Traktor/myenv/Lib/site-packages/networkx/utils/misc.py

602 lines
19 KiB
Python
Raw Normal View History

2024-05-23 01:57:24 +02:00
"""
Miscellaneous Helpers for NetworkX.
These are not imported into the base networkx namespace but
can be accessed, for example, as
>>> import networkx
>>> networkx.utils.make_list_of_ints({1, 2, 3})
[1, 2, 3]
>>> networkx.utils.arbitrary_element({5, 1, 7}) # doctest: +SKIP
1
"""
import random
import sys
import uuid
import warnings
from collections import defaultdict, deque
from collections.abc import Iterable, Iterator, Sized
from itertools import chain, tee
import networkx as nx
__all__ = [
"flatten",
"make_list_of_ints",
"dict_to_numpy_array",
"arbitrary_element",
"pairwise",
"groups",
"create_random_state",
"create_py_random_state",
"PythonRandomInterface",
"PythonRandomViaNumpyBits",
"nodes_equal",
"edges_equal",
"graphs_equal",
"_clear_cache",
]
# some cookbook stuff
# used in deciding whether something is a bunch of nodes, edges, etc.
# see G.add_nodes and others in Graph Class in networkx/base.py
def flatten(obj, result=None):
"""Return flattened version of (possibly nested) iterable object."""
if not isinstance(obj, Iterable | Sized) or isinstance(obj, str):
return obj
if result is None:
result = []
for item in obj:
if not isinstance(item, Iterable | Sized) or isinstance(item, str):
result.append(item)
else:
flatten(item, result)
return tuple(result)
def make_list_of_ints(sequence):
"""Return list of ints from sequence of integral numbers.
All elements of the sequence must satisfy int(element) == element
or a ValueError is raised. Sequence is iterated through once.
If sequence is a list, the non-int values are replaced with ints.
So, no new list is created
"""
if not isinstance(sequence, list):
result = []
for i in sequence:
errmsg = f"sequence is not all integers: {i}"
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
result.append(ii)
return result
# original sequence is a list... in-place conversion to ints
for indx, i in enumerate(sequence):
errmsg = f"sequence is not all integers: {i}"
if isinstance(i, int):
continue
try:
ii = int(i)
except ValueError:
raise nx.NetworkXError(errmsg) from None
if ii != i:
raise nx.NetworkXError(errmsg)
sequence[indx] = ii
return sequence
def dict_to_numpy_array(d, mapping=None):
"""Convert a dictionary of dictionaries to a numpy array
with optional mapping."""
try:
return _dict_to_numpy_array2(d, mapping)
except (AttributeError, TypeError):
# AttributeError is when no mapping was provided and v.keys() fails.
# TypeError is when a mapping was provided and d[k1][k2] fails.
return _dict_to_numpy_array1(d, mapping)
def _dict_to_numpy_array2(d, mapping=None):
"""Convert a dictionary of dictionaries to a 2d numpy array
with optional mapping.
"""
import numpy as np
if mapping is None:
s = set(d.keys())
for k, v in d.items():
s.update(v.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros((n, n))
for k1, i in mapping.items():
for k2, j in mapping.items():
try:
a[i, j] = d[k1][k2]
except KeyError:
pass
return a
def _dict_to_numpy_array1(d, mapping=None):
"""Convert a dictionary of numbers to a 1d numpy array with optional mapping."""
import numpy as np
if mapping is None:
s = set(d.keys())
mapping = dict(zip(s, range(len(s))))
n = len(mapping)
a = np.zeros(n)
for k1, i in mapping.items():
i = mapping[k1]
a[i] = d[k1]
return a
def arbitrary_element(iterable):
"""Returns an arbitrary element of `iterable` without removing it.
This is most useful for "peeking" at an arbitrary element of a set,
but can be used for any list, dictionary, etc., as well.
Parameters
----------
iterable : `abc.collections.Iterable` instance
Any object that implements ``__iter__``, e.g. set, dict, list, tuple,
etc.
Returns
-------
The object that results from ``next(iter(iterable))``
Raises
------
ValueError
If `iterable` is an iterator (because the current implementation of
this function would consume an element from the iterator).
Examples
--------
Arbitrary elements from common Iterable objects:
>>> nx.utils.arbitrary_element([1, 2, 3]) # list
1
>>> nx.utils.arbitrary_element((1, 2, 3)) # tuple
1
>>> nx.utils.arbitrary_element({1, 2, 3}) # set
1
>>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])}
>>> nx.utils.arbitrary_element(d) # dict_keys
1
>>> nx.utils.arbitrary_element(d.values()) # dict values
3
`str` is also an Iterable:
>>> nx.utils.arbitrary_element("hello")
'h'
:exc:`ValueError` is raised if `iterable` is an iterator:
>>> iterator = iter([1, 2, 3]) # Iterator, *not* Iterable
>>> nx.utils.arbitrary_element(iterator)
Traceback (most recent call last):
...
ValueError: cannot return an arbitrary item from an iterator
Notes
-----
This function does not return a *random* element. If `iterable` is
ordered, sequential calls will return the same value::
>>> l = [1, 2, 3]
>>> nx.utils.arbitrary_element(l)
1
>>> nx.utils.arbitrary_element(l)
1
"""
if isinstance(iterable, Iterator):
raise ValueError("cannot return an arbitrary item from an iterator")
# Another possible implementation is ``for x in iterable: return x``.
return next(iter(iterable))
# Recipe from the itertools documentation.
def pairwise(iterable, cyclic=False):
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
a, b = tee(iterable)
first = next(b, None)
if cyclic is True:
return zip(a, chain(b, (first,)))
return zip(a, b)
def groups(many_to_one):
"""Converts a many-to-one mapping into a one-to-many mapping.
`many_to_one` must be a dictionary whose keys and values are all
:term:`hashable`.
The return value is a dictionary mapping values from `many_to_one`
to sets of keys from `many_to_one` that have that value.
Examples
--------
>>> from networkx.utils import groups
>>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
>>> groups(many_to_one) # doctest: +SKIP
{1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}}
"""
one_to_many = defaultdict(set)
for v, k in many_to_one.items():
one_to_many[k].add(v)
return dict(one_to_many)
def create_random_state(random_state=None):
"""Returns a numpy.random.RandomState or numpy.random.Generator instance
depending on input.
Parameters
----------
random_state : int or NumPy RandomState or Generator instance, optional (default=None)
If int, return a numpy.random.RandomState instance set with seed=int.
if `numpy.random.RandomState` instance, return it.
if `numpy.random.Generator` instance, return it.
if None or numpy.random, return the global random number generator used
by numpy.random.
"""
import numpy as np
if random_state is None or random_state is np.random:
return np.random.mtrand._rand
if isinstance(random_state, np.random.RandomState):
return random_state
if isinstance(random_state, int):
return np.random.RandomState(random_state)
if isinstance(random_state, np.random.Generator):
return random_state
msg = (
f"{random_state} cannot be used to create a numpy.random.RandomState or\n"
"numpy.random.Generator instance"
)
raise ValueError(msg)
class PythonRandomViaNumpyBits(random.Random):
"""Provide the random.random algorithms using a numpy.random bit generator
The intent is to allow people to contribute code that uses Python's random
library, but still allow users to provide a single easily controlled random
bit-stream for all work with NetworkX. This implementation is based on helpful
comments and code from Robert Kern on NumPy's GitHub Issue #24458.
This implementation supercedes that of `PythonRandomInterface` which rewrote
methods to account for subtle differences in API between `random` and
`numpy.random`. Instead this subclasses `random.Random` and overwrites
the methods `random`, `getrandbits`, `getstate`, `setstate` and `seed`.
It makes them use the rng values from an input numpy `RandomState` or `Generator`.
Those few methods allow the rest of the `random.Random` methods to provide
the API interface of `random.random` while using randomness generated by
a numpy generator.
"""
def __init__(self, rng=None):
try:
import numpy as np
except ImportError:
msg = "numpy not found, only random.random available."
warnings.warn(msg, ImportWarning)
if rng is None:
self._rng = np.random.mtrand._rand
else:
self._rng = rng
# Not necessary, given our overriding of gauss() below, but it's
# in the superclass and nominally public, so initialize it here.
self.gauss_next = None
def random(self):
"""Get the next random number in the range 0.0 <= X < 1.0."""
return self._rng.random()
def getrandbits(self, k):
"""getrandbits(k) -> x. Generates an int with k random bits."""
if k < 0:
raise ValueError("number of bits must be non-negative")
numbytes = (k + 7) // 8 # bits / 8 and rounded up
x = int.from_bytes(self._rng.bytes(numbytes), "big")
return x >> (numbytes * 8 - k) # trim excess bits
def getstate(self):
return self._rng.__getstate__()
def setstate(self, state):
self._rng.__setstate__(state)
def seed(self, *args, **kwds):
"Do nothing override method."
raise NotImplementedError("seed() not implemented in PythonRandomViaNumpyBits")
##################################################################
class PythonRandomInterface:
"""PythonRandomInterface is included for backward compatibility
New code should use PythonRandomViaNumpyBits instead.
"""
def __init__(self, rng=None):
try:
import numpy as np
except ImportError:
msg = "numpy not found, only random.random available."
warnings.warn(msg, ImportWarning)
if rng is None:
self._rng = np.random.mtrand._rand
else:
self._rng = rng
def random(self):
return self._rng.random()
def uniform(self, a, b):
return a + (b - a) * self._rng.random()
def randrange(self, a, b=None):
import numpy as np
if b is None:
a, b = 0, a
if b > 9223372036854775807: # from np.iinfo(np.int64).max
tmp_rng = PythonRandomViaNumpyBits(self._rng)
return tmp_rng.randrange(a, b)
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b)
return self._rng.randint(a, b)
# NOTE: the numpy implementations of `choice` don't support strings, so
# this cannot be replaced with self._rng.choice
def choice(self, seq):
import numpy as np
if isinstance(self._rng, np.random.Generator):
idx = self._rng.integers(0, len(seq))
else:
idx = self._rng.randint(0, len(seq))
return seq[idx]
def gauss(self, mu, sigma):
return self._rng.normal(mu, sigma)
def shuffle(self, seq):
return self._rng.shuffle(seq)
# Some methods don't match API for numpy RandomState.
# Commented out versions are not used by NetworkX
def sample(self, seq, k):
return self._rng.choice(list(seq), size=(k,), replace=False)
def randint(self, a, b):
import numpy as np
if b > 9223372036854775807: # from np.iinfo(np.int64).max
tmp_rng = PythonRandomViaNumpyBits(self._rng)
return tmp_rng.randint(a, b)
if isinstance(self._rng, np.random.Generator):
return self._rng.integers(a, b + 1)
return self._rng.randint(a, b + 1)
# exponential as expovariate with 1/argument,
def expovariate(self, scale):
return self._rng.exponential(1 / scale)
# pareto as paretovariate with 1/argument,
def paretovariate(self, shape):
return self._rng.pareto(shape)
# weibull as weibullvariate multiplied by beta,
# def weibullvariate(self, alpha, beta):
# return self._rng.weibull(alpha) * beta
#
# def triangular(self, low, high, mode):
# return self._rng.triangular(low, mode, high)
#
# def choices(self, seq, weights=None, cum_weights=None, k=1):
# return self._rng.choice(seq
def create_py_random_state(random_state=None):
"""Returns a random.Random instance depending on input.
Parameters
----------
random_state : int or random number generator or None (default=None)
- If int, return a `random.Random` instance set with seed=int.
- If `random.Random` instance, return it.
- If None or the `np.random` package, return the global random number
generator used by `np.random`.
- If an `np.random.Generator` instance, or the `np.random` package, or
the global numpy random number generator, then return it.
wrapped in a `PythonRandomViaNumpyBits` class.
- If a `PythonRandomViaNumpyBits` instance, return it.
- If a `PythonRandomInterface` instance, return it.
- If a `np.random.RandomState` instance and not the global numpy default,
return it wrapped in `PythonRandomInterface` for backward bit-stream
matching with legacy code.
Notes
-----
- A diagram intending to illustrate the relationships behind our support
for numpy random numbers is called
`NetworkX Numpy Random Numbers <https://excalidraw.com/#room=b5303f2b03d3af7ccc6a,e5ZDIWdWWCTTsg8OqoRvPA>`_.
- More discussion about this support also appears in
`gh-6869#comment <https://github.com/networkx/networkx/pull/6869#issuecomment-1944799534>`_.
- Wrappers of numpy.random number generators allow them to mimic the Python random
number generation algorithms. For example, Python can create arbitrarily large
random ints, and the wrappers use Numpy bit-streams with CPython's random module
to choose arbitrarily large random integers too.
- We provide two wrapper classes:
`PythonRandomViaNumpyBits` is usually what you want and is always used for
`np.Generator` instances. But for users who need to recreate random numbers
produced in NetworkX 3.2 or earlier, we maintain the `PythonRandomInterface`
wrapper as well. We use it only used if passed a (non-default) `np.RandomState`
instance pre-initialized from a seed. Otherwise the newer wrapper is used.
"""
if random_state is None or random_state is random:
return random._inst
if isinstance(random_state, random.Random):
return random_state
if isinstance(random_state, int):
return random.Random(random_state)
try:
import numpy as np
except ImportError:
pass
else:
if isinstance(random_state, PythonRandomInterface | PythonRandomViaNumpyBits):
return random_state
if isinstance(random_state, np.random.Generator):
return PythonRandomViaNumpyBits(random_state)
if random_state is np.random:
return PythonRandomViaNumpyBits(np.random.mtrand._rand)
if isinstance(random_state, np.random.RandomState):
if random_state is np.random.mtrand._rand:
return PythonRandomViaNumpyBits(random_state)
# Only need older interface if specially constructed RandomState used
return PythonRandomInterface(random_state)
msg = f"{random_state} cannot be used to generate a random.Random instance"
raise ValueError(msg)
def nodes_equal(nodes1, nodes2):
"""Check if nodes are equal.
Equality here means equal as Python objects.
Node data must match if included.
The order of nodes is not relevant.
Parameters
----------
nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples
Returns
-------
bool
True if nodes are equal, False otherwise.
"""
nlist1 = list(nodes1)
nlist2 = list(nodes2)
try:
d1 = dict(nlist1)
d2 = dict(nlist2)
except (ValueError, TypeError):
d1 = dict.fromkeys(nlist1)
d2 = dict.fromkeys(nlist2)
return d1 == d2
def edges_equal(edges1, edges2):
"""Check if edges are equal.
Equality here means equal as Python objects.
Edge data must match if included.
The order of the edges is not relevant.
Parameters
----------
edges1, edges2 : iterables of with u, v nodes as
edge tuples (u, v), or
edge tuples with data dicts (u, v, d), or
edge tuples with keys and data dicts (u, v, k, d)
Returns
-------
bool
True if edges are equal, False otherwise.
"""
from collections import defaultdict
d1 = defaultdict(dict)
d2 = defaultdict(dict)
c1 = 0
for c1, e in enumerate(edges1):
u, v = e[0], e[1]
data = [e[2:]]
if v in d1[u]:
data = d1[u][v] + data
d1[u][v] = data
d1[v][u] = data
c2 = 0
for c2, e in enumerate(edges2):
u, v = e[0], e[1]
data = [e[2:]]
if v in d2[u]:
data = d2[u][v] + data
d2[u][v] = data
d2[v][u] = data
if c1 != c2:
return False
# can check one direction because lengths are the same.
for n, nbrdict in d1.items():
for nbr, datalist in nbrdict.items():
if n not in d2:
return False
if nbr not in d2[n]:
return False
d2datalist = d2[n][nbr]
for data in datalist:
if datalist.count(data) != d2datalist.count(data):
return False
return True
def graphs_equal(graph1, graph2):
"""Check if graphs are equal.
Equality here means equal as Python objects (not isomorphism).
Node, edge and graph data must match.
Parameters
----------
graph1, graph2 : graph
Returns
-------
bool
True if graphs are equal, False otherwise.
"""
return (
graph1.adj == graph2.adj
and graph1.nodes == graph2.nodes
and graph1.graph == graph2.graph
)
def _clear_cache(G):
"""Clear the cache of a graph (currently stores converted graphs).
Caching is controlled via ``nx.config.cache_converted_graphs`` configuration.
"""
if cache := getattr(G, "__networkx_cache__", None):
cache.clear()