
vertex `x` to its inverse modulo `p`. This graph is a (mildly explicit)
|
|||
|
3-regular expander [1]_.
|
|||
|
|
|||
|
`p` *must* be a prime number.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
p : a prime number
|
|||
|
|
|||
|
The number of vertices in the graph. This also indicates where the
|
|||
|
chordal edges in the cycle will be created.
|
|||
|
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : graph
|
|||
|
The constructed undirected multigraph.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
|
|||
|
If `create_using` indicates directed or not a multigraph.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
|
|||
|
.. [1] Theorem 4.4.2 in A. Lubotzky. "Discrete groups, expanding graphs and
|
|||
|
invariant measures", volume 125 of Progress in Mathematics.
|
|||
|
Birkhäuser Verlag, Basel, 1994.
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.empty_graph(0, create_using, default=nx.MultiGraph)
|
|||
|
if G.is_directed() or not G.is_multigraph():
|
|||
|
msg = "`create_using` must be an undirected multigraph."
|
|||
|
raise nx.NetworkXError(msg)
|
|||
|
|
|||
|
for x in range(p):
|
|||
|
left = (x - 1) % p
|
|||
|
right = (x + 1) % p
|
|||
|
# Here we apply Fermat's Little Theorem to compute the multiplicative
|
|||
|
# inverse of x in Z/pZ. By Fermat's Little Theorem,
|
|||
|
#
|
|||
|
# x^p = x (mod p)
|
|||
|
#
|
|||
|
# Therefore,
|
|||
|
#
|
|||
|
# x * x^(p - 2) = 1 (mod p)
|
|||
|
#
|
|||
|
# The number 0 is a special case: we just let its inverse be itself.
|
|||
|
chord = pow(x, p - 2, p) if x > 0 else 0
|
|||
|
for y in (left, right, chord):
|
|||
|
G.add_edge(x, y)
|
|||
|
G.graph["name"] = f"chordal_cycle_graph({p})"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def paley_graph(p, create_using=None):
|
|||
|
r"""Returns the Paley $\frac{(p-1)}{2}$ -regular graph on $p$ nodes.
|
|||
|
|
|||
|
The returned graph is a graph on $\mathbb{Z}/p\mathbb{Z}$ with edges between $x$ and $y$
|
|||
|
if and only if $x-y$ is a nonzero square in $\mathbb{Z}/p\mathbb{Z}$.
|
|||
|
|
|||
|
If $p \equiv 1 \pmod 4$, $-1$ is a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore $x-y$ is a square if and
|
|||
|
only if $y-x$ is also a square, i.e the edges in the Paley graph are symmetric.
|
|||
|
|
|||
|
If $p \equiv 3 \pmod 4$, $-1$ is not a square in $\mathbb{Z}/p\mathbb{Z}$ and therefore either $x-y$ or $y-x$
|
|||
|
is a square in $\mathbb{Z}/p\mathbb{Z}$ but not both.
|
|||
|
|
|||
|
Note that a more general definition of Paley graphs extends this construction
|
|||
|
to graphs over $q=p^n$ vertices, by using the finite field $F_q$ instead of $\mathbb{Z}/p\mathbb{Z}$.
|
|||
|
This construction requires to compute squares in general finite fields and is
|
|||
|
not what is implemented here (i.e `paley_graph(25)` does not return the true
|
|||
|
Paley graph associated with $5^2$).
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
p : int, an odd prime number.
|
|||
|
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : graph
|
|||
|
The constructed directed graph.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
If the graph is a multigraph.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
Chapter 13 in B. Bollobas, Random Graphs. Second edition.
|
|||
|
Cambridge Studies in Advanced Mathematics, 73.
|
|||
|
Cambridge University Press, Cambridge (2001).
|
|||
|
"""
|
|||
|
G = nx.empty_graph(0, create_using, default=nx.DiGraph)
|
|||
|
if G.is_multigraph():
|
|||
|
msg = "`create_using` cannot be a multigraph."
|
|||
|
raise nx.NetworkXError(msg)
|
|||
|
|
|||
|
# Compute the squares in Z/pZ.
|
|||
|
# Make it a set to uniquify (there are exactly (p-1)/2 squares in Z/pZ
|
|||
|
# when is prime).
|
|||
|
square_set = {(x**2) % p for x in range(1, p) if (x**2) % p != 0}
|
|||
|
|
|||
|
for x in range(p):
|
|||
|
for x2 in square_set:
|
|||
|
G.add_edge(x, (x + x2) % p)
|
|||
|
G.graph["name"] = f"paley({p})"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx.utils.decorators.np_random_state("seed")
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def maybe_regular_expander(n, d, *, create_using=None, max_tries=100, seed=None):
|
|||
|
r"""Utility for creating a random regular expander.
|
|||
|
|
|||
|
Returns a random $d$-regular graph on $n$ nodes which is an expander
|
|||
|
graph with very good probability.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
n : int
|
|||
|
The number of nodes.
|
|||
|
d : int
|
|||
|
The degree of each node.
|
|||
|
create_using : Graph Instance or Constructor
|
|||
|
Indicator of type of graph to return.
|
|||
|
If a Graph-type instance, then clear and use it.
|
|||
|
If a constructor, call it to create an empty graph.
|
|||
|
Use the Graph constructor by default.
|
|||
|
max_tries : int. (default: 100)
|
|||
|
The number of allowed loops when generating each independent cycle
|
|||
|
seed : (default: None)
|
|||
|
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
The nodes are numbered from $0$ to $n - 1$.
|
|||
|
|
|||
|
The graph is generated by taking $d / 2$ random independent cycles.
|
|||
|
|
|||
|
Joel Friedman proved that in this model the resulting
|
|||
|
graph is an expander with probability
|
|||
|
$1 - O(n^{-\tau})$ where $\tau = \lceil (\sqrt{d - 1}) / 2 \rceil - 1$. [1]_
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> G = nx.maybe_regular_expander(n=200, d=6, seed=8020)
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : graph
|
|||
|
The constructed undirected graph.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
If $d % 2 != 0$ as the degree must be even.
|
|||
|
If $n - 1$ is less than $ 2d $ as the graph is complete at most.
|
|||
|
If max_tries is reached
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
is_regular_expander
|
|||
|
random_regular_expander_graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Joel Friedman,
|
|||
|
A Proof of Alon’s Second Eigenvalue Conjecture and Related Problems, 2004
|
|||
|
https://arxiv.org/abs/cs/0405020
|
|||
|
|
|||
|
"""
|
|||
|
|
|||
|
import numpy as np
|
|||
|
|
|||
|
if n < 1:
|
|||
|
raise nx.NetworkXError("n must be a positive integer")
|
|||
|
|
|||
|
if not (d >= 2):
|
|||
|
raise nx.NetworkXError("d must be greater than or equal to 2")
|
|||
|
|
|||
|
if not (d % 2 == 0):
|
|||
|
raise nx.NetworkXError("d must be even")
|
|||
|
|
|||
|
if not (n - 1 >= d):
|
|||
|
raise nx.NetworkXError(
|
|||
|
f"Need n-1>= d to have room for {d//2} independent cycles with {n} nodes"
|
|||
|
)
|
|||
|
|
|||
|
G = nx.empty_graph(n, create_using)
|
|||
|
|
|||
|
if n < 2:
|
|||
|
return G
|
|||
|
|
|||
|
cycles = []
|
|||
|
edges = set()
|
|||
|
|
|||
|
# Create d / 2 cycles
|
|||
|
for i in range(d // 2):
|
|||
|
iterations = max_tries
|
|||
|
# Make sure the cycles are independent to have a regular graph
|
|||
|
while len(edges) != (i + 1) * n:
|
|||
|
iterations -= 1
|
|||
|
# Faster than random.permutation(n) since there are only
|
|||
|
# (n-1)! distinct cycles against n! permutations of size n
|
|||
|
cycle = seed.permutation(n - 1).tolist()
|
|||
|
cycle.append(n - 1)
|
|||
|
|
|||
|
new_edges = {
|
|||
|
(u, v)
|
|||
|
for u, v in nx.utils.pairwise(cycle, cyclic=True)
|
|||
|
if (u, v) not in edges and (v, u) not in edges
|
|||
|
}
|
|||
|
# If the new cycle has no edges in common with previous cycles
|
|||
|
# then add it to the list otherwise try again
|
|||
|
if len(new_edges) == n:
|
|||
|
cycles.append(cycle)
|
|||
|
edges.update(new_edges)
|
|||
|
|
|||
|
if iterations == 0:
|
|||
|
raise nx.NetworkXError("Too many iterations in maybe_regular_expander")
|
|||
|
|
|||
|
G.add_edges_from(edges)
|
|||
|
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx.utils.not_implemented_for("directed")
|
|||
|
@nx.utils.not_implemented_for("multigraph")
|
|||
|
@nx._dispatchable(preserve_edge_attrs={"G": {"weight": 1}})
|
|||
|
def is_regular_expander(G, *, epsilon=0):
|
|||
|
r"""Determines whether the graph G is a regular expander. [1]_
|
|||
|
|
|||
|
An expander graph is a sparse graph with strong connectivity properties.
|
|||
|
|
|||
|
More precisely, this helper checks whether the graph is a
|
|||
|
regular $(n, d, \lambda)$-expander with $\lambda$ close to
|
|||
|
the Alon-Boppana bound and given by
|
|||
|
$\lambda = 2 \sqrt{d - 1} + \epsilon$. [2]_
|
|||
|
|
|||
|
In the case where $\epsilon = 0$ then if the graph successfully passes the test
|
|||
|
it is a Ramanujan graph. [3]_
|
|||
|
|
|||
|
A Ramanujan graph has spectral gap almost as large as possible, which makes them
|
|||
|
excellent expanders.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
G : NetworkX graph
|
|||
|
epsilon : int, float, default=0
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
bool
|
|||
|
Whether the given graph is a regular $(n, d, \lambda)$-expander
|
|||
|
where $\lambda = 2 \sqrt{d - 1} + \epsilon$.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> G = nx.random_regular_expander_graph(20, 4)
|
|||
|
>>> nx.is_regular_expander(G)
|
|||
|
True
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
maybe_regular_expander
|
|||
|
random_regular_expander_graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
|
|||
|
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
|
|||
|
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
|
|||
|
|
|||
|
"""
|
|||
|
|
|||
|
import numpy as np
|
|||
|
from scipy.sparse.linalg import eigsh
|
|||
|
|
|||
|
if epsilon < 0:
|
|||
|
raise nx.NetworkXError("epsilon must be non negative")
|
|||
|
|
|||
|
if not nx.is_regular(G):
|
|||
|
return False
|
|||
|
|
|||
|
_, d = nx.utils.arbitrary_element(G.degree)
|
|||
|
|
|||
|
A = nx.adjacency_matrix(G, dtype=float)
|
|||
|
lams = eigsh(A, which="LM", k=2, return_eigenvectors=False)
|
|||
|
|
|||
|
# lambda2 is the second biggest eigenvalue
|
|||
|
lambda2 = min(lams)
|
|||
|
|
|||
|
# Use bool() to convert numpy scalar to Python Boolean
|
|||
|
return bool(abs(lambda2) < 2 ** np.sqrt(d - 1) + epsilon)
|
|||
|
|
|||
|
|
|||
|
@nx.utils.decorators.np_random_state("seed")
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def random_regular_expander_graph(
|
|||
|
n, d, *, epsilon=0, create_using=None, max_tries=100, seed=None
|
|||
|
):
|
|||
|
r"""Returns a random regular expander graph on $n$ nodes with degree $d$.
|
|||
|
|
|||
|
An expander graph is a sparse graph with strong connectivity properties. [1]_
|
|||
|
|
|||
|
More precisely the returned graph is a $(n, d, \lambda)$-expander with
|
|||
|
$\lambda = 2 \sqrt{d - 1} + \epsilon$, close to the Alon-Boppana bound. [2]_
|
|||
|
|
|||
|
In the case where $\epsilon = 0$ it returns a Ramanujan graph.
|
|||
|
A Ramanujan graph has spectral gap almost as large as possible,
|
|||
|
which makes them excellent expanders. [3]_
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
n : int
|
|||
|
The number of nodes.
|
|||
|
d : int
|
|||
|
The degree of each node.
|
|||
|
epsilon : int, float, default=0
|
|||
|
max_tries : int, (default: 100)
|
|||
|
The number of allowed loops, also used in the maybe_regular_expander utility
|
|||
|
seed : (default: None)
|
|||
|
Seed used to set random number generation state. See :ref`Randomness<randomness>`.
|
|||
|
|
|||
|
Raises
|
|||
|
------
|
|||
|
NetworkXError
|
|||
|
If max_tries is reached
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
>>> G = nx.random_regular_expander_graph(20, 4)
|
|||
|
>>> nx.is_regular_expander(G)
|
|||
|
True
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
This loops over `maybe_regular_expander` and can be slow when
|
|||
|
$n$ is too big or $\epsilon$ too small.
|
|||
|
|
|||
|
See Also
|
|||
|
--------
|
|||
|
maybe_regular_expander
|
|||
|
is_regular_expander
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Expander graph, https://en.wikipedia.org/wiki/Expander_graph
|
|||
|
.. [2] Alon-Boppana bound, https://en.wikipedia.org/wiki/Alon%E2%80%93Boppana_bound
|
|||
|
.. [3] Ramanujan graphs, https://en.wikipedia.org/wiki/Ramanujan_graph
|
|||
|
|
|||
|
"""
|
|||
|
G = maybe_regular_expander(
|
|||
|
n, d, create_using=create_using, max_tries=max_tries, seed=seed
|
|||
|
)
|
|||
|
iterations = max_tries
|
|||
|
|
|||
|
while not is_regular_expander(G, epsilon=epsilon):
|
|||
|
iterations -= 1
|
|||
|
G = maybe_regular_expander(
|
|||
|
n=n, d=d, create_using=create_using, max_tries=max_tries, seed=seed
|
|||
|
)
|
|||
|
|
|||
|
if iterations == 0:
|
|||
|
raise nx.NetworkXError(
|
|||
|
"Too many iterations in random_regular_expander_graph"
|
|||
|
)
|
|||
|
|
|||
|
return G
|