994 lines
28 KiB
Python
994 lines
28 KiB
Python
|
"""
|
|||
|
Various small and named graphs, together with some compact generators.
|
|||
|
|
|||
|
"""
|
|||
|
|
|||
|
__all__ = [
|
|||
|
"LCF_graph",
|
|||
|
"bull_graph",
|
|||
|
"chvatal_graph",
|
|||
|
"cubical_graph",
|
|||
|
"desargues_graph",
|
|||
|
"diamond_graph",
|
|||
|
"dodecahedral_graph",
|
|||
|
"frucht_graph",
|
|||
|
"heawood_graph",
|
|||
|
"hoffman_singleton_graph",
|
|||
|
"house_graph",
|
|||
|
"house_x_graph",
|
|||
|
"icosahedral_graph",
|
|||
|
"krackhardt_kite_graph",
|
|||
|
"moebius_kantor_graph",
|
|||
|
"octahedral_graph",
|
|||
|
"pappus_graph",
|
|||
|
"petersen_graph",
|
|||
|
"sedgewick_maze_graph",
|
|||
|
"tetrahedral_graph",
|
|||
|
"truncated_cube_graph",
|
|||
|
"truncated_tetrahedron_graph",
|
|||
|
"tutte_graph",
|
|||
|
]
|
|||
|
|
|||
|
from functools import wraps
|
|||
|
|
|||
|
import networkx as nx
|
|||
|
from networkx.exception import NetworkXError
|
|||
|
from networkx.generators.classic import (
|
|||
|
complete_graph,
|
|||
|
cycle_graph,
|
|||
|
empty_graph,
|
|||
|
path_graph,
|
|||
|
)
|
|||
|
|
|||
|
|
|||
|
def _raise_on_directed(func):
|
|||
|
"""
|
|||
|
A decorator which inspects the `create_using` argument and raises a
|
|||
|
NetworkX exception when `create_using` is a DiGraph (class or instance) for
|
|||
|
graph generators that do not support directed outputs.
|
|||
|
"""
|
|||
|
|
|||
|
@wraps(func)
|
|||
|
def wrapper(*args, **kwargs):
|
|||
|
if kwargs.get("create_using") is not None:
|
|||
|
G = nx.empty_graph(create_using=kwargs["create_using"])
|
|||
|
if G.is_directed():
|
|||
|
raise NetworkXError("Directed Graph not supported")
|
|||
|
return func(*args, **kwargs)
|
|||
|
|
|||
|
return wrapper
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def LCF_graph(n, shift_list, repeats, create_using=None):
|
|||
|
"""
|
|||
|
Return the cubic graph specified in LCF notation.
|
|||
|
|
|||
|
LCF (Lederberg-Coxeter-Fruchte) notation[1]_ is a compressed
|
|||
|
notation used in the generation of various cubic Hamiltonian
|
|||
|
graphs of high symmetry. See, for example, `dodecahedral_graph`,
|
|||
|
`desargues_graph`, `heawood_graph` and `pappus_graph`.
|
|||
|
|
|||
|
Nodes are drawn from ``range(n)``. Each node ``n_i`` is connected with
|
|||
|
node ``n_i + shift % n`` where ``shift`` is given by cycling through
|
|||
|
the input `shift_list` `repeat` s times.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
n : int
|
|||
|
The starting graph is the `n`-cycle with nodes ``0, ..., n-1``.
|
|||
|
The null graph is returned if `n` < 1.
|
|||
|
|
|||
|
shift_list : list
|
|||
|
A list of integer shifts mod `n`, ``[s1, s2, .., sk]``
|
|||
|
|
|||
|
repeats : int
|
|||
|
Integer specifying the number of times that shifts in `shift_list`
|
|||
|
are successively applied to each current node in the n-cycle
|
|||
|
to generate an edge between ``n_current`` and ``n_current + shift mod n``.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : Graph
|
|||
|
A graph instance created from the specified LCF notation.
|
|||
|
|
|||
|
Examples
|
|||
|
--------
|
|||
|
The utility graph $K_{3,3}$
|
|||
|
|
|||
|
>>> G = nx.LCF_graph(6, [3, -3], 3)
|
|||
|
>>> G.edges()
|
|||
|
EdgeView([(0, 1), (0, 5), (0, 3), (1, 2), (1, 4), (2, 3), (2, 5), (3, 4), (4, 5)])
|
|||
|
|
|||
|
The Heawood graph:
|
|||
|
|
|||
|
>>> G = nx.LCF_graph(14, [5, -5], 7)
|
|||
|
>>> nx.is_isomorphic(G, nx.heawood_graph())
|
|||
|
True
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/LCF_notation
|
|||
|
|
|||
|
"""
|
|||
|
if n <= 0:
|
|||
|
return empty_graph(0, create_using)
|
|||
|
|
|||
|
# start with the n-cycle
|
|||
|
G = cycle_graph(n, create_using)
|
|||
|
if G.is_directed():
|
|||
|
raise NetworkXError("Directed Graph not supported")
|
|||
|
G.name = "LCF_graph"
|
|||
|
nodes = sorted(G)
|
|||
|
|
|||
|
n_extra_edges = repeats * len(shift_list)
|
|||
|
# edges are added n_extra_edges times
|
|||
|
# (not all of these need be new)
|
|||
|
if n_extra_edges < 1:
|
|||
|
return G
|
|||
|
|
|||
|
for i in range(n_extra_edges):
|
|||
|
shift = shift_list[i % len(shift_list)] # cycle through shift_list
|
|||
|
v1 = nodes[i % n] # cycle repeatedly through nodes
|
|||
|
v2 = nodes[(i + shift) % n]
|
|||
|
G.add_edge(v1, v2)
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
# -------------------------------------------------------------------------------
|
|||
|
# Various small and named graphs
|
|||
|
# -------------------------------------------------------------------------------
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def bull_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Bull Graph
|
|||
|
|
|||
|
The Bull Graph has 5 nodes and 5 edges. It is a planar undirected
|
|||
|
graph in the form of a triangle with two disjoint pendant edges [1]_
|
|||
|
The name comes from the triangle and pendant edges representing
|
|||
|
respectively the body and legs of a bull.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
A bull graph with 5 nodes
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Bull_graph.
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{0: [1, 2], 1: [0, 2, 3], 2: [0, 1, 4], 3: [1], 4: [2]},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Bull Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def chvatal_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Chvátal Graph
|
|||
|
|
|||
|
The Chvátal Graph is an undirected graph with 12 nodes and 24 edges [1]_.
|
|||
|
It has 370 distinct (directed) Hamiltonian cycles, giving a unique generalized
|
|||
|
LCF notation of order 4, two of order 6 , and 43 of order 1 [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
The Chvátal graph with 12 nodes and 24 edges
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Chv%C3%A1tal_graph
|
|||
|
.. [2] https://mathworld.wolfram.com/ChvatalGraph.html
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{
|
|||
|
0: [1, 4, 6, 9],
|
|||
|
1: [2, 5, 7],
|
|||
|
2: [3, 6, 8],
|
|||
|
3: [4, 7, 9],
|
|||
|
4: [5, 8],
|
|||
|
5: [10, 11],
|
|||
|
6: [10, 11],
|
|||
|
7: [8, 11],
|
|||
|
8: [10],
|
|||
|
9: [10, 11],
|
|||
|
},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Chvatal Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def cubical_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the 3-regular Platonic Cubical Graph
|
|||
|
|
|||
|
The skeleton of the cube (the nodes and edges) form a graph, with 8
|
|||
|
nodes, and 12 edges. It is a special case of the hypercube graph.
|
|||
|
It is one of 5 Platonic graphs, each a skeleton of its
|
|||
|
Platonic solid [1]_.
|
|||
|
Such graphs arise in parallel processing in computers.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
A cubical graph with 8 nodes and 12 edges
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Cube#Cubical_graph
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{
|
|||
|
0: [1, 3, 4],
|
|||
|
1: [0, 2, 7],
|
|||
|
2: [1, 3, 6],
|
|||
|
3: [0, 2, 5],
|
|||
|
4: [0, 5, 7],
|
|||
|
5: [3, 4, 6],
|
|||
|
6: [2, 5, 7],
|
|||
|
7: [1, 4, 6],
|
|||
|
},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Platonic Cubical Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def desargues_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Desargues Graph
|
|||
|
|
|||
|
The Desargues Graph is a non-planar, distance-transitive cubic graph
|
|||
|
with 20 nodes and 30 edges [1]_.
|
|||
|
It is a symmetric graph. It can be represented in LCF notation
|
|||
|
as [5,-5,9,-9]^5 [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Desargues Graph with 20 nodes and 30 edges
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Desargues_graph
|
|||
|
.. [2] https://mathworld.wolfram.com/DesarguesGraph.html
|
|||
|
"""
|
|||
|
G = LCF_graph(20, [5, -5, 9, -9], 5, create_using)
|
|||
|
G.name = "Desargues Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def diamond_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Diamond graph
|
|||
|
|
|||
|
The Diamond Graph is planar undirected graph with 4 nodes and 5 edges.
|
|||
|
It is also sometimes known as the double triangle graph or kite graph [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Diamond Graph with 4 nodes and 5 edges
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://mathworld.wolfram.com/DiamondGraph.html
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{0: [1, 2], 1: [0, 2, 3], 2: [0, 1, 3], 3: [1, 2]}, create_using=create_using
|
|||
|
)
|
|||
|
G.name = "Diamond Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def dodecahedral_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Platonic Dodecahedral graph.
|
|||
|
|
|||
|
The dodecahedral graph has 20 nodes and 30 edges. The skeleton of the
|
|||
|
dodecahedron forms a graph. It is one of 5 Platonic graphs [1]_.
|
|||
|
It can be described in LCF notation as:
|
|||
|
``[10, 7, 4, -4, -7, 10, -4, 7, -7, 4]^2`` [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Dodecahedral Graph with 20 nodes and 30 edges
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph
|
|||
|
.. [2] https://mathworld.wolfram.com/DodecahedralGraph.html
|
|||
|
|
|||
|
"""
|
|||
|
G = LCF_graph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2, create_using)
|
|||
|
G.name = "Dodecahedral Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def frucht_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Frucht Graph.
|
|||
|
|
|||
|
The Frucht Graph is the smallest cubical graph whose
|
|||
|
automorphism group consists only of the identity element [1]_.
|
|||
|
It has 12 nodes and 18 edges and no nontrivial symmetries.
|
|||
|
It is planar and Hamiltonian [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Frucht Graph with 12 nodes and 18 edges
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Frucht_graph
|
|||
|
.. [2] https://mathworld.wolfram.com/FruchtGraph.html
|
|||
|
|
|||
|
"""
|
|||
|
G = cycle_graph(7, create_using)
|
|||
|
G.add_edges_from(
|
|||
|
[
|
|||
|
[0, 7],
|
|||
|
[1, 7],
|
|||
|
[2, 8],
|
|||
|
[3, 9],
|
|||
|
[4, 9],
|
|||
|
[5, 10],
|
|||
|
[6, 10],
|
|||
|
[7, 11],
|
|||
|
[8, 11],
|
|||
|
[8, 9],
|
|||
|
[10, 11],
|
|||
|
]
|
|||
|
)
|
|||
|
|
|||
|
G.name = "Frucht Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def heawood_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Heawood Graph, a (3,6) cage.
|
|||
|
|
|||
|
The Heawood Graph is an undirected graph with 14 nodes and 21 edges,
|
|||
|
named after Percy John Heawood [1]_.
|
|||
|
It is cubic symmetric, nonplanar, Hamiltonian, and can be represented
|
|||
|
in LCF notation as ``[5,-5]^7`` [2]_.
|
|||
|
It is the unique (3,6)-cage: the regular cubic graph of girth 6 with
|
|||
|
minimal number of vertices [3]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Heawood Graph with 14 nodes and 21 edges
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Heawood_graph
|
|||
|
.. [2] https://mathworld.wolfram.com/HeawoodGraph.html
|
|||
|
.. [3] https://www.win.tue.nl/~aeb/graphs/Heawood.html
|
|||
|
|
|||
|
"""
|
|||
|
G = LCF_graph(14, [5, -5], 7, create_using)
|
|||
|
G.name = "Heawood Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def hoffman_singleton_graph():
|
|||
|
"""
|
|||
|
Returns the Hoffman-Singleton Graph.
|
|||
|
|
|||
|
The Hoffman–Singleton graph is a symmetrical undirected graph
|
|||
|
with 50 nodes and 175 edges.
|
|||
|
All indices lie in ``Z % 5``: that is, the integers mod 5 [1]_.
|
|||
|
It is the only regular graph of vertex degree 7, diameter 2, and girth 5.
|
|||
|
It is the unique (7,5)-cage graph and Moore graph, and contains many
|
|||
|
copies of the Petersen graph [2]_.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Hoffman–Singleton Graph with 50 nodes and 175 edges
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
Constructed from pentagon and pentagram as follows: Take five pentagons $P_h$
|
|||
|
and five pentagrams $Q_i$ . Join vertex $j$ of $P_h$ to vertex $h·i+j$ of $Q_i$ [3]_.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://blogs.ams.org/visualinsight/2016/02/01/hoffman-singleton-graph/
|
|||
|
.. [2] https://mathworld.wolfram.com/Hoffman-SingletonGraph.html
|
|||
|
.. [3] https://en.wikipedia.org/wiki/Hoffman%E2%80%93Singleton_graph
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.Graph()
|
|||
|
for i in range(5):
|
|||
|
for j in range(5):
|
|||
|
G.add_edge(("pentagon", i, j), ("pentagon", i, (j - 1) % 5))
|
|||
|
G.add_edge(("pentagon", i, j), ("pentagon", i, (j + 1) % 5))
|
|||
|
G.add_edge(("pentagram", i, j), ("pentagram", i, (j - 2) % 5))
|
|||
|
G.add_edge(("pentagram", i, j), ("pentagram", i, (j + 2) % 5))
|
|||
|
for k in range(5):
|
|||
|
G.add_edge(("pentagon", i, j), ("pentagram", k, (i * k + j) % 5))
|
|||
|
G = nx.convert_node_labels_to_integers(G)
|
|||
|
G.name = "Hoffman-Singleton Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def house_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the House graph (square with triangle on top)
|
|||
|
|
|||
|
The house graph is a simple undirected graph with
|
|||
|
5 nodes and 6 edges [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
House graph in the form of a square with a triangle on top
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://mathworld.wolfram.com/HouseGraph.html
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{0: [1, 2], 1: [0, 3], 2: [0, 3, 4], 3: [1, 2, 4], 4: [2, 3]},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "House Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def house_x_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the House graph with a cross inside the house square.
|
|||
|
|
|||
|
The House X-graph is the House graph plus the two edges connecting diagonally
|
|||
|
opposite vertices of the square base. It is also one of the two graphs
|
|||
|
obtained by removing two edges from the pentatope graph [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
House graph with diagonal vertices connected
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://mathworld.wolfram.com/HouseGraph.html
|
|||
|
"""
|
|||
|
G = house_graph(create_using)
|
|||
|
G.add_edges_from([(0, 3), (1, 2)])
|
|||
|
G.name = "House-with-X-inside Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def icosahedral_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Platonic Icosahedral graph.
|
|||
|
|
|||
|
The icosahedral graph has 12 nodes and 30 edges. It is a Platonic graph
|
|||
|
whose nodes have the connectivity of the icosahedron. It is undirected,
|
|||
|
regular and Hamiltonian [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Icosahedral graph with 12 nodes and 30 edges.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://mathworld.wolfram.com/IcosahedralGraph.html
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{
|
|||
|
0: [1, 5, 7, 8, 11],
|
|||
|
1: [2, 5, 6, 8],
|
|||
|
2: [3, 6, 8, 9],
|
|||
|
3: [4, 6, 9, 10],
|
|||
|
4: [5, 6, 10, 11],
|
|||
|
5: [6, 11],
|
|||
|
7: [8, 9, 10, 11],
|
|||
|
8: [9],
|
|||
|
9: [10],
|
|||
|
10: [11],
|
|||
|
},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Platonic Icosahedral Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def krackhardt_kite_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Krackhardt Kite Social Network.
|
|||
|
|
|||
|
A 10 actor social network introduced by David Krackhardt
|
|||
|
to illustrate different centrality measures [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Krackhardt Kite graph with 10 nodes and 18 edges
|
|||
|
|
|||
|
Notes
|
|||
|
-----
|
|||
|
The traditional labeling is:
|
|||
|
Andre=1, Beverley=2, Carol=3, Diane=4,
|
|||
|
Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Krackhardt, David. "Assessing the Political Landscape: Structure,
|
|||
|
Cognition, and Power in Organizations". Administrative Science Quarterly.
|
|||
|
35 (2): 342–369. doi:10.2307/2393394. JSTOR 2393394. June 1990.
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{
|
|||
|
0: [1, 2, 3, 5],
|
|||
|
1: [0, 3, 4, 6],
|
|||
|
2: [0, 3, 5],
|
|||
|
3: [0, 1, 2, 4, 5, 6],
|
|||
|
4: [1, 3, 6],
|
|||
|
5: [0, 2, 3, 6, 7],
|
|||
|
6: [1, 3, 4, 5, 7],
|
|||
|
7: [5, 6, 8],
|
|||
|
8: [7, 9],
|
|||
|
9: [8],
|
|||
|
},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Krackhardt Kite Social Network"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def moebius_kantor_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Moebius-Kantor graph.
|
|||
|
|
|||
|
The Möbius-Kantor graph is the cubic symmetric graph on 16 nodes.
|
|||
|
Its LCF notation is [5,-5]^8, and it is isomorphic to the generalized
|
|||
|
Petersen graph [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Moebius-Kantor graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/M%C3%B6bius%E2%80%93Kantor_graph
|
|||
|
|
|||
|
"""
|
|||
|
G = LCF_graph(16, [5, -5], 8, create_using)
|
|||
|
G.name = "Moebius-Kantor Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def octahedral_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Platonic Octahedral graph.
|
|||
|
|
|||
|
The octahedral graph is the 6-node 12-edge Platonic graph having the
|
|||
|
connectivity of the octahedron [1]_. If 6 couples go to a party,
|
|||
|
and each person shakes hands with every person except his or her partner,
|
|||
|
then this graph describes the set of handshakes that take place;
|
|||
|
for this reason it is also called the cocktail party graph [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Octahedral graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://mathworld.wolfram.com/OctahedralGraph.html
|
|||
|
.. [2] https://en.wikipedia.org/wiki/Tur%C3%A1n_graph#Special_cases
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{0: [1, 2, 3, 4], 1: [2, 3, 5], 2: [4, 5], 3: [4, 5], 4: [5]},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Platonic Octahedral Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def pappus_graph():
|
|||
|
"""
|
|||
|
Returns the Pappus graph.
|
|||
|
|
|||
|
The Pappus graph is a cubic symmetric distance-regular graph with 18 nodes
|
|||
|
and 27 edges. It is Hamiltonian and can be represented in LCF notation as
|
|||
|
[5,7,-7,7,-7,-5]^3 [1]_.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Pappus graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Pappus_graph
|
|||
|
"""
|
|||
|
G = LCF_graph(18, [5, 7, -7, 7, -7, -5], 3)
|
|||
|
G.name = "Pappus Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def petersen_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Petersen graph.
|
|||
|
|
|||
|
The Peterson graph is a cubic, undirected graph with 10 nodes and 15 edges [1]_.
|
|||
|
Julius Petersen constructed the graph as the smallest counterexample
|
|||
|
against the claim that a connected bridgeless cubic graph
|
|||
|
has an edge colouring with three colours [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Petersen graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Petersen_graph
|
|||
|
.. [2] https://www.win.tue.nl/~aeb/drg/graphs/Petersen.html
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{
|
|||
|
0: [1, 4, 5],
|
|||
|
1: [0, 2, 6],
|
|||
|
2: [1, 3, 7],
|
|||
|
3: [2, 4, 8],
|
|||
|
4: [3, 0, 9],
|
|||
|
5: [0, 7, 8],
|
|||
|
6: [1, 8, 9],
|
|||
|
7: [2, 5, 9],
|
|||
|
8: [3, 5, 6],
|
|||
|
9: [4, 6, 7],
|
|||
|
},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Petersen Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def sedgewick_maze_graph(create_using=None):
|
|||
|
"""
|
|||
|
Return a small maze with a cycle.
|
|||
|
|
|||
|
This is the maze used in Sedgewick, 3rd Edition, Part 5, Graph
|
|||
|
Algorithms, Chapter 18, e.g. Figure 18.2 and following [1]_.
|
|||
|
Nodes are numbered 0,..,7
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Small maze with a cycle
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] Figure 18.2, Chapter 18, Graph Algorithms (3rd Ed), Sedgewick
|
|||
|
"""
|
|||
|
G = empty_graph(0, create_using)
|
|||
|
G.add_nodes_from(range(8))
|
|||
|
G.add_edges_from([[0, 2], [0, 7], [0, 5]])
|
|||
|
G.add_edges_from([[1, 7], [2, 6]])
|
|||
|
G.add_edges_from([[3, 4], [3, 5]])
|
|||
|
G.add_edges_from([[4, 5], [4, 7], [4, 6]])
|
|||
|
G.name = "Sedgewick Maze"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def tetrahedral_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the 3-regular Platonic Tetrahedral graph.
|
|||
|
|
|||
|
Tetrahedral graph has 4 nodes and 6 edges. It is a
|
|||
|
special case of the complete graph, K4, and wheel graph, W4.
|
|||
|
It is one of the 5 platonic graphs [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Tetrahedral Graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Tetrahedron#Tetrahedral_graph
|
|||
|
|
|||
|
"""
|
|||
|
G = complete_graph(4, create_using)
|
|||
|
G.name = "Platonic Tetrahedral Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def truncated_cube_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the skeleton of the truncated cube.
|
|||
|
|
|||
|
The truncated cube is an Archimedean solid with 14 regular
|
|||
|
faces (6 octagonal and 8 triangular), 36 edges and 24 nodes [1]_.
|
|||
|
The truncated cube is created by truncating (cutting off) the tips
|
|||
|
of the cube one third of the way into each edge [2]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Skeleton of the truncated cube
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Truncated_cube
|
|||
|
.. [2] https://www.coolmath.com/reference/polyhedra-truncated-cube
|
|||
|
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{
|
|||
|
0: [1, 2, 4],
|
|||
|
1: [11, 14],
|
|||
|
2: [3, 4],
|
|||
|
3: [6, 8],
|
|||
|
4: [5],
|
|||
|
5: [16, 18],
|
|||
|
6: [7, 8],
|
|||
|
7: [10, 12],
|
|||
|
8: [9],
|
|||
|
9: [17, 20],
|
|||
|
10: [11, 12],
|
|||
|
11: [14],
|
|||
|
12: [13],
|
|||
|
13: [21, 22],
|
|||
|
14: [15],
|
|||
|
15: [19, 23],
|
|||
|
16: [17, 18],
|
|||
|
17: [20],
|
|||
|
18: [19],
|
|||
|
19: [23],
|
|||
|
20: [21],
|
|||
|
21: [22],
|
|||
|
22: [23],
|
|||
|
},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Truncated Cube Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def truncated_tetrahedron_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the skeleton of the truncated Platonic tetrahedron.
|
|||
|
|
|||
|
The truncated tetrahedron is an Archimedean solid with 4 regular hexagonal faces,
|
|||
|
4 equilateral triangle faces, 12 nodes and 18 edges. It can be constructed by truncating
|
|||
|
all 4 vertices of a regular tetrahedron at one third of the original edge length [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Skeleton of the truncated tetrahedron
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Truncated_tetrahedron
|
|||
|
|
|||
|
"""
|
|||
|
G = path_graph(12, create_using)
|
|||
|
G.add_edges_from([(0, 2), (0, 9), (1, 6), (3, 11), (4, 11), (5, 7), (8, 10)])
|
|||
|
G.name = "Truncated Tetrahedron Graph"
|
|||
|
return G
|
|||
|
|
|||
|
|
|||
|
@_raise_on_directed
|
|||
|
@nx._dispatchable(graphs=None, returns_graph=True)
|
|||
|
def tutte_graph(create_using=None):
|
|||
|
"""
|
|||
|
Returns the Tutte graph.
|
|||
|
|
|||
|
The Tutte graph is a cubic polyhedral, non-Hamiltonian graph. It has
|
|||
|
46 nodes and 69 edges.
|
|||
|
It is a counterexample to Tait's conjecture that every 3-regular polyhedron
|
|||
|
has a Hamiltonian cycle.
|
|||
|
It can be realized geometrically from a tetrahedron by multiply truncating
|
|||
|
three of its vertices [1]_.
|
|||
|
|
|||
|
Parameters
|
|||
|
----------
|
|||
|
create_using : NetworkX graph constructor, optional (default=nx.Graph)
|
|||
|
Graph type to create. If graph instance, then cleared before populated.
|
|||
|
|
|||
|
Returns
|
|||
|
-------
|
|||
|
G : networkx Graph
|
|||
|
Tutte graph
|
|||
|
|
|||
|
References
|
|||
|
----------
|
|||
|
.. [1] https://en.wikipedia.org/wiki/Tutte_graph
|
|||
|
"""
|
|||
|
G = nx.from_dict_of_lists(
|
|||
|
{
|
|||
|
0: [1, 2, 3],
|
|||
|
1: [4, 26],
|
|||
|
2: [10, 11],
|
|||
|
3: [18, 19],
|
|||
|
4: [5, 33],
|
|||
|
5: [6, 29],
|
|||
|
6: [7, 27],
|
|||
|
7: [8, 14],
|
|||
|
8: [9, 38],
|
|||
|
9: [10, 37],
|
|||
|
10: [39],
|
|||
|
11: [12, 39],
|
|||
|
12: [13, 35],
|
|||
|
13: [14, 15],
|
|||
|
14: [34],
|
|||
|
15: [16, 22],
|
|||
|
16: [17, 44],
|
|||
|
17: [18, 43],
|
|||
|
18: [45],
|
|||
|
19: [20, 45],
|
|||
|
20: [21, 41],
|
|||
|
21: [22, 23],
|
|||
|
22: [40],
|
|||
|
23: [24, 27],
|
|||
|
24: [25, 32],
|
|||
|
25: [26, 31],
|
|||
|
26: [33],
|
|||
|
27: [28],
|
|||
|
28: [29, 32],
|
|||
|
29: [30],
|
|||
|
30: [31, 33],
|
|||
|
31: [32],
|
|||
|
34: [35, 38],
|
|||
|
35: [36],
|
|||
|
36: [37, 39],
|
|||
|
37: [38],
|
|||
|
40: [41, 44],
|
|||
|
41: [42],
|
|||
|
42: [43, 45],
|
|||
|
43: [44],
|
|||
|
},
|
|||
|
create_using=create_using,
|
|||
|
)
|
|||
|
G.name = "Tutte's Graph"
|
|||
|
return G
|