602 lines
19 KiB
Python
602 lines
19 KiB
Python
|
"""
|
||
|
Miscellaneous Helpers for NetworkX.
|
||
|
|
||
|
These are not imported into the base networkx namespace but
|
||
|
can be accessed, for example, as
|
||
|
|
||
|
>>> import networkx
|
||
|
>>> networkx.utils.make_list_of_ints({1, 2, 3})
|
||
|
[1, 2, 3]
|
||
|
>>> networkx.utils.arbitrary_element({5, 1, 7}) # doctest: +SKIP
|
||
|
1
|
||
|
"""
|
||
|
|
||
|
import random
|
||
|
import sys
|
||
|
import uuid
|
||
|
import warnings
|
||
|
from collections import defaultdict, deque
|
||
|
from collections.abc import Iterable, Iterator, Sized
|
||
|
from itertools import chain, tee
|
||
|
|
||
|
import networkx as nx
|
||
|
|
||
|
__all__ = [
|
||
|
"flatten",
|
||
|
"make_list_of_ints",
|
||
|
"dict_to_numpy_array",
|
||
|
"arbitrary_element",
|
||
|
"pairwise",
|
||
|
"groups",
|
||
|
"create_random_state",
|
||
|
"create_py_random_state",
|
||
|
"PythonRandomInterface",
|
||
|
"PythonRandomViaNumpyBits",
|
||
|
"nodes_equal",
|
||
|
"edges_equal",
|
||
|
"graphs_equal",
|
||
|
"_clear_cache",
|
||
|
]
|
||
|
|
||
|
|
||
|
# some cookbook stuff
|
||
|
# used in deciding whether something is a bunch of nodes, edges, etc.
|
||
|
# see G.add_nodes and others in Graph Class in networkx/base.py
|
||
|
|
||
|
|
||
|
def flatten(obj, result=None):
|
||
|
"""Return flattened version of (possibly nested) iterable object."""
|
||
|
if not isinstance(obj, Iterable | Sized) or isinstance(obj, str):
|
||
|
return obj
|
||
|
if result is None:
|
||
|
result = []
|
||
|
for item in obj:
|
||
|
if not isinstance(item, Iterable | Sized) or isinstance(item, str):
|
||
|
result.append(item)
|
||
|
else:
|
||
|
flatten(item, result)
|
||
|
return tuple(result)
|
||
|
|
||
|
|
||
|
def make_list_of_ints(sequence):
|
||
|
"""Return list of ints from sequence of integral numbers.
|
||
|
|
||
|
All elements of the sequence must satisfy int(element) == element
|
||
|
or a ValueError is raised. Sequence is iterated through once.
|
||
|
|
||
|
If sequence is a list, the non-int values are replaced with ints.
|
||
|
So, no new list is created
|
||
|
"""
|
||
|
if not isinstance(sequence, list):
|
||
|
result = []
|
||
|
for i in sequence:
|
||
|
errmsg = f"sequence is not all integers: {i}"
|
||
|
try:
|
||
|
ii = int(i)
|
||
|
except ValueError:
|
||
|
raise nx.NetworkXError(errmsg) from None
|
||
|
if ii != i:
|
||
|
raise nx.NetworkXError(errmsg)
|
||
|
result.append(ii)
|
||
|
return result
|
||
|
# original sequence is a list... in-place conversion to ints
|
||
|
for indx, i in enumerate(sequence):
|
||
|
errmsg = f"sequence is not all integers: {i}"
|
||
|
if isinstance(i, int):
|
||
|
continue
|
||
|
try:
|
||
|
ii = int(i)
|
||
|
except ValueError:
|
||
|
raise nx.NetworkXError(errmsg) from None
|
||
|
if ii != i:
|
||
|
raise nx.NetworkXError(errmsg)
|
||
|
sequence[indx] = ii
|
||
|
return sequence
|
||
|
|
||
|
|
||
|
def dict_to_numpy_array(d, mapping=None):
|
||
|
"""Convert a dictionary of dictionaries to a numpy array
|
||
|
with optional mapping."""
|
||
|
try:
|
||
|
return _dict_to_numpy_array2(d, mapping)
|
||
|
except (AttributeError, TypeError):
|
||
|
# AttributeError is when no mapping was provided and v.keys() fails.
|
||
|
# TypeError is when a mapping was provided and d[k1][k2] fails.
|
||
|
return _dict_to_numpy_array1(d, mapping)
|
||
|
|
||
|
|
||
|
def _dict_to_numpy_array2(d, mapping=None):
|
||
|
"""Convert a dictionary of dictionaries to a 2d numpy array
|
||
|
with optional mapping.
|
||
|
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
if mapping is None:
|
||
|
s = set(d.keys())
|
||
|
for k, v in d.items():
|
||
|
s.update(v.keys())
|
||
|
mapping = dict(zip(s, range(len(s))))
|
||
|
n = len(mapping)
|
||
|
a = np.zeros((n, n))
|
||
|
for k1, i in mapping.items():
|
||
|
for k2, j in mapping.items():
|
||
|
try:
|
||
|
a[i, j] = d[k1][k2]
|
||
|
except KeyError:
|
||
|
pass
|
||
|
return a
|
||
|
|
||
|
|
||
|
def _dict_to_numpy_array1(d, mapping=None):
|
||
|
"""Convert a dictionary of numbers to a 1d numpy array with optional mapping."""
|
||
|
import numpy as np
|
||
|
|
||
|
if mapping is None:
|
||
|
s = set(d.keys())
|
||
|
mapping = dict(zip(s, range(len(s))))
|
||
|
n = len(mapping)
|
||
|
a = np.zeros(n)
|
||
|
for k1, i in mapping.items():
|
||
|
i = mapping[k1]
|
||
|
a[i] = d[k1]
|
||
|
return a
|
||
|
|
||
|
|
||
|
def arbitrary_element(iterable):
|
||
|
"""Returns an arbitrary element of `iterable` without removing it.
|
||
|
|
||
|
This is most useful for "peeking" at an arbitrary element of a set,
|
||
|
but can be used for any list, dictionary, etc., as well.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
iterable : `abc.collections.Iterable` instance
|
||
|
Any object that implements ``__iter__``, e.g. set, dict, list, tuple,
|
||
|
etc.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
The object that results from ``next(iter(iterable))``
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If `iterable` is an iterator (because the current implementation of
|
||
|
this function would consume an element from the iterator).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Arbitrary elements from common Iterable objects:
|
||
|
|
||
|
>>> nx.utils.arbitrary_element([1, 2, 3]) # list
|
||
|
1
|
||
|
>>> nx.utils.arbitrary_element((1, 2, 3)) # tuple
|
||
|
1
|
||
|
>>> nx.utils.arbitrary_element({1, 2, 3}) # set
|
||
|
1
|
||
|
>>> d = {k: v for k, v in zip([1, 2, 3], [3, 2, 1])}
|
||
|
>>> nx.utils.arbitrary_element(d) # dict_keys
|
||
|
1
|
||
|
>>> nx.utils.arbitrary_element(d.values()) # dict values
|
||
|
3
|
||
|
|
||
|
`str` is also an Iterable:
|
||
|
|
||
|
>>> nx.utils.arbitrary_element("hello")
|
||
|
'h'
|
||
|
|
||
|
:exc:`ValueError` is raised if `iterable` is an iterator:
|
||
|
|
||
|
>>> iterator = iter([1, 2, 3]) # Iterator, *not* Iterable
|
||
|
>>> nx.utils.arbitrary_element(iterator)
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: cannot return an arbitrary item from an iterator
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
This function does not return a *random* element. If `iterable` is
|
||
|
ordered, sequential calls will return the same value::
|
||
|
|
||
|
>>> l = [1, 2, 3]
|
||
|
>>> nx.utils.arbitrary_element(l)
|
||
|
1
|
||
|
>>> nx.utils.arbitrary_element(l)
|
||
|
1
|
||
|
|
||
|
"""
|
||
|
if isinstance(iterable, Iterator):
|
||
|
raise ValueError("cannot return an arbitrary item from an iterator")
|
||
|
# Another possible implementation is ``for x in iterable: return x``.
|
||
|
return next(iter(iterable))
|
||
|
|
||
|
|
||
|
# Recipe from the itertools documentation.
|
||
|
def pairwise(iterable, cyclic=False):
|
||
|
"s -> (s0, s1), (s1, s2), (s2, s3), ..."
|
||
|
a, b = tee(iterable)
|
||
|
first = next(b, None)
|
||
|
if cyclic is True:
|
||
|
return zip(a, chain(b, (first,)))
|
||
|
return zip(a, b)
|
||
|
|
||
|
|
||
|
def groups(many_to_one):
|
||
|
"""Converts a many-to-one mapping into a one-to-many mapping.
|
||
|
|
||
|
`many_to_one` must be a dictionary whose keys and values are all
|
||
|
:term:`hashable`.
|
||
|
|
||
|
The return value is a dictionary mapping values from `many_to_one`
|
||
|
to sets of keys from `many_to_one` that have that value.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> from networkx.utils import groups
|
||
|
>>> many_to_one = {"a": 1, "b": 1, "c": 2, "d": 3, "e": 3}
|
||
|
>>> groups(many_to_one) # doctest: +SKIP
|
||
|
{1: {'a', 'b'}, 2: {'c'}, 3: {'e', 'd'}}
|
||
|
"""
|
||
|
one_to_many = defaultdict(set)
|
||
|
for v, k in many_to_one.items():
|
||
|
one_to_many[k].add(v)
|
||
|
return dict(one_to_many)
|
||
|
|
||
|
|
||
|
def create_random_state(random_state=None):
|
||
|
"""Returns a numpy.random.RandomState or numpy.random.Generator instance
|
||
|
depending on input.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
random_state : int or NumPy RandomState or Generator instance, optional (default=None)
|
||
|
If int, return a numpy.random.RandomState instance set with seed=int.
|
||
|
if `numpy.random.RandomState` instance, return it.
|
||
|
if `numpy.random.Generator` instance, return it.
|
||
|
if None or numpy.random, return the global random number generator used
|
||
|
by numpy.random.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
if random_state is None or random_state is np.random:
|
||
|
return np.random.mtrand._rand
|
||
|
if isinstance(random_state, np.random.RandomState):
|
||
|
return random_state
|
||
|
if isinstance(random_state, int):
|
||
|
return np.random.RandomState(random_state)
|
||
|
if isinstance(random_state, np.random.Generator):
|
||
|
return random_state
|
||
|
msg = (
|
||
|
f"{random_state} cannot be used to create a numpy.random.RandomState or\n"
|
||
|
"numpy.random.Generator instance"
|
||
|
)
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
|
||
|
class PythonRandomViaNumpyBits(random.Random):
|
||
|
"""Provide the random.random algorithms using a numpy.random bit generator
|
||
|
|
||
|
The intent is to allow people to contribute code that uses Python's random
|
||
|
library, but still allow users to provide a single easily controlled random
|
||
|
bit-stream for all work with NetworkX. This implementation is based on helpful
|
||
|
comments and code from Robert Kern on NumPy's GitHub Issue #24458.
|
||
|
|
||
|
This implementation supercedes that of `PythonRandomInterface` which rewrote
|
||
|
methods to account for subtle differences in API between `random` and
|
||
|
`numpy.random`. Instead this subclasses `random.Random` and overwrites
|
||
|
the methods `random`, `getrandbits`, `getstate`, `setstate` and `seed`.
|
||
|
It makes them use the rng values from an input numpy `RandomState` or `Generator`.
|
||
|
Those few methods allow the rest of the `random.Random` methods to provide
|
||
|
the API interface of `random.random` while using randomness generated by
|
||
|
a numpy generator.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, rng=None):
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ImportError:
|
||
|
msg = "numpy not found, only random.random available."
|
||
|
warnings.warn(msg, ImportWarning)
|
||
|
|
||
|
if rng is None:
|
||
|
self._rng = np.random.mtrand._rand
|
||
|
else:
|
||
|
self._rng = rng
|
||
|
|
||
|
# Not necessary, given our overriding of gauss() below, but it's
|
||
|
# in the superclass and nominally public, so initialize it here.
|
||
|
self.gauss_next = None
|
||
|
|
||
|
def random(self):
|
||
|
"""Get the next random number in the range 0.0 <= X < 1.0."""
|
||
|
return self._rng.random()
|
||
|
|
||
|
def getrandbits(self, k):
|
||
|
"""getrandbits(k) -> x. Generates an int with k random bits."""
|
||
|
if k < 0:
|
||
|
raise ValueError("number of bits must be non-negative")
|
||
|
numbytes = (k + 7) // 8 # bits / 8 and rounded up
|
||
|
x = int.from_bytes(self._rng.bytes(numbytes), "big")
|
||
|
return x >> (numbytes * 8 - k) # trim excess bits
|
||
|
|
||
|
def getstate(self):
|
||
|
return self._rng.__getstate__()
|
||
|
|
||
|
def setstate(self, state):
|
||
|
self._rng.__setstate__(state)
|
||
|
|
||
|
def seed(self, *args, **kwds):
|
||
|
"Do nothing override method."
|
||
|
raise NotImplementedError("seed() not implemented in PythonRandomViaNumpyBits")
|
||
|
|
||
|
|
||
|
##################################################################
|
||
|
class PythonRandomInterface:
|
||
|
"""PythonRandomInterface is included for backward compatibility
|
||
|
New code should use PythonRandomViaNumpyBits instead.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, rng=None):
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ImportError:
|
||
|
msg = "numpy not found, only random.random available."
|
||
|
warnings.warn(msg, ImportWarning)
|
||
|
|
||
|
if rng is None:
|
||
|
self._rng = np.random.mtrand._rand
|
||
|
else:
|
||
|
self._rng = rng
|
||
|
|
||
|
def random(self):
|
||
|
return self._rng.random()
|
||
|
|
||
|
def uniform(self, a, b):
|
||
|
return a + (b - a) * self._rng.random()
|
||
|
|
||
|
def randrange(self, a, b=None):
|
||
|
import numpy as np
|
||
|
|
||
|
if b is None:
|
||
|
a, b = 0, a
|
||
|
if b > 9223372036854775807: # from np.iinfo(np.int64).max
|
||
|
tmp_rng = PythonRandomViaNumpyBits(self._rng)
|
||
|
return tmp_rng.randrange(a, b)
|
||
|
|
||
|
if isinstance(self._rng, np.random.Generator):
|
||
|
return self._rng.integers(a, b)
|
||
|
return self._rng.randint(a, b)
|
||
|
|
||
|
# NOTE: the numpy implementations of `choice` don't support strings, so
|
||
|
# this cannot be replaced with self._rng.choice
|
||
|
def choice(self, seq):
|
||
|
import numpy as np
|
||
|
|
||
|
if isinstance(self._rng, np.random.Generator):
|
||
|
idx = self._rng.integers(0, len(seq))
|
||
|
else:
|
||
|
idx = self._rng.randint(0, len(seq))
|
||
|
return seq[idx]
|
||
|
|
||
|
def gauss(self, mu, sigma):
|
||
|
return self._rng.normal(mu, sigma)
|
||
|
|
||
|
def shuffle(self, seq):
|
||
|
return self._rng.shuffle(seq)
|
||
|
|
||
|
# Some methods don't match API for numpy RandomState.
|
||
|
# Commented out versions are not used by NetworkX
|
||
|
|
||
|
def sample(self, seq, k):
|
||
|
return self._rng.choice(list(seq), size=(k,), replace=False)
|
||
|
|
||
|
def randint(self, a, b):
|
||
|
import numpy as np
|
||
|
|
||
|
if b > 9223372036854775807: # from np.iinfo(np.int64).max
|
||
|
tmp_rng = PythonRandomViaNumpyBits(self._rng)
|
||
|
return tmp_rng.randint(a, b)
|
||
|
|
||
|
if isinstance(self._rng, np.random.Generator):
|
||
|
return self._rng.integers(a, b + 1)
|
||
|
return self._rng.randint(a, b + 1)
|
||
|
|
||
|
# exponential as expovariate with 1/argument,
|
||
|
def expovariate(self, scale):
|
||
|
return self._rng.exponential(1 / scale)
|
||
|
|
||
|
# pareto as paretovariate with 1/argument,
|
||
|
def paretovariate(self, shape):
|
||
|
return self._rng.pareto(shape)
|
||
|
|
||
|
|
||
|
# weibull as weibullvariate multiplied by beta,
|
||
|
# def weibullvariate(self, alpha, beta):
|
||
|
# return self._rng.weibull(alpha) * beta
|
||
|
#
|
||
|
# def triangular(self, low, high, mode):
|
||
|
# return self._rng.triangular(low, mode, high)
|
||
|
#
|
||
|
# def choices(self, seq, weights=None, cum_weights=None, k=1):
|
||
|
# return self._rng.choice(seq
|
||
|
|
||
|
|
||
|
def create_py_random_state(random_state=None):
|
||
|
"""Returns a random.Random instance depending on input.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
random_state : int or random number generator or None (default=None)
|
||
|
- If int, return a `random.Random` instance set with seed=int.
|
||
|
- If `random.Random` instance, return it.
|
||
|
- If None or the `np.random` package, return the global random number
|
||
|
generator used by `np.random`.
|
||
|
- If an `np.random.Generator` instance, or the `np.random` package, or
|
||
|
the global numpy random number generator, then return it.
|
||
|
wrapped in a `PythonRandomViaNumpyBits` class.
|
||
|
- If a `PythonRandomViaNumpyBits` instance, return it.
|
||
|
- If a `PythonRandomInterface` instance, return it.
|
||
|
- If a `np.random.RandomState` instance and not the global numpy default,
|
||
|
return it wrapped in `PythonRandomInterface` for backward bit-stream
|
||
|
matching with legacy code.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
- A diagram intending to illustrate the relationships behind our support
|
||
|
for numpy random numbers is called
|
||
|
`NetworkX Numpy Random Numbers <https://excalidraw.com/#room=b5303f2b03d3af7ccc6a,e5ZDIWdWWCTTsg8OqoRvPA>`_.
|
||
|
- More discussion about this support also appears in
|
||
|
`gh-6869#comment <https://github.com/networkx/networkx/pull/6869#issuecomment-1944799534>`_.
|
||
|
- Wrappers of numpy.random number generators allow them to mimic the Python random
|
||
|
number generation algorithms. For example, Python can create arbitrarily large
|
||
|
random ints, and the wrappers use Numpy bit-streams with CPython's random module
|
||
|
to choose arbitrarily large random integers too.
|
||
|
- We provide two wrapper classes:
|
||
|
`PythonRandomViaNumpyBits` is usually what you want and is always used for
|
||
|
`np.Generator` instances. But for users who need to recreate random numbers
|
||
|
produced in NetworkX 3.2 or earlier, we maintain the `PythonRandomInterface`
|
||
|
wrapper as well. We use it only used if passed a (non-default) `np.RandomState`
|
||
|
instance pre-initialized from a seed. Otherwise the newer wrapper is used.
|
||
|
"""
|
||
|
if random_state is None or random_state is random:
|
||
|
return random._inst
|
||
|
if isinstance(random_state, random.Random):
|
||
|
return random_state
|
||
|
if isinstance(random_state, int):
|
||
|
return random.Random(random_state)
|
||
|
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ImportError:
|
||
|
pass
|
||
|
else:
|
||
|
if isinstance(random_state, PythonRandomInterface | PythonRandomViaNumpyBits):
|
||
|
return random_state
|
||
|
if isinstance(random_state, np.random.Generator):
|
||
|
return PythonRandomViaNumpyBits(random_state)
|
||
|
if random_state is np.random:
|
||
|
return PythonRandomViaNumpyBits(np.random.mtrand._rand)
|
||
|
|
||
|
if isinstance(random_state, np.random.RandomState):
|
||
|
if random_state is np.random.mtrand._rand:
|
||
|
return PythonRandomViaNumpyBits(random_state)
|
||
|
# Only need older interface if specially constructed RandomState used
|
||
|
return PythonRandomInterface(random_state)
|
||
|
|
||
|
msg = f"{random_state} cannot be used to generate a random.Random instance"
|
||
|
raise ValueError(msg)
|
||
|
|
||
|
|
||
|
def nodes_equal(nodes1, nodes2):
|
||
|
"""Check if nodes are equal.
|
||
|
|
||
|
Equality here means equal as Python objects.
|
||
|
Node data must match if included.
|
||
|
The order of nodes is not relevant.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
nodes1, nodes2 : iterables of nodes, or (node, datadict) tuples
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
True if nodes are equal, False otherwise.
|
||
|
"""
|
||
|
nlist1 = list(nodes1)
|
||
|
nlist2 = list(nodes2)
|
||
|
try:
|
||
|
d1 = dict(nlist1)
|
||
|
d2 = dict(nlist2)
|
||
|
except (ValueError, TypeError):
|
||
|
d1 = dict.fromkeys(nlist1)
|
||
|
d2 = dict.fromkeys(nlist2)
|
||
|
return d1 == d2
|
||
|
|
||
|
|
||
|
def edges_equal(edges1, edges2):
|
||
|
"""Check if edges are equal.
|
||
|
|
||
|
Equality here means equal as Python objects.
|
||
|
Edge data must match if included.
|
||
|
The order of the edges is not relevant.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
edges1, edges2 : iterables of with u, v nodes as
|
||
|
edge tuples (u, v), or
|
||
|
edge tuples with data dicts (u, v, d), or
|
||
|
edge tuples with keys and data dicts (u, v, k, d)
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
True if edges are equal, False otherwise.
|
||
|
"""
|
||
|
from collections import defaultdict
|
||
|
|
||
|
d1 = defaultdict(dict)
|
||
|
d2 = defaultdict(dict)
|
||
|
c1 = 0
|
||
|
for c1, e in enumerate(edges1):
|
||
|
u, v = e[0], e[1]
|
||
|
data = [e[2:]]
|
||
|
if v in d1[u]:
|
||
|
data = d1[u][v] + data
|
||
|
d1[u][v] = data
|
||
|
d1[v][u] = data
|
||
|
c2 = 0
|
||
|
for c2, e in enumerate(edges2):
|
||
|
u, v = e[0], e[1]
|
||
|
data = [e[2:]]
|
||
|
if v in d2[u]:
|
||
|
data = d2[u][v] + data
|
||
|
d2[u][v] = data
|
||
|
d2[v][u] = data
|
||
|
if c1 != c2:
|
||
|
return False
|
||
|
# can check one direction because lengths are the same.
|
||
|
for n, nbrdict in d1.items():
|
||
|
for nbr, datalist in nbrdict.items():
|
||
|
if n not in d2:
|
||
|
return False
|
||
|
if nbr not in d2[n]:
|
||
|
return False
|
||
|
d2datalist = d2[n][nbr]
|
||
|
for data in datalist:
|
||
|
if datalist.count(data) != d2datalist.count(data):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
def graphs_equal(graph1, graph2):
|
||
|
"""Check if graphs are equal.
|
||
|
|
||
|
Equality here means equal as Python objects (not isomorphism).
|
||
|
Node, edge and graph data must match.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
graph1, graph2 : graph
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
True if graphs are equal, False otherwise.
|
||
|
"""
|
||
|
return (
|
||
|
graph1.adj == graph2.adj
|
||
|
and graph1.nodes == graph2.nodes
|
||
|
and graph1.graph == graph2.graph
|
||
|
)
|
||
|
|
||
|
|
||
|
def _clear_cache(G):
|
||
|
"""Clear the cache of a graph (currently stores converted graphs).
|
||
|
|
||
|
Caching is controlled via ``nx.config.cache_converted_graphs`` configuration.
|
||
|
"""
|
||
|
if cache := getattr(G, "__networkx_cache__", None):
|
||
|
cache.clear()
|