167 lines
4.6 KiB
Python
167 lines
4.6 KiB
Python
|
"""Modularity matrix of graphs.
|
||
|
"""
|
||
|
import networkx as nx
|
||
|
from networkx.utils import not_implemented_for
|
||
|
|
||
|
__all__ = ["modularity_matrix", "directed_modularity_matrix"]
|
||
|
|
||
|
|
||
|
@not_implemented_for("directed")
|
||
|
@not_implemented_for("multigraph")
|
||
|
@nx._dispatchable(edge_attrs="weight")
|
||
|
def modularity_matrix(G, nodelist=None, weight=None):
|
||
|
r"""Returns the modularity matrix of G.
|
||
|
|
||
|
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
||
|
matrix and <A> is the average adjacency matrix, assuming that the graph
|
||
|
is described by the configuration model.
|
||
|
|
||
|
More specifically, the element B_ij of B is defined as
|
||
|
|
||
|
.. math::
|
||
|
A_{ij} - {k_i k_j \over 2 m}
|
||
|
|
||
|
where k_i is the degree of node i, and where m is the number of edges
|
||
|
in the graph. When weight is set to a name of an attribute edge, Aij, k_i,
|
||
|
k_j and m are computed using its value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : Graph
|
||
|
A NetworkX graph
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
weight : string or None, optional (default=None)
|
||
|
The edge attribute that holds the numerical value used for
|
||
|
the edge weight. If None then all edge weights are 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
B : Numpy array
|
||
|
The modularity matrix of G.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> k = [3, 2, 2, 1, 0]
|
||
|
>>> G = nx.havel_hakimi_graph(k)
|
||
|
>>> B = nx.modularity_matrix(G)
|
||
|
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
to_numpy_array
|
||
|
modularity_spectrum
|
||
|
adjacency_matrix
|
||
|
directed_modularity_matrix
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] M. E. J. Newman, "Modularity and community structure in networks",
|
||
|
Proc. Natl. Acad. Sci. USA, vol. 103, pp. 8577-8582, 2006.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
||
|
k = A.sum(axis=1)
|
||
|
m = k.sum() * 0.5
|
||
|
# Expected adjacency matrix
|
||
|
X = np.outer(k, k) / (2 * m)
|
||
|
|
||
|
return A - X
|
||
|
|
||
|
|
||
|
@not_implemented_for("undirected")
|
||
|
@not_implemented_for("multigraph")
|
||
|
@nx._dispatchable(edge_attrs="weight")
|
||
|
def directed_modularity_matrix(G, nodelist=None, weight=None):
|
||
|
"""Returns the directed modularity matrix of G.
|
||
|
|
||
|
The modularity matrix is the matrix B = A - <A>, where A is the adjacency
|
||
|
matrix and <A> is the expected adjacency matrix, assuming that the graph
|
||
|
is described by the configuration model.
|
||
|
|
||
|
More specifically, the element B_ij of B is defined as
|
||
|
|
||
|
.. math::
|
||
|
B_{ij} = A_{ij} - k_i^{out} k_j^{in} / m
|
||
|
|
||
|
where :math:`k_i^{in}` is the in degree of node i, and :math:`k_j^{out}` is the out degree
|
||
|
of node j, with m the number of edges in the graph. When weight is set
|
||
|
to a name of an attribute edge, Aij, k_i, k_j and m are computed using
|
||
|
its value.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
G : DiGraph
|
||
|
A NetworkX DiGraph
|
||
|
|
||
|
nodelist : list, optional
|
||
|
The rows and columns are ordered according to the nodes in nodelist.
|
||
|
If nodelist is None, then the ordering is produced by G.nodes().
|
||
|
|
||
|
weight : string or None, optional (default=None)
|
||
|
The edge attribute that holds the numerical value used for
|
||
|
the edge weight. If None then all edge weights are 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
B : Numpy array
|
||
|
The modularity matrix of G.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> G = nx.DiGraph()
|
||
|
>>> G.add_edges_from(
|
||
|
... (
|
||
|
... (1, 2),
|
||
|
... (1, 3),
|
||
|
... (3, 1),
|
||
|
... (3, 2),
|
||
|
... (3, 5),
|
||
|
... (4, 5),
|
||
|
... (4, 6),
|
||
|
... (5, 4),
|
||
|
... (5, 6),
|
||
|
... (6, 4),
|
||
|
... )
|
||
|
... )
|
||
|
>>> B = nx.directed_modularity_matrix(G)
|
||
|
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
NetworkX defines the element A_ij of the adjacency matrix as 1 if there
|
||
|
is a link going from node i to node j. Leicht and Newman use the opposite
|
||
|
definition. This explains the different expression for B_ij.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
to_numpy_array
|
||
|
modularity_spectrum
|
||
|
adjacency_matrix
|
||
|
modularity_matrix
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
.. [1] E. A. Leicht, M. E. J. Newman,
|
||
|
"Community structure in directed networks",
|
||
|
Phys. Rev Lett., vol. 100, no. 11, p. 118703, 2008.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
if nodelist is None:
|
||
|
nodelist = list(G)
|
||
|
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
|
||
|
k_in = A.sum(axis=0)
|
||
|
k_out = A.sum(axis=1)
|
||
|
m = k_in.sum()
|
||
|
# Expected adjacency matrix
|
||
|
X = np.outer(k_out, k_in) / m
|
||
|
|
||
|
return A - X
|